中国农业科学 ›› 2020, Vol. 53 ›› Issue (21): 4399-4414.doi: 10.3864/j.issn.0578-1752.2020.21.009

• 专题:小麦玉米周年水肥高效 • 上一篇    下一篇

不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响

董荷荷(),骆永丽,李文倩,王元元,张秋霞,陈金,金敏,李勇,王振林   

  1. 山东农业大学农学院/作物生物学国家重点实验室,山东泰安 271018
  • 收稿日期:2020-05-14 接受日期:2020-07-29 出版日期:2020-11-01 发布日期:2020-11-11
  • 作者简介:董荷荷,E-mail:dong15650092156@163.com
  • 基金资助:
    国家重点研发计划(2017YFD0301001);国家重点研发计划(2016YFD0300403)

Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat

DONG HeHe(),LUO YongLi,LI WenQian,WANG YuanYuan,ZHANG QiuXia,CHEN Jin,JIN Min,LI Yong,WANG ZhenLin   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2020-05-14 Accepted:2020-07-29 Online:2020-11-01 Published:2020-11-11

摘要:

【目的】 探讨春季不同追氮模式对小麦各节间茎秆抗倒伏能力、木质素积累及籽粒产量的影响,明确高施氮量条件下适宜的春季追氮模式,为小麦高产稳产抗逆应变栽培提供技术支撑。【方法】 于2017—2018和2018—2019年2个小麦生长季,以倒伏敏感型品种山农16和抗倒伏品种济麦22为供试材料,在高施氮量300 kg·hm-2基施1/3条件下设置4种春季追肥模式,分别为等量二次性追氮和剩余一次性追氮,即起身期﹕孕穗期1/3﹕1/3(T1),拔节期﹕开花期1/3﹕1/3(T2),孕穗期一次性追施剩余2/3氮(T3)和拔节期一次性追施剩余2/3氮(CK)。深入研究春季不同追氮模式对冬小麦植株茎秆抗折力、木质素积累、木质素合成关键酶基因的表达丰度及籽粒产量的调控效应。【结果】 抗倒伏品种济麦22的各节间茎秆抗折力、木质素积累量以及单体含量均高于倒伏敏感型品种山农16,2种类型品种开花期T1、CK处理的抗折力高于T2和T3处理,木质素积累量、单体的含量表现为T1>T3>CK>T2,灌浆期和成熟期各处理间抗折力、木质素积累量以及单体的含量表现为T1>T3>T2>CK。灌浆期山农16和济麦22在T1处理下抗折力较CK、T2、T3处理分别增加24.69%、19.97%、13.15%和26.92%、15.36%、5.87%;山农16和济麦22在T1处理下的各生育阶段木质素积累量平均值分别较CK、T2、T3处理提高了21.71%、15.45%、8.85%和25.19%、21.75%、15.83%;成熟期2个品种T1处理的木质素S型单体含量平均值分别较CK、T2、T3处理高18.82%、18.48%、8.39%。不同追氮模式处理的木质素合成相关酶基因(苯丙氨酸解氨酶:PAL、咖啡酸3氧甲基转移酶:COMT、香豆酸-3-羟基氧化酶:C3H、肉桂酰辅酶 A 还原酶:CCR、肉桂酸4羟化酶:C4H等)表达均随生育进程呈下降趋势,其表达量高低依次为T1>T3>T2>CK。孕穗期追氮处理模式的千粒重高于其他处理,因T1处理可提高穗粒数以及群体有效穗数,其最终籽粒产量较高。同一时期相同处理各节间茎秆木质素积累量、单体含量均呈现为I1>I2>I3>I4>I5的趋势。【结论】 高施氮量300 kg·hm-2基施1/3条件下起身与孕穗期等量二次性追氮模式较其他春季追氮模式处理显著提高了小麦开花后茎秆各节间抗折能力、木质素积累量、木质素合成途径相关酶基因的表达以及籽粒产量。因此,起身与孕穗期等量二次性追氮模式可作为黄淮海麦区高施氮量300 kg·hm-2基施1/3条件下的春季适宜追氮模式。

