中国农业科学 ›› 2020, Vol. 53 ›› Issue (21): 4365-4375.doi: 10.3864/j.issn.0578-1752.2020.21.006

• 专题:小麦玉米周年水肥高效 • 上一篇    下一篇

施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响

高春华1,2(),冯波1(),曹芳1,李升东1,王宗帅1,张宾1,王峥1,孔令安1,王法宏1   

  1. 1山东省农业科学院作物研究所,济南 250100
    2山东棉花研究中心,济南 250100
  • 收稿日期:2020-05-11 接受日期:2020-07-29 出版日期:2020-11-01 发布日期:2020-11-11
  • 通讯作者: 冯波
  • 作者简介:高春华,E-mail:chunhuaaa009@163.com
  • 基金资助:
    国家重点研发计划(2018YFD0300600-1);国家公益性行业农业科研专项(201503130);山东省重点研发计划(2017GNC11106);山东省农业科技资金园区产业提升工程项目(2019YQ001)

Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis

GAO ChunHua1,2(),FENG Bo1(),CAO Fang1,LI ShengDong1,WANG ZongShuai1,ZHANG Bin1,WANG Zheng1,KONG LingAn1,WANG FaHong1   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100
    2Cotton Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100
  • Received:2020-05-11 Accepted:2020-07-29 Online:2020-11-01 Published:2020-11-11
  • Contact: Bo FENG

摘要:

【目的】明确不同施氮量对高温胁迫后小麦同化物积累和转运的影响及其生理基础,以期为小麦抗逆稳产栽培提供技术和理论依据。【方法】于2018—2019年在济南和济阳两地进行,以济麦44为材料,田间搭建高温棚进行高温胁迫处理,设置2个温度处理(CK:未胁迫,H:花后高温胁迫),3个氮肥水平(低氮N1:180 kg·hm-2,常规氮N2:240 kg·hm-2,高氮N3:300 kg·hm-2)。通过分析小麦花前同化物质的转运、成熟期同化物质的积累与分配、叶片与籽粒中蔗糖合成酶在同化物转运中的作用,阐明了不同施氮量对花后高温胁迫后小麦籽粒产量形成的影响机制。【结果】不同施氮量对高温胁迫后小麦的减产率影响不同,N1处理减产率为54.78%(济南)和50.19%(济阳),N2处理为24.05%(济南)和25.29%(济阳),N3处理为54.49%(济南)和44.13%(济阳)。高温胁迫后,与N1和N3处理相比,N2处理成熟期同化物积累量、花前营养器官同化物向籽粒中转运量和转运率、花后同化物积累量和积累率、同化物向籽粒中的分配比例均显著增加;N2处理旗叶SPAD值、蔗糖合成酶SS-Ⅱ合成方向活性和籽粒蔗糖合成酶SS-Ⅰ分解方向活性增加。【结论】本试验条件下,施氮量为240 kg·hm-2可以显著减缓高温胁迫后旗叶衰老,维持旗叶中SS-Ⅱ和籽粒中SS-Ⅰ较高的酶活性,保持较高的同化物合成能力和向籽粒中的转运能力,提高同化物向籽粒中的积累量和分配比例,降低高温胁迫后小麦籽粒产量的损失率。

关键词: 小麦, 施氮量, 高温胁迫, 同化物质积累, 同化物质转运, 籽粒产量

Abstract:

【Objective】This study was aimed to identify the effects of nitrogen application rates on grain yield, assimilate accumulation and translocation, physiological basis of winter wheat under the condition of high temperature stress, so as to provide technical and theoretical support for stress-resistance and stable yield cultivation.【Method】 Field experiments were conducted at Ji’nan experiment station and Jiyang experiment station of Crop Research Institute, Shandong Academy of Agricultural Sciences in 2018 and 2019, designed with two temperature treatments (CK: Control, H: High temperature stress) and three nitrogen levels (N1:Low nitrogen with 180 kg·hm-2, N2: Regular nitrogen with 240 kg·hm-2, and N3: High nitrogen with 300 kg·hm-2) . By analyzing assimilate accumulation, allocation, sucrose synthetase activity in leaf and grain, and grain yield with winter wheat cultivar JM44, the regulation of nitrogen application rates on grain yield of wheat under high temperature stress circumstances was studied. 【Result】 The results showed that grain yield decreased significantly under high temperature stress conditions, and grain yield reduction at N1, N2, and N3 were 54.78%, 24.05%, 54.49% and 50.19%, 25.29%, 44.13% in Ji’nan and Jiyang, respectively. Significant increases were noticed in assimilate accumulation amount, pre-anthesis assimilate translocation amount and rate to grain yield, post-anthesis assimilate accumulation amount and rate, ratio of grain to other organs udner N2 treatment, compared with N1 and N3 treatment, same as in SPAD value, sucrose synthetase-I activity (direction of synthetic) in flag leaf, and sucrose synthetase-Ⅱ activity (direction of decomposition) in grain. 【Conclusion】Higher grain yield could be achieved after high temperature stress during grain-filling stages with nitrogen application rate of 240 kg·hm-2, which could postpone flag leaf senescence, maintain high sucrose synthetase-I activity in flag leaf and sucrose synthetase-Ⅱ activity in grain, and keep high ability cof assimilate accumulate and transport to grain.

Key words: winter wheat, nitrogen application rate, high temperature stress, assimilate accumulation, assimilate transportation, grain yield