中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 4996-5007.doi: 10.3864/j.issn.0578-1752.2021.23.006
收稿日期:
2021-02-25
接受日期:
2021-06-21
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
李中安
作者简介:
李姜玲,E-mail: 基金资助:
LI JiangLing1(),YANG Lan1,RUAN RenWu2,LI ZhongAn1(
)
Received:
2021-02-25
Accepted:
2021-06-21
Online:
2021-12-01
Published:
2021-12-06
Contact:
ZhongAn LI
摘要:
【目的】通过分析不同杂交小麦组合及其亲本苗期叶片的光合特性与籽粒产量的相关性,为杂交小麦强优势组合早期筛选和预测提供理论依据。【方法】以2个恢复系和4个不育系及其配制的6个杂交小麦组合为材料,在大田种植条件下测定小麦苗期叶片的光合特性,包括净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、水分利用效率(WUE)、叶绿素含量、Rubisco活性及其大小亚基编码基因rbcL、rbcS相对表达量;调查成熟期的产量性状,包括株高、主穗穗长、单株地上生物量、有效穗数、穗粒数、单株籽粒产量、主穗小穗数、千粒重、收获指数,并分析杂种优势以及光合性状与产量性状的相关性。【结果】杂交小麦苗期的净光合速率、气孔导度、蒸腾速率均表现出显著的超高亲优势,其中净光合速率的平均超高亲优势为15.4%,气孔导度为21.3%,蒸腾速率则为11.46%,净光合速率值高的恢复系所配制的杂交组合具有更高的净光合速率和杂种优势,而胞间二氧化碳浓度、水分利用效率则少数有负向优势。成熟期有效穗数、单株籽粒产量及单株生物量具有较高的超高亲优势,其中穗数的超高亲优势值达到最高,平均优势值为34.21%。相关性分析表明,净光合速率与气孔导度、蒸腾速率、单株生物量和单株籽粒产量呈显著或极显著正相关,说明气孔导度、蒸腾速率可辅助筛选高光合小麦,同时苗期净光合速率与产量关系密切。叶绿素含量、Rubisco活性、大小亚基编码基因rbcL、rbcS相对表达量的杂种优势差异较大,其中杂交小麦Rubisco活性均高于双亲,且具有显著的超高亲优势,平均超高亲优势为5.38%。编码基因中,与rbcL相比rbcS具有更高的超高亲优势和中亲优势,而叶绿素含量主要表现为负向优势,少数表现出中亲优势,极少数表现出超高亲优势,且各项指标与净光合速率均无显著相关性。【结论】杂交小麦在苗期已表现出显著的杂种优势,尤其是净光合速率、气孔导度和蒸腾速率,而净光合速率与单株产量、单株生物量显著正相关,因此结合小麦杂交组合的田间表现,苗期净光合速率高低可以作为早期预测杂交组合的产量潜力的参考依据。
李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007.
LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations[J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
表1
杂交小麦及其亲本的光合性状比较"
亲本及F1代 Parents and F1 hybrid | 净光合速率 Pn (μmol·m-2·s-1) | 气孔导度 Gs (mmol·m-2·s-1) | 胞间二氧 化碳浓度 Ci (μmol·mol-1) | 水分利用 效率 WUE (mmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) | 叶绿素a Chl.a (mg·g-1) | 叶绿素b Chl.b (mg·g-1) | 叶绿素(a+b) Chl.(a+b) (mg·g-1) | |
---|---|---|---|---|---|---|---|---|---|
不育系 Male sterile lines | 18L7077 | 28.28 | 373.78 | 255.09 | 13.45 | 2.10 | 0.842 | 0.253 | 1.095 |
15L7084 | 25.58 | 340.2 | 228.01 | 17.35 | 1.56 | 0.848 | 0.262 | 1.109 | |
12L8012 | 23.72 | 315.66 | 271.39 | 12.11 | 1.97 | 0.782 | 0.245 | 1.027 | |
12L8015 | 22.38 | 269.2 | 237.99 | 14.73 | 1.54 | 0.798 | 0.245 | 1.043 | |
恢复系 Restorer lines | 川麦93 Chuanmai93 | 24.94 | 365.86 | 231.84 | 15.7 | 1.64 | 0.850 | 0.259 | 1.108 |
川14品16 Chuan14pin16 | 23.53 | 318.98 | 233.02 | 15.32 | 1.55 | 0.896 | 0.269 | 1.164 | |
F1代 F1 hybrid | 12L8015×川14品16 12L8015×Chuan 14 pin 16 | 27.92 | 434.69 | 256.59 | 16.92 | 1.67 | 0.851 | 0.244 | 1.095 |
15L7084×川14品16 15L7084×Chuan 14 pin 16 | 27.83 | 439.33 | 239.79 | 16.58 | 1.75 | 0.826 | 0.245 | 1.071 | |
18L7077×川14品16 18L7077×Chuan 14 pin 16 | 30.26 | 454.31 | 235.03 | 13.94 | 2.17 | 0.809 | 0.243 | 1.052 | |
12L8012×川麦93 12L8012×Chuanmai 93 | 30.03 | 454.59 | 246.35 | 14.08 | 2.20 | 0.808 | 0.247 | 1.055 | |
12L8015×川麦93 12L8015×Chuanmai 93 | 31.48 | 461.67 | 220.00 | 17.75 | 1.89 | 0.778 | 0.236 | 1.014 | |
15L7084×川麦93 15L7084×Chuanmai 93 | 28.25 | 396.67 | 230.21 | 14.61 | 1.96 | 0.859 | 0.267 | 1.126 | |
均值 Mean | 27.02 | 385.41 | 240.44 | 15.21 | 1.83 | 0.829 | 0.251 | 1.080 | |
标准差 Std | 2.814 | 62.018 | 13.874 | 1.640 | 0.236 | 0.033 | 0.010 | 0.042 | |
变异系数CV (%) | 10.42 | 16.09 | 5.77 | 10.78 | 12.88 | 4.04 | 4.03 | 3.90 | |
组间差异Difference in combinations (F) | 111.460** | 438.683** | 8.840** | 105.507** | 59.222** | 23.849** | 11.24* | 12.46** |
表2
杂交小麦光合特性的杂种优势表现"
性状 Trait | 超高亲优势 Over high-parent heterosis | 中亲优势 Over mid-parent heterosis | 超低亲优势 Below low-parent heterosis | ||||||
---|---|---|---|---|---|---|---|---|---|
正向组合数 HPH>0 | 平均 AH (%) | 范围 Range (%) | 正向组合数 MPH>0 | 平均 AH (%) | 范围 Range (%) | 负向组合数LPH<0 | 平均 AH (%) | 范围 Range (%) | |
净光合速率 Pn | 6 | 15.40 | 7.00-26.23 | 6 | 20.08 | 11.82-33.05 | 0 | 25.34 | 13.25-40.66 |
气孔导度 Gs | 6 | 24.30 | 8.42-36.27 | 6 | 35.82 | 20.35-47.81 | 0 | 39.35 | 16.60-61.47 |
胞间二氧化碳浓度 Ci | 3 | -0.61 | -9.22-7.82 | 3 | 0.16 | -6.35-8.95 | 1 | 3.04 | -5.11-10.11 |
水分利用效率 WUE | 3 | -2.67 | -15.80-13.06 | 4 | 2.88 | -11.58-16.67 | 1 | 9.42 | -9.00-23.27 |
蒸腾速率 Tr | 6 | 11.36 | 3.59-19.09 | 6 | 16.93 | 8.00-22.07 | 0 | 23.82 | 8.28-40.43 |
