中国农业科学 ›› 2020, Vol. 53 ›› Issue (14): 2786-2794.doi: 10.3864/j.issn.0578-1752.2020.14.003
收稿日期:
2019-07-09
接受日期:
2019-09-20
出版日期:
2020-07-16
发布日期:
2020-08-10
作者简介:
王黎明,Tel:0451-86668645;E-mail:基金资助:
WANG LiMing(),YAN HongDong(),JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan
Received:
2019-07-09
Accepted:
2019-09-20
Online:
2020-07-16
Published:
2020-08-10
摘要:
【目的】对甜高粱主要农艺性状进行杂种优势、一般配合力及特殊配合力分析,同时,分析配合力、表型遗传距离以及分子遗传距离用于杂种优势预测的可行性,为甜高粱的种质创新和杂交种选育提供理论参考。【方法】采用不完全双列杂交设计,以8个甜高粱不育系为母本及8个甜高粱恢复系为父本配制64个杂交组合。对亲本及杂交后代进行2年的性状调查,包括:出苗至开花日数、生育期、株高、穗长、茎粗、分蘖、单穗粒重、千粒重、籽粒产量、单株重、生物产量和含糖量。分析不同性状的杂种优势、一般配合力、特殊配合力、表型遗传距离、分子遗传距离以及配合力、遗传距离与杂种优势的相关性。【结果】各性状的中亲优势由强到弱分别为单株重、籽粒产量、单穗粒重、生物产量、株高、穗长、千粒重、茎粗、生育期、至开花日数、分蘖和含糖量,其中,生育期、至开花日数、分蘖和含糖量等性状为负优势。不同性状的中亲优势和超亲优势由强到弱的顺序基本相同。配合力分析表明,每个性状中,不同亲本的一般配合力相差较大,且不同组合的特殊配合力也有很大差异。大多数特殊配合力高的组合,其亲本的一般配合力也较高。杂种优势与配合力和遗传距离的相关性为单株重、籽粒产量、单穗粒重、生物产量、穗长、千粒重、分蘖以及含糖量等性状的杂种优势与其亲本的一般配合力和特殊配合力均为极显著正相关。生育期的杂种优势与特殊配合力为极显著正相关,至开花日数与特殊配合力为显著正相关。亲本间的表型遗传距离为2.86—6.82,分子遗传距离为0.50—0.96。单株重、籽粒产量、单穗粒重、生物产量、株高、穗长、茎粗及含糖量等性状的杂种优势与分子遗传距离的相关性大于表型遗传距离,其中,生物产量、单株重、穗长和茎粗的杂种优势与分子遗传距离为极显著正相关。【结论】所有性状中,与产量相关性状的杂种优势较高,而含糖量和分蘖的杂种优势较低。在杂种优势预测上,利用亲本的配合力可有效预测杂种优势,预测效果优于遗传距离。与表型遗传距离相比,分子遗传距离对杂种优势的预测更有效。
王黎明,严洪冬,焦少杰,姜艳喜,苏德峰,孙广全. 基于配合力和遗传距离的甜高粱杂种优势预测[J]. 中国农业科学, 2020, 53(14): 2786-2794.
WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance[J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
表2
主要农艺性状的超亲优势分析"
性状 Trait | 单株重 BP | 籽粒产量 GY | 单穗粒重 PW | 生物产量 BM | 株高 PH | 穗长 PL | 千粒重 TGW | 茎粗 SD | 生育期 GD | 至开花日数 FD | 含糖量 SC | 分蘖 TL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大Maximum | 158.30 | 281.97 | 257.78 | 108.49 | 63.23 | 53.33 | 50.00 | 44.44 | 6.77 | 10.16 | 49.56 | 333.33 |
最小Minimum | -8.55 | -36.87 | -29.47 | -24.11 | -22.27 | -7.41 | -23.23 | -21.67 | -14.18 | -19.30 | -62.97 | -100.00 |
平均Mean | 61.70 | 50.31 | 48.12 | 36.99 | 13.74 | 13.00 | 7.23 | -2.72 | -3.89 | -6.95 | -25.67 | -41.00 |
表1
主要农艺性状的中亲优势分析"
性状 Trait | 单株重 BP | 籽粒产量 GY | 单穗粒重 PW | 生物产量 BM | 株高 PH | 穗长 PL | 千粒重 TGW | 茎粗 SD | 生育期 GD | 至开花日数 FD | 分蘖 TL | 含糖量 SC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
最大Maximum | 190.30 | 302.08 | 276.61 | 141.40 | 633.33 | 53.33 | 57.93 | 44.45 | 6.56 | 14.34 | 766.67 | 54.06 |
最小Minimum | 10.59 | -23.30 | -23.86 | -5.38 | 14.41 | -7.40 | -11.47 | -17.46 | -9.88 | -14.29 | -100.00 | -59.82 |
平均Mean | 89.17 | 75.39 | 73.69 | 59.49 | 53.64 | 20.94 | 17.24 | 6.51 | -0.86 | -3.31 | -9.45 | -17.40 |
表3
亲本主要农艺性状的一般配合力效应"
亲本 Parent lines | 至开花日数 FD | 生育期 GD | 株高 PH | 穗长 PL | 茎粗 SD | 分蘖 TL | 籽粒产量 GY | 单穗粒重 PW | 千粒重 TGW | 生物产量 BM | 单株重 BP | 含糖量 SC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.46 | -0.30 | 29.12 | -0.16 | -0.02 | 0.14 | 3.22 | -0.03 | 0.70 | 4.63 | 30.37 | 0.31 |
A2 | -1.46 | -2.00 | 13.85 | -0.14 | -0.01 | 0.03 | -1.25 | 3.73 | 0.75 | -0.43 | 6.74 | 0.11 |
A3 | 5.06 | 4.50 | 20.37 | 1.09 | -0.02 | -0.01 | 5.93 | -3.30 | -2.72 | 7.63 | 46.36 | 1.15 |
A4 | -2.40 | -2.90 | -6.65 | 0.52 | -0.07 | -0.09 | -8.11 | 1.60 | 1.68 | -9.12 | -93.45 | -0.94 |
A5 | 2.48 | 3.90 | -12.15 | 1.19 | -0.02 | 0.17 | 1.46 | -6.61 | -3.19 | -0.58 | 11.61 | -0.86 |
A6 | 1.46 | 3.70 | -12.96 | 1.17 | 0.09 | -0.09 | 4.21 | 4.46 | -0.76 | 5.17 | 35.83 | 0.18 |
A7 | -4.46 | -4.40 | -19.67 | -0.89 | -0.05 | -0.11 | -8.11 | -0.27 | 0.82 | -10.18 | -81.35 | 0.20 |
A8 | -1.15 | -2.50 | -11.92 | -2.77 | 0.10 | -0.04 | 2.65 | 0.41 | 2.73 | 2.87 | 43.89 | -0.16 |
R1 | 0.79 | 0.70 | 18.98 | 0.54 | 0.00 | -0.12 | 2.70 | 0.25 | 0.62 | 1.55 | 9.84 | 1.55 |
R2 | -0.19 | -1.10 | 75.33 | -2.25 | -0.04 | -0.11 | 1.14 | 4.98 | -0.84 | -0.33 | 3.69 | 1.26 |