关键词: 追氮模式, 抗倒性能, 木质素积累, 籽粒产量, 冬小麦

Abstract:

【Objective】The purpose of this experiment was to explore the effects of different spring nitrogen topdressing modes on stem lodging resistance, lignin accumulation, grain yield of winter wheat, and to identify the appropriate spring nitrogen topdressing modes under the condition of high nitrogen application, so as to provide technical support for high and stable yield and stress-resistant cultivation of winter wheat.【Method】In the two wheat growing seasons of 2017-2018 and 2018-2019, the lodging sensitive variety Shannong 16 and the lodging resistant variety Jimai 22 were used as test materials, and the application rate was 1/3 under high nitrogen application rate of 300 kg·hm-2. There were four types of spring topdressing modes, which were equal amount of secondary nitrogen topdressing and remaining one-time nitrogen topdressing, namely the rising stage﹕booting stage 1/3﹕1/3 (T1), jointing stage: flowering stage 1/3﹕1/3 (T2), the remaining 2/3 nitrogen was applied at the booting stage (T3) and the remaining 2/3 nitrogen was applied at the jointing stage (CK). The effects of different nitrogen topdressing modes on stem resistance, lignin accumulation, expressive abundance of the key genes involving in lignin biosynthesis pathway and grain yield of winter wheat were studied.【Result】The total lignin accumulation and lignin monomers content of the lodging resistance wheat were both higher than those of the lodging sensitive wheat. The breaking strength under T1, CK was higher than that under T2 and T3, the lignin accumulation and monomer content were T1>T3>CK>T2 in two types cultivar, and the breaking strength, lignin accumulation, monomer content under all treatments at grain filling stage and maturity stage were T1>T3>T2>CK in two types cultivar. The breaking strength of Shannong 16 and Jimai 22 under T1 treatment were increased by 24.69%, 19.97%, 13.15% and 26.92%, 15.36%, 5.87%, respectively, compared with CK, T2, T3 at grain filling stage. The average lignin accumulation of Shannong 16 and Jimai22 under T1 at each growth stage was 21.71%, 15.45% , 8.85% and 25.19%, 21.75%, 15.83% higher than CK, T2, and T3, respectively. The average content of S monomer was 18.82%, 18.48%, and 8.39% higher than CK, T2 and T3 at maturity stage, respectively. The expressive abundance of key genes involved in lignin biosynthesis pathway (phenylalanine ammonia-lyase: PAL, caffeic acid3-o-methytransferase: COMT, coumarate-3-hydroxyl oxidase: C3H, innamoyl Co A reductase: CCR, cinnamate 4-hydroxylase: C4H etc.) decreased with the growth process, that tended to T1>T3>T2>CK under different stage of growth. The 1000-grain weight of the nitrogen topdressing remaining one-time at booting stage was higher than other treatments. T1 treatment could increase the spike number, grain number and yield. The lignin accumulation and monomer content of stem in different internodes during the same stage were I1>I2>I3>I4>I5.【Conclusion】Under the condition of high nitrogen application rate of 300 kg·hm-2 and basal application rate of 1/3, the same amount of secondary nitrogen topdressing modes treatment at the rising stage and booting stages significantly improved the breaking strength, lignin accumulation, lignin monomer content, the expressive abundance of key genes involved in lignin biosynthesis pathway and yield after anthesis stage, compared with other spring nitrogen topdressing modes. Therefore, the same amount of secondary nitrogen topdressing mode at rising stage and booting stage could be used as an appropriate spring nitrogen topdressing mode under the condition of high nitrogen application rate of 300 kg·hm-2 and basal application rate of 1/3 in Huang-Huai-Hai plain.

Key words: nitrogen topdressing modes, lodging resistance, lignin accumulation, grain yield, winter wheat