叶绿素a Chl.a | 1 | -5.78 | -9.72-1.13 | 2 | -2.65 | -7.22-1.46 | 3 | 0.79 | -4.59-8.88 |
叶绿素b Chl.b | 1 | -6.44 | -9.50-2.17 | 1 | -4.18 | -8.32-2.72 | 4 | 0.16 | -7.11-3.28 |
叶绿素(a+b) Chl.(a+b) | 1 | -5.90 | -9.67-1.94 | 1 | -3.00 | -7.48-1.59 | 3 | 0.16 | -5.18-6.67 |
表3
小麦杂交组合光合性状的超高亲优势值"
F1代 F1 hybrid | 净光合速率 Pn | 气孔导度 Gs | 胞间二氧化碳浓度 Ci | 水分利用效率 WUE | 蒸腾速率 Tr | 叶绿素a Chl.a | 叶绿素b Chl.b | 叶绿素(a+b) Chl.(a+b) |
---|---|---|---|---|---|---|---|---|
12L8015×川14品16 12L8015×Chuan 14 pin 16 | 18.63** | 36.28** | 7.82* | 10.46** | 7.73* | -5.01* | -9.13* | -5.96 |
15L7084×川14品16 15L7084×Chuan 14 pin 16 | 8.80* | 29.14** | 2.90 | -4.44 | 11.64** | -9.72** | -9.50* | -9.67* |
18L7077×川14品16 18L7077×Chuan 14 pin 16 | 7.00* | 21.54** | 3.08 | -9.01* | 3.59 | -7.76* | -8.82* | -8.00* |
12L8012×川麦93 12L8012×Chuanmai 93 | 20.39** | 24.25** | -9.23* | -10.34** | 11.45** | -4.88 | -4.58 | -4.81 |
12L8015×川麦93 12L8015×Chuanmai 93 | 26.23** | 26.19** | -7.56* | 13.06** | 14.66** | -8.44* | -8.79* | -8.52* |
15L7084×川麦93 15L7084×Chuanmai 93 | 10.44** | 8.42* | -0.70 | -15.80** | 19.09** | 1.13 | 2.17 | 1.54 |
表4
光合作用相关指标之间的简单相关系数"
性状 Trait | 净光合速率 Pn | 气孔导度 Gs | 胞间二氧化碳浓度 Ci | 水分利用效率 WUE | 蒸腾速率 Tr | 叶绿素a Chl.a | 叶绿素b Chl.b |
---|---|---|---|---|---|---|---|
气孔导度 Gs | 0.939** | ||||||
胞间二氧化碳浓度 Ci | -0.534 | -0.189 | |||||
水分利用效率 WUE | 0.382 | 0.396 | -0.626* | ||||
蒸腾速率 Tr | 0.680* | 0.559 | 0.329 | -0.196 | |||
叶绿素a Chl.a | -0.257 | 0.002 | 0.017 | 0.113 | -0.670* | ||
叶绿素b Chl.b | -0.414 | -0.269 | -0.107 | -0.017 | -0.619* | 0.843** | |
叶绿素(a+b) Chl.(a+b) | -0.199 | -0.062 | -0.010 | 0.082 | -0.678* | 0.992** | 0.904** |
表5
杂交小麦组合与亲本光合特性的相关系数"
性状 Trait | 净光合速率 Pn | 气孔导度 Gs | 胞间二氧化碳浓度 Ci | 水分利用效率 WUE | 蒸腾速率 Tr | 叶绿素a Chl.a | 叶绿素b Chl.b | 叶绿素(a+b) Chl.(a+b) |
---|---|---|---|---|---|---|---|---|
杂交小麦组合与不育系值HMC | -0.219 | -0.437 | 0.128 | -0.234 | -0.704 | 0.361 | 0.585 | 0.416 |
杂交小麦组合与恢复系值HRC | 0.359 | -0.508 | -0.668 | -0.089 | -0.177 | 0.249 | -0.313 | 0.109 |
杂交小麦组合与中亲值HMPC | -0.192 | -0.565 | -0.029 | -0.239 | -0.270 | 0.374 | 0.283 | 0.340 |
表6
小麦杂交组合产量性状的超高亲优势值"
F1代 F1 hybrid | 主穗小穗数 SN | 主穗长 SL | 穗粒数 GNPS | 有效穗数 SNPP | 单株产量 GYPP | 千粒重 TGW | 单株生物量 BMPP | 收获指数 HI |
---|---|---|---|---|---|---|---|---|
12L8015×川14品16 12L8015×Chuan 14 pin 16 | 4.15* | -6.67* | -20.66** | 40.94** | 17.67** | 6.16* | 17.10** | 1.03 |
15L7084×川14品16 15L7084×Chuan 14 pin 16 | 5.09** | 3.99* | -1.94 | 15.44** | 17.85* | 5.85* | 15.34* | 0.82 |
18L7077×川14品16 18L7077×Chuan 14 pin 16 | 0.94 | -0.82 | -10.41** | 24.83** | 16.83* | 4.46 | 14.05* | 1.51 |
12L8012×川麦93 12L8012×Chuanmai 93 | 0.13 | -11.25** | -20.28** | 42.11** | 7.45* | -5.95* | 4.60 | 1.38 |