R3 | -0.65 | -1.30 | 4.41 | 0.59 | -0.09 | 0.01 | -0.16 | -5.30 | -0.15 | -2.02 | 9.37 | -0.34 |
R4 | 0.13 | -0.60 | 0.29 | 1.71 | 0.04 | -0.07 | 4.26 | 14.65 | 2.24 | 4.09 | 30.98 | 1.01 |
R5 | -0.65 | 0.60 | -49.46 | -0.33 | 0.11 | -0.02 | -4.42 | -1.08 | 0.11 | -4.16 | -37.20 | -0.07 |
R6 | 2.94 | 5.20 | -40.40 | 0.32 | 0.05 | 0.13 | -0.88 | -7.45 | -0.17 | 0.95 | 2.38 | 0.27 |
R7 | -1.04 | -0.70 | -34.11 | -0.98 | 0.01 | 0.03 | -2.03 | -2.77 | -0.62 | -1.64 | -20.21 | -2.64 |
R8 | -1.33 | -2.90 | 24.96 | 0.40 | -0.08 | 0.15 | -0.57 | -3.29 | -1.19 | 1.55 | 1.15 | -1.03 |
表5
杂种优势与配合力的相关性"
配合力 Combining ability | 单株重 BP | 籽粒产量 GY | 单穗粒重 PW | 生物产量 BM | 株高 PH | 穗长 PL | 千粒重 TGW | 茎粗 SD | 生育期 GD | 至开花日数 FD | 分蘖 TL | 含糖量 SC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
一般配合力 GCA | 55.79** | 71.73** | 49.99** | 48.36** | 3.10 | 34.19** | 32.65** | 4.23 | 8.78 | 2.66 | 42.71** | 70.02** |
特殊配合力 SCA | 61.83** | 39.66** | 49.94** | 59.16** | 6.82 | 44.46** | 46.26** | 8.78 | 52.44** | 30.56* | 54.57** | 76.43** |
表6
亲本间的表型遗传距离"
亲本Parent lines | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|
R1 | 4.49 | 3.44 | 4.86 | 3.46 | 5.97 | 5.35 | 5.90 | 5.04 |
R2 | 5.03 | 3.41 | 2.86 | 4.14 | 5.71 | 5.15 | 4.64 | 5.68 |
R3 | 4.61 | 3.30 | 4.37 | 3.78 | 4.89 | 4.76 | 4.39 | 4.40 |
R4 | 5.20 | 4.13 | 3.91 | 4.09 | 6.10 | 5.50 | 6.32 | 6.49 |
R5 | 3.97 | 3.51 | 2.95 | 3.86 | 6.44 | 5.57 | 5.84 | 5.25 |
R6 | 4.74 | 5.05 | 4.48 | 5.58 | 5.92 | 5.91 | 6.82 | 6.45 |
R7 | 5.10 | 4.11 | 4.16 | 4.03 | 3.75 | 3.83 | 3.96 | 3.48 |
R8 | 3.95 | 4.46 | 4.98 | 4.46 | 5.08 | 4.67 | 4.44 | 4.29 |
表7
亲本间的分子遗传距离"
亲本Parent lines | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
---|---|---|---|---|---|---|---|---|
R1 | 0.70 | 0.75 | 0.78 | 0.76 | 0.70 | 0.71 | 0.79 | 0.73 |
R2 | 0.69 | 0.73 | 0.80 | 0.75 | 0.63 | 0.70 | 0.81 | 0.75 |
R3 | 0.67 | 0.68 | 0.71 | 0.73 | 0.65 | 0.68 | 0.64 | 0.70 |
R4 | 0.65 | 0.70 | 0.74 | 0.72 | 0.63 | 0.70 | 0.70 | 0.72 |
R5 | 0.84 | 0.92 | 0.95 | 0.89 | 0.50 | 0.90 | 0.90 | 0.93 |
R6 | 0.88 | 0.93 | 0.96 | 0.95 | 0.60 | 0.91 | 0.94 | 0.94 |
R7 | 0.53 | 0.59 | 0.63 | 0.56 | 0.56 | 0.59 | 0.67 | 0.58 |
R8 | 0.72 | 0.72 | 0.76 | 0.78 | 0.67 | 0.73 | 0.76 | 0.71 |
[1] |
BERENJI J, DAHLBERG J. Perspectives of sorghum in Europe. Journal of Agronomy and Crop Science, 2004,190:332-338.