12L8015×川麦93 12L8015×Chuanmai 93 | -1.39 | -12.35** | -25.86** | 46.62** | 17.51* | 9.40** | 12.30** | 6.62* |
15L7084×川麦93 15L7084×Chuanmai 93 | 2.71 | -4.97* | -19.61** | 35.34** | 7.73* | -0.76 | 4.41 | 4.25 |
表7
小麦净光合速率与产量相关性状的相关系数"
株高 PH | 主穗长 SL | 单株生物量 BMPP | 单株产量 GYPP | 有效穗数 SNPP | 穗粒数 GNPS | 主穗小穗数 SN | 千粒重 TGW | 收获系数 HI | |
---|---|---|---|---|---|---|---|---|---|
主穗长 SL | 0.625* | ||||||||
单株生物量 BMPP | 0.734** | 0.789** | |||||||
单株产量 GYPP | 0.291 | -0.429 | 0.981** | ||||||
有效穗数 SNPP | -0.288 | -0.882** | -0.262 | 0.815* | |||||
穗粒数 GNPS | 0.612** | 0.928** | 0.903** | 0.209 | 0.799** | ||||
主穗小穗数 SN | 0.797** | 0.841** | 0.790** | -0.701 | -0.575 | 0.805** | |||
千粒重 TGW | 0.415 | 0.001 | 0.687 | 0.651 | 0.118 | 0.157 | -0.349 | ||
收获指数 HI | -0.442 | -0.538 | 0.422 | 0.572 | 0.275 | -0.377 | -0.413 | 0.431 | |
净光合速率 Pn | 0.348 | 0.420 | 0.578* | 0.862** | 0.150 | 0.420 | 0.423 | 0.343 | 0.392 |
表8
杂交小麦Rubisco活性及其大小亚基编码基因rbcL和rbcS相对表达量的杂种优势比较"
编号 Number | F1代 F1 hybrid | 指标 Index | 中亲优势 Over mid-parent heterosis (%) | 超高亲优势 Over high-parent heterosis (%) | 超低亲优势 Below low-parent heterosis (%) |
---|---|---|---|---|---|
19-200 | 12L8015×川14品16 12L8015×Chuan 14 pin 16 | Rubisco活性 Rubisco activity | 13.00** | 5.72* | 21.37** |
rbcL相对表达量 Relative expression of rbcL | 73.17** | 42.53** | 120.58** | ||
rbcS相对表达量 Relative expression of rbcS | 64.22** | 61.50** | 67.03** | ||
19-204 | 18L7077×川14品16 18L7077×Chuan 14 pin 16 | Rubisco活性 Rubisco activity | 10.52** | 8.28* | 12.86** |
rbcL相对表达量 Relative expression of rbcL | -25.26** | -28.56** | -21.65** | ||
rbcS相对表达量 Relative expression of rbcS | -35.69** | -52.26** | -1.47 | ||
19-205 | 15L7084×川14品16 15L7084×Chuan 14 pin 16 | Rubisco活性 Rubisco activity | 10.18** | 8.31* | 27.32** |
rbcL相对表达量 Relative expression of rbcL | 86.76** | 60.10** | 124.08** | ||
rbcS相对表达量 Relative expression of rbcS | 131.43** | 99.58** | 175.37** | ||
19-218 | 12L8012×川麦93 12L8012×Chuanmai 93 | Rubisco活性 Rubisco activity | 9.30* | 3.30 | 16.04** |
rbcL相对表达量 Relative expression of rbcL | -22.73** | -43.64** | 22.85** | ||
rbcS相对表达量 Relative expression of rbcS | -44.97** | -59.00** | -16.36 | ||
19-219 | 12L8015×川麦93 12L8015×Chuanmai 93 | Rubisco活性 Rubisco activity | 8.99* | 6.03* | 12.13** |
rbcL相对表达量 Relative expression of rbcL | 16.70* | -8.32 | 60.51** | ||
rbcS相对表达量 Relative expression of rbcS | 38.33** | 23.41** | 57.35** | ||
19-220 | 15L7084×川麦93 15L7084×Chuanmai 93 | Rubisco活性 Rubisco activity | 7.07* | 0.84 | 14.11** |
rbcL相对表达量 Relative expression of rbcL | -10.73 | -37.30** | 54.91** | ||
rbcS相对表达量 Relative expression of rbcS | 76.60** | 20.74** | 228.64** |
[1] |
GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327(5967):812-818.
doi: 10.1126/science.1185383 |
[2] | KEMPE K, RUBTSOVA M, GILS M. Split-gene system for hybrid wheat seed production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25):9097-9102. |
[3] |
TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967):818-822.
doi: 10.1126/science.1183700 |
[4] |
LI S, YANG D, ZHU Y. Characterization and use of male sterility in hybrid rice breeding. Journal of Integrative Plant Biology, 2007, 49(6):791-804.
doi: 10.1111/jipb.2007.49.issue-6 |
[5] |
CHEN L, LIU Y G. Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014, 65(1):579-606.
doi: 10.1146/arplant.2014.65.issue-1 |
[6] |
GUPTA P K, BALYAN H S, GAHLAUT V, SARIPALLI G, PAL B, BASNET B R, JOSHI A K. Hybrid wheat: past, present and future. Theoretical and Applied Genetics, 2019, 132(9):2463-2483.
doi: 10.1007/s00122-019-03397-y |
[7] | 李中安. 一种以蓝粒为标记性状的两系法杂交小麦的选育方法: CN200610042629.8.(2006-09-06)[2021-02-11]. |
LI Z A. A breeding method of two-line hybrid wheat marked by blue grain: CN200610042629.8[P].(2006-09-06)[2021-02-11]. (in Chinese) | |
[8] |
MURCHIE E H, PINTO M, HORTON P. Agriculture and the new challenges for photosynthesis research. The New Phytologist, 2009, 181(3):532-552.
doi: 10.1111/nph.2009.181.issue-3 |
[9] |
CHEN X J, MIN D H, TAUQEER A H, HU G Y. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Research, 2012, 137:195-201.
doi: 10.1016/j.fcr.2012.09.008 |
[10] |
TSHIKUNDE N M, MASHILO J, SHIMELIS H, ODINDO A. Agronomic and physiological traits, and associated Quantitative Trait Loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Frontiers in Plant Science, 2019, 10(5):1428.
doi: 10.3389/fpls.2019.01428 |
[11] |
FISCHER R A, REES D, SAYRE K D, CONDON G A, LARQUE S. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies. Crop Science, 1998, 38(6):1467-1475.
doi: 10.2135/cropsci1998.0011183X003800060011x |
[12] |
ZHENG T C, ZHANG X K, YIN G H, WANG L N, HAN Y L, CHEN L, HE F, TANG J W, XIA X C, HE Z H. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan province of China between 1981 and 2008. Field Crops Research, 2011, 122(3):225-233.
doi: 10.1016/j.fcr.2011.03.015 |
[13] |
ZHOU Y, HE Z H, SUI X X, XIA X C, ZHANG X K, ZHANG G S. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science, 2007, 47(1):245-253.
doi: 10.2135/cropsci2006.03.0175 |
[14] |
ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S. Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 2007, 157(3):465-473.