doi: 10.1111/jac.2004.190.issue-5 |
[2] |
APPIAH-NKANSAH N B, LI J, ROONEY W, WANG D. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy, 2019,143:1121-1132.
doi: 10.1016/j.renene.2019.05.066 |
[3] | 邹剑秋, 王艳秋. 我国甜高粱育种方向及高效育种技术. 杂粮作物, 2007,27(6):403-404. |
ZOU J Q, WANG Y Q. Sweet sorghum breeding objective and efficient breeding technology in China. Rain Fed Crops, 2007,27(6):403-404. (in Chinese) | |
[4] | MISHRA J S, KUMAR R, RAO S S. Performance of sweet sorghum (Sorghum bicolor ) cultivars as a source of green fodder under varying levels of nitrogen in semi-arid tropical India. Sugar Technology, 2017,19(5):532-538. |
[5] | TAKAKI M, TAN L, MURAKAMI T, TANG Y Q, SUN Z Y, MORIMURA S, KIDA K. Production of biofuels from sweet sorghum juice via ethanol-methane two-stage fermentation. Industrial Crops and Products, 2015,63:329-336. |
[6] | LIU H H, REN L T, SPIERTZ H, ZHU Y B, XIE G H. An economic analysis of sweet sorghum cultivation for ethanol production in North China. Global Change Biology Bioenergy, 2015,7:1176-1184. |
[7] |
TAZOE Y, SAZUKA T, YAMAGUCHI M, SAITO C, IKEUCHI M, KANNO K, KOJIMA S, HIRANO K, KITANO H, KASUGA S, ENDO T, FUKUDA H, MAKINO A. Growth properties and biomass production in the hybrid C4 crop Sorghum bicolor. Plant Cell Physiology, 2016,57(5):944-952.
pmid: 26508521 |
[8] | PFEIFFER T W, BITZER M J, TOY J J, PEDERSEN J F. Heterosis in sweet sorghum and selection of a new sweet sorghum hybrid for use in syrup production in Appalachia. Crop Science, 2010,50:1788-1794. |
[9] |
MINDAYE T T, MACE E S, GODWIN I D, JORDAN D R. Heterosis in locally adapted sorghum genotypes and potential of hybrids for increased productivity in contrasting environments in Ethiopia. The Crop Journal, 2016,4:479-489.
doi: 10.1016/j.cj.2016.06.020 |
[10] | 张福耀, 平俊爱, 赵威军. 中国酿造高粱品质遗传改良研究进展. 农学学报, 2019,9(3):21-25. |
ZHANG F Y, PING J A, ZHAO W J. Genetic quality improvement of brewing sorghum in China: Research progress. Journal of Agriculture, 2019,9(3):21-25. (in Chinese) | |
[11] | GALICIA-JUAREZ M, MENDOZA-ONOFRE L E, GONZALEZ-HERNANDEZ V A, CISNEROS-LOPEZ M E, BENITEZ- RIQUELME I, CORDOVA-TELLEZ L. Heterosis and combining ability of seed physiological quality traits of single cross vs. three-way sorghum hybrids. Acta Scientiarum, 2017,39(2):175-181. |
[12] |
PACKER D J, ROONEY W L. High-parent heterosis for biomass yield in photoperiod-sensitive sorghum hybrids. Field Crops Research, 2014,167:153-158.
doi: 10.1016/j.fcr.2014.07.015 |
[13] |
BIRCHLER J A, YAO H, CHUDALAYANDI S, VAIMAN D, VEITIA R A. Heterosis. The Plant Cell, 2010,22:2105-2112.
pmid: 20622146 |
[14] |
REDDY B V S, RAMESH S, REDDY P S, RAMAIAH B. Combining ability and heterosis as influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor(L.) Moench]. Euphytica, 2007,154:153-164.