doi: 10.1007/s10681-007-9376-8 |
[15] |
REYNOLDS M P, PASK A J D, HOPPITT W J E, SONDER K, SUKUMARAN S, MOLERO G, PIERRE C S, PAYNE T, SINGH R P, BRAUN H J, et al. Strategic crossing of biomass and harvest index-source and sink-achieves genetic gains in wheat. Euphytica, 2017, 213(11):257-270.
doi: 10.1007/s10681-017-2040-z |
[16] | 刘红梅, 周新跃, 陈杰, 李海林, 邱颖波, 刘建丰. 籼型杂交稻光合特性的杂种优势分析. 华北农学报, 2014, 29(3):122-127. |
LIU H M, ZHOU X Y, CHEN J, LI H L, QIU Y B, LIU J F. Heterosis analysis of photosynthetic characteristics in indica hybrid rice. Acta Agriculturae Boreali-Sinica, 2014, 29(3):122-127. (in Chinese) | |
[17] | 赵仁杰, 周紫阳. 高粱杂交种吉杂319及其亲本叶片光合相关参数的比较. 东北农业科学, 2020, 45(2):9-12. |
ZHAO R J, ZHOU Z Y. Comparison of photosynthetic parameters of sorghum hybrid Jiza 319 and its parents. Northeast Agricultural Science, 2020, 45(2):9-12. (in Chinese) | |
[18] | 王秀莉, 胡兆荣, 彭惠茹, 杜金昆, 孙其信, 王敏, 倪中福. 普通小麦光合碳同化与产量性状杂种优势的关系. 作物学报, 2010, 36(6):1003-1010. |
WANG X L, HU Z R, PENG H R, DU J K, SUN Q X, WANG M, NI Z F. Relationship of photosynthetic carbon assimilation related traits of flag leaves with yield heterosis in a wheat diallel cross. Acta Agronomica Sinica, 2010, 36(6):1003-1010. (in Chinese) | |
[19] |
YANG X, CHEN X, GE Q Y, LI B, TONG Y P, LI Z S, KUANG T Y, LU C M. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. Journal of Plant Physiology, 2007, 164(3):318-326.
doi: 10.1016/j.jplph.2006.01.007 |
[20] |
SONG Q H, SU R N, CHAI Y M, BACHIR D G, CHEN L, HU Y. High photosynthetic capability of wheat germplasm with rye chromosome. Journal of Plant Physiology, 2017, 216:202-211.
doi: 10.1016/j.jplph.2017.06.012 |
[21] | 吴讷, 陈炫, 姜瑶瑶, 张天烨, 羊健, 朱统泉, 张恒木, 陈剑平. 中国小麦花叶病毒(CWMV)侵染条件下小麦内参基因的选择. 浙江农业学报, 2018, 30(7):1182-1187. |
WU N, CHEN X, JIANG Y Y, ZHANG T Y, YANG J, ZHU T Q, ZHANG H M, CHEN J P. Selection of reference genes in wheat infected by Chinese wheat mosaic virus (CWMV)s. Acta Agriculturae Zhejiangensi, 2018, 30(7):1182-1187. (in Chinese) | |
[22] | 许大全. 光合速率、光合效率与作物产量. 生物学通报, 1999, 34(8):8-10. |
XU D Q. Photosynthetic rate, photosynthetic efficiency and crop yield. Chinese Bulletin of Biology, 1999, 34(8):8-10. (in Chinese) | |
[23] |
TOLLENAAR M, AHMADZADEH A, LEE E A. Physiological basis of heterosis for grain yield in maize. Crop Science, 2004, 44(6):2086-2094.
doi: 10.2135/cropsci2004.2086 |
[24] | WEI G, TAO Y, LIU G Z, CHEN C, LUO R, XIA H A, GAN Q, ZENG H P, LU Z L, HAN Y N, et al. A transcriptomic analysis of super hybrid rice LYP9 and its parents. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19):7695-7701. |
[25] |
NI Z F, KIM E D, HA M, LACKEY E, LIU J X, ZHANG Y R, SUN Q X, CHEN Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457(7277):327-331.
doi: 10.1038/nature07523 |
[26] | 张其德, 卢从明, 张世平, 张启峰. 几组有优和无优杂交组合中杂交稻及其亲本光合功能的比较. 植物学通报, 1998, 15(1):51-56. |
ZHANG Q D, LU C M, ZHANG S P, ZHANG Q F. The comparison of photosynthetic functions among hybrid rice and their parents in some heterosis and nonheterosis hybrid combinations. Chinese Bulletin of Botany, 1998, 15(1):51-56. (in Chinese) | |
[27] |
AISAWI K A B, REYNOLDS M P, SINGH R P, FOULKES M J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 2015, 55(4):1749-1764.
doi: 10.2135/cropsci2014.09.0601 |
[28] |
TAUSZ-POSCH S, DEMPSEY R W, SENEWEERA S, NORTON R M, FITZGERALD G, TAUSZ M. Does a freely tillering wheat cultivar benefit more from elevated CO2 than a restricted tillering cultivar in a water-limited environment. European Journal of Agronomy, 2015, 64:21-28.
doi: 10.1016/j.eja.2014.12.009 |
[29] |
BECHE E, BENIN D, DA SILVA C L, MUNARO L B, MARCHESE J A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. European Journal of Agronomy, 2014, 61:49-59.
doi: 10.1016/j.eja.2014.08.005 |
[30] | SUZUKI Y, KIHARA-DOI T, KAWAZU T, MIYAKE C, MAKINO A. Differences in Rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell Environment, 33(8):1314-1323. |
[31] |
SASANUMA T. Characterization of the rbcS multigene family in wheat: Subfamily classification, determination of chromosomal location and evolutionary analysis. Molecular Genetics and Genomics, 2001, 265(1):161-171.
doi: 10.1007/s004380000404 |
[32] |
RODERMEL S. Subunit control of Rubisco biosynthesis-A relic of an endosymbiotic past. Photosynthesis Research, 1999, 59(2):105-123.
doi: 10.1023/A:1006122619851 |
[33] |
DEAN C, PICHERSKY E. DUNSMUIR P. Structure, evolution and regulation of rbcS genes in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1):415-439.
doi: 10.1146/arplant.1989.40.issue-1 |
[34] |
EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78(1):9-19.
doi: 10.1007/BF00377192 |
[35] |
MAKINO A, MAE T, OHIRA K. Differences between wheat and rice in the enzyme properties of ribulose-1,5-bisphosphate carboxylase/ oxygenase and their relationship to photosynthetic gas exchange. Planta, 1988, 174(1):30-38.
doi: 10.1007/BF00394870 |
[36] | 杨小苗, 吴新亮, 刘玉凤, 李天来, 齐明芳. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用. 应用生态学报, 2018, 29(6):1983-1989. |
YANG X M, WU X L, LIU Y F, LI T L, QI M F. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS. Chinese Journal of Applied Ecology, 2018, 29(6):1983-1989. (in Chinese) | |
[37] |
LI Y, REN B, GAO L, DING L, JIANG D, XU X, SHEN Q, GUO S. Less chlorophyll does not necessarily restrain light capture ability and photosynthesis in a chlorophyll-deficient rice mutant. Journal of Agronomy and Crop Science, 2012, 199(1):49-56.
doi: 10.1111/jac.2013.199.issue-1 |
[38] |
SUZUKI Y, OHKUBO M, HATAKEYAMA H, OHASHI K, YOSHIZAWA R, KOJIMA S, HAYAKAWA T, YAMAYA T, MAE T, MAKINO A. Increased Rubisco content in transgenic rice transformed with the “sense” rbcs gene. Plant Cell Physiology, 2008, 48(4):626-637.
doi: 10.1093/pcp/pcm035 |
[39] |
SUZUKI Y, MIYAMOTO T, YOSHIZAWA R, MAE T, MAKINO A. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Environment, 2010, 32(4):417-427.
doi: 10.1111/pce.2009.32.issue-4 |
[40] |
SAWCHUK M G, DONNER T J, HEAD P, SCARPELLA E. Unique and overlapping expression patterns among members of photosynthesis- associated nuclear gene families in Arabidopsis. Plant Physiology, 2008, 148(4):1908-1924.