doi: 10.1007/s10681-006-9281-6 |
[15] |
WEGARY D, VIVEK B, LABUSCHAGNE M. Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica, 2013,191:205-216.
doi: 10.1007/s10681-012-0757-2 |
[16] |
曲玉杰, 孙君灵, 耿晓丽, 王骁, SARFRAZ Z, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 陆地棉亲本间遗传距离与杂种优势的相关性研究. 中国农业科学, 2019,52(9):1488-1500.
doi: 10.3864/j.issn.0578-1752.2019.09.002 |
QU Y J, SUN J L, GENG X L, WANG X, SARFRAZ Z, JIA Y H, PAN Z E, HE S P, GONG W F, WANG L R, PANG B Y, DU X M. Correlation between genetic distance of parents and heterosis in upland cotton. Scientia Agricultura Sinica, 2019,52(9):1488-1500. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.09.002 |
|
[17] | 韩东倩, 韩立朴, 薛帅, 尤明山, 谢光辉. 基于能源利用的高粱配合力和杂种优势分析. 中国农业大学学报, 2012,17(1):26-32. |
HAN D Q, HAN L P, XUE S, YOU M S, XIE G H. Combining ability and heterosis of sorghum for biomass energy. Journal of China Agricultural University, 2012,17(1):26-32. (in Chinese) | |
[18] |
BUNPHAN D, JAISIL P, SANITCHON J, KNOLL J E, ANDERSON W F. Heterosis and combining ability of F1 hybrid sweet sorghum in Thailand. Crop Science, 2015,55:178-187.
doi: 10.2135/cropsci2014.05.0363 |
[19] |
UMAKANTH A V, PATIL J V, RANI C, GADAKH S R, KUMAR S S, RAO S S, KOTASTHANE T V. Combining ability and heterosis over environments for stalk and sugar related traits in sweet sorghum (Sorghum bicolor(L.) Moench). Sugar Technology, 2012,14(3):237-246.
doi: 10.1007/s12355-012-0166-9 |
[20] |
MAKANDA I, TONGOONA P, DERERA J, SIBIYA J, FATO P. Combining ability and cultivar superiority of sorghum germplasm for grain yield across tropical low- and mid-altitude environments. Field Crops Research, 2010,116:75-85.
doi: 10.1016/j.fcr.2009.11.015 |
[21] |
MAKANDA I, TONGOONA P, DERERA J. Combining ability and heterosis of sorghum germplasm for stem sugar traits under off-season conditions in tropical lowland environments. Field Crops Research, 2009,114:272-279.
doi: 10.1016/j.fcr.2009.08.009 |
[22] | 侯荷亭, 杜志宏, 赵根弟. 高粱亲本遗传距离与杂种优势和特殊配合力的关系. 遗传, 1995,17(1):30-33. |
HOU H T, DU Z H, ZHAO G D. Studies on the relationships of genetic distance of sorghum parental lines with heterosis and specific combining ability. Hereditas, 1995,17(1):30-33. (in Chinese) | |
[23] |
AMELEWORK B, SHIMELIS H, LAING M. Genetic variation in sorghum as revealed by phenotypic and SSR markers: Implications for combining ability and heterosis for grain yield. Plant Genetic Resources, 2016,3:1-13.
doi: 10.1079/PGR200566 |
[24] |
王瑞, 王金胜, 张福耀, 程庆军, 田承华, 凌亮. 1970s—2000s中国高粱杂交种亲本遗传距离演变的 SSR 分析. 中国农业科学, 2015,48(3):415-425.