doi: 10.1104/pp.108.126946 |
[41] |
YOON M, PUTTERILL J J, ROSS G S, LAING W A. Determination of the relative expression levels of Rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends. Analytical Biochemistry, 2001, 291(2):237-244.
doi: 10.1006/abio.2001.5042 |
[42] |
SAEED I, BACHIR D G, CHEN L, HU Y G. The expression of TaRca2-α gene associated with net photosynthesis rate, biomass and grain yield in bread wheat (Triticum aestivum L.) under field conditions. PLoS ONE, 2016, 11(8):e0161308.
doi: 10.1371/journal.pone.0161308 |
[43] | DRIEVER S M, SIMKIN A J, ALOTAIBI S, FISK S J, MADGWICK P J, SPARKS C A, JONES H D, LAWSON T, PARRY M, RAINES C A. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philosophical Transactions: Biological Sciences 2017, 372(1730):1-10. |
[44] |
LIU J, LI M, ZHANG Q, WEI X, HUANG X. Exploring the molecular basis of heterosis for plant breeding. Journal of Integrative Plant Biology. 2020, 62(3):287-298.
doi: 10.1111/jipb.v62.3 |
[45] |
LIU Y J, GAO S Q, TANG Y M, GONG J, ZHANG X, WANG Y B, Zhang L P, Sun R W, Zhang Q, Chen Z B. Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta, 2018, 247(6):1307-1321.
doi: 10.1007/s00425-018-2848-3 |
[46] |
BAO J Y, LEE S, CHEN C, ZHANG X Q, YU J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiology, 2005, 138(3):1216-1231.
doi: 10.1104/pp.105.060988 |
[1] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[2] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[3] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[4] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[5] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[6] | 周天宇,李姜玲,杨澜,阮仁武,杨宇衡,李中安. 基于亲本对条锈病敏感性预测小麦杂交种的抗性[J]. 中国农业科学, 2020, 53(9): 1806-1819. |
[7] | 刘敏,房玉林. 高温胁迫对葡萄幼树生理指标和超显微结构的影响[J]. 中国农业科学, 2020, 53(7): 1444-1458. |
[8] | 赵久然, 李春辉, 宋伟, 刘新香, 王元东, 张如养, 王继东, 孙轩, 王夏青. 玉米骨干自交系京2416杂种优势及遗传重组解析[J]. 中国农业科学, 2020, 53(22): 4527-4536. |
[9] | 高春华,冯波,曹芳,李升东,王宗帅,张宾,王峥,孔令安,王法宏. 施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响[J]. 中国农业科学, 2020, 53(21): 4365-4375. |
[10] | 董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响[J]. 中国农业科学, 2020, 53(21): 4399-4414. |
[11] | 李永祥,李春辉,杨俊品,杨华,程伟东,汪黎明,李凤艳,李会勇,王延波,李淑华,扈光辉,刘成,黎裕,王天宇. 中国玉米骨干亲本黄早四杂种优势形成的遗传基础解析[J]. 中国农业科学, 2020, 53(20): 4113-4126. |
[12] | 高英波,张慧,单晶,薛艳芳,钱欣,代红翠,刘开昌,李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响[J]. 中国农业科学, 2020, 53(19): 3954-3963. |
[13] | 朴琳,李波,陈喜昌,丁在松,张宇,赵明,李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应[J]. 中国农业科学, 2020, 53(15): 3048-3058. |
[14] | 姜英,王峥宇,廉宏利,王美佳,苏业涵,田平,隋鹏祥,马梓淇,王英俨,孟广鑫,孙悦,李从锋,齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响[J]. 中国农业科学, 2020, 53(15): 3071-3082. |
[15] | 王黎明,严洪冬,焦少杰,姜艳喜,苏德峰,孙广全. 基于配合力和遗传距离的甜高粱杂种优势预测[J]. 中国农业科学, 2020, 53(14): 2786-2794. |
|