doi: 10.3864/j.issn.0578-1752.2015.03.02 |
WANG R, WANG J S, ZHANG F Y, CHENG Q J, TIAN C H, LING L. Evolution of genetic distance between parental lines of Chinese sorghum hybrids from1970s-2000s based on SSR analysis. Scientia Agricultura Sinica, 2015,48(3):415-425. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.03.02 |
|
[25] | 陆平. 高粱种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:51-58. |
LU P. Descriptors and Data Standard for Sorghum [Sorghum bicolor(L.) Moench]. Beijing: China Agricultural Press, 2006:51-58. (in Chinese) | |
[26] |
WANG L M, JIAO S J, JIANG Y X, YAN H D, SU D F, SUN G Q, YAN X F, SUN L F. Genetic diversity analysis in parent lines of sweet sorghum based on agronomical traits and SSR markers. Field Crops Research, 2013,149:11-19.
doi: 10.1016/j.fcr.2013.04.013 |
[27] | 孔繁玲. 植物数量遗传学. 北京: 中国农业大学出版社, 2006:403-412. |
KONG F L. Quantitative Genetics in Plants. Beijing: China Agricultural University Press, 2006:403-412. (in Chinese) | |
[28] |
NEI M, LI W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA, 1979,76(10):5269-5273.
pmid: 291943 |
[29] | 邹剑秋, 王艳秋, 张志鹏, 朱凯. A3型细胞质能源用甜高粱生物产量、茎秆含糖锤度和出汁率研究. 中国农业大学学报, 2011,16(2):8-13. |
ZOU J Q, WANG Y Q, ZHANG Z P, ZHU K. Research on biomass, brix and juice extraction of A3-type cytoplasmic sweet sorghum for energy use. Journal of China Agricultural University, 2011,16(2):8-13. (in Chinese) | |
[30] | 高士杰, 刘晓辉, 李玉发, 李继洪. 中国甜高粱资源与利用. 杂粮作物, 2006,26(4):273-274. |
GAO S J, LIU X H, LI Y F, LI J H. Sweet sorghum resources and its utilization in China. Rain Fed Crops, 2006,26(4):273-274. (in Chinese) | |
[31] |
ZHANG C X, XIE G D, LI S M, GE L Q, HE T T. The productive potentials of sweet sorghum ethanol in China. Applied Energy, 2010,87:2360-2368.
doi: 10.1016/j.apenergy.2009.12.017 |
[32] | SHUKLA S, FELDERHOFF T J, SABALLOS A, VERMERRIS W. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor(L.) Moench). Field Crops Research, 2017,203:181-191. |
[33] |
KNOLL J E, ANDERSON W F, HARRIS-SHULTZ K R, NI X Z. The environment strongly affects estimates of heterosis in hybrid sweet sorghum. Sugar Technology, 2018,20(3):261-274.
doi: 10.1007/s12355-018-0596-0 |
[34] |
JAIKISHAN I, RAJENDRAKUMAR P, HARIPRASANNA K, BHAT B V. Gene expression analysis in sorghum hybrids and their parental lines at critical developmental stages in relation to grain yield heterosis by exploiting heterosis-related genes from major cereals. Plant Molecular Biology Reporter, 2018,36:418-428.
doi: 10.1007/s11105-018-1079-x |
[35] | NDHLELA T, HERSELMAN L, SEMAGN K, MAGOROKOSHO C, MUTIMAAMBA C, LABUSCHAGNE M T. Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica, 2015,204:635-647. |
[36] |
PAVANI M, SUNDARAM R M, RAMESHA M S, KISHORE P B K, KEMPARAJU K B. Prediction of heterosis in rice based on divergence of morphological and molecular markers. Journal of Genetics, 2018,97(5):1263-1279.
pmid: 30555075 |
[37] | 王林友, 张礼霞, 勾晓霞, 范宏环, 金庆生, 王建军. 利用InDel标记鉴定浙优系列杂交稻籼粳属性和预测杂种优势. 中国农业科学, 2014,47(7):1243-1255. |
WANG L Y, ZHANG L X, GOU X X, FAN H H, JIN Q S, WANG J J. Identification of Indica-Japonica attribute and prediction of heterosis of Zheyou hybrids rice using InDel molecular markers. Scientia Agricultura Sinica, 2014,47(7):1243-1255. (in Chinese) | |
[38] |
JORDAN D R, TAO Y, GODWIN I D, HENZELL R G, COOPER M, MCINTYRE C L. Prediction of hybrid performance in grain sorghum using RFLP markers. Theoretical and Applied Genetics, 2003,106:559-567.
doi: 10.1007/s00122-002-1144-5 pmid: 12589557 |
[39] |
MELCHINGER A E, LEE M, LAMKEY K R, WOODMAN W L. Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds. Crop Science, 1990,30:1033-1040.
doi: 10.2135/cropsci1990.0011183X003000050016x |
[40] |
CHARCOSSET A, LEFORT-BUSEN M, GALLAIS A. Relationship between heterosis and heterozygosity at marker loci: A theoretical computation. Theoretical and Applied Genetics, 1991,81:571-575.
doi: 10.1007/BF00226720 pmid: 24221369 |
[1] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[2] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[3] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[4] | 苏媛媛,张德权,古明辉,张春娟,李少博,郑晓春,陈丽. 不同来源ATP表征冷鲜羊肉新鲜度[J]. 中国农业科学, 2022, 55(19): 3841-3853. |
[5] | 李红燕,薛军,王永宏,王克如,赵如浪,明博,张镇涛,张文杰,李少昆. 宁夏玉米机械粒收适宜时期研究与预测模型构建[J]. 中国农业科学, 2022, 55(12): 2324-2337. |
[6] | 秦鸿德, 冯常辉, 张友昌, 别墅, 张教海, 夏松波, 王孝刚, 王琼珊, 蓝家样, 陈全求, 焦春海. 基于部分NCII设计的陆地棉F1表现预测[J]. 中国农业科学, 2021, 54(8): 1590-1598. |
[7] | 李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. |
[8] | 陶晡, 齐永志, 屈赟, 曹志艳, 赵绪生, 甄文超. 基于增强回归树的海河平原小麦赤霉病预测模型构建与验证[J]. 中国农业科学, 2021, 54(18): 3860-3870. |
[9] | 黄子粤,刘文君,覃仁柳,庞师婵,肖健,杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析[J]. 中国农业科学, 2021, 54(18): 4018-4032. |
[10] | 赵付枚,王爽,田雨婷,乔奇,王永江,张德胜,张振臣. 甘薯病毒病发生关键因素研究[J]. 中国农业科学, 2021, 54(15): 3232-3240. |
[11] | 周天宇,李姜玲,杨澜,阮仁武,杨宇衡,李中安. 基于亲本对条锈病敏感性预测小麦杂交种的抗性[J]. 中国农业科学, 2020, 53(9): 1806-1819. |
[12] | 柳艳霞,王振宇,郑晓春,朱瑶迪,陈丽,张德权. 基于品质指标预测北京烤鸭的中心温度[J]. 中国农业科学, 2020, 53(8): 1655-1663. |
[13] | 赵久然, 李春辉, 宋伟, 刘新香, 王元东, 张如养, 王继东, 孙轩, 王夏青. 玉米骨干自交系京2416杂种优势及遗传重组解析[J]. 中国农业科学, 2020, 53(22): 4527-4536. |
[14] | 张欢欢,崔贵梅,王长彪,王晓清,郝曜山,杜建中,王亦学,孙毅. 玉米雄性不育系晋玉1A的选育及其特性[J]. 中国农业科学, 2020, 53(21): 4322-4332. |
[15] | 李永祥,李春辉,杨俊品,杨华,程伟东,汪黎明,李凤艳,李会勇,王延波,李淑华,扈光辉,刘成,黎裕,王天宇. 中国玉米骨干亲本黄早四杂种优势形成的遗传基础解析[J]. 中国农业科学, 2020, 53(20): 4113-4126. |
|