中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 5008-5020.doi: 10.3864/j.issn.0578-1752.2021.23.007
荆丹1,2(),岳晓凤1,2,3,4(),白艺珍1,2,3,郭灿1,2,丁小霞1,2,3,李培武1,2,3,4(),张奇1,2,3,4
收稿日期:
2021-03-19
接受日期:
2021-04-24
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
岳晓凤,李培武
作者简介:
荆丹,E-mail: 基金资助:
JING Dan1,2(),YUE XiaoFeng1,2,3,4(),BAI YiZhen1,2,3,GUO Can1,2,DING XiaoXia1,2,3,LI PeiWu1,2,3,4(),ZHANG Qi1,2,3,4
Received:
2021-03-19
Accepted:
2021-04-24
Online:
2021-12-01
Published:
2021-12-06
Contact:
XiaoFeng YUE,PeiWu LI
摘要:
【背景】黄曲霉(Aspergillus flavus)极易侵染花生等农产品,产生的黄曲霉毒素具有高毒性、致畸性和致癌性,威胁人类和动物健康,造成重大的农业经济损失。【目的】在前期明确我国黄曲霉分布的基础上,进一步探明不同产毒力、不同地理来源的花生黄曲霉侵染特征,为抗黄曲霉花生品种选育,以及黄曲霉毒素污染风险预警与源头控制提供依据。【方法】从我国东北早熟花生区、北方大花生区、长江流域春夏花生交作区及南方春秋两熟花生区等花生主产区分离出的黄曲霉中挑选出不产毒(ND)、中低产毒(0—1 500 μg·kg-1)和高产毒(>1 500 μg·kg-1)黄曲霉102株,采用孢子悬浮液浸泡法接种花生种子,进行黄曲霉侵染等级和侵染指数鉴定,分析不同产毒力、不同地理来源黄曲霉的侵染差异及其相关性。【结果】102株黄曲霉对花生侵染指数分布范围为3.89%—67.50%,侵染指数在31%以上(侵染等级为3级、4级)的中高侵染力菌株占比达54.90%,中高侵染力且高产毒菌株占比为18.63%,主要来自江西樟树和广东湛江;聚类及相关性分析表明,菌株产毒量与侵染指数无显著相关性,但总体上产毒菌株的侵染水平显著高于不产毒菌株,中低产毒和高产毒菌株的侵染指数分别在4级和3级的占比最高;不同地理来源黄曲霉侵染力研究表明,菌株间侵染力存在显著的地域差异,南方和长江流域产区的花生黄曲霉平均侵染指数分别为46.59%、36.12%,侵染指数在3级和4级的占比最高。东北和北方产区黄曲霉平均侵染指数分别为15.72%、27.52%,侵染指数主要分布在1级和2级。其中,南方产区广东省的黄曲霉平均侵染指数最高,为51.89%,东北产区辽宁省的黄曲霉平均侵染指数最低,为15.72%。【结论】明确了花生黄曲霉侵染特征及其与产毒力、地理来源的关系,发现菌株间存在致病力分化现象,不同产毒力等级、不同地区菌株侵染力差异显著,高侵染力菌株在南方和长江流域的占比最高。研究结果可对抗黄曲霉花生品种选育和毒素污染风险预警与精准防控等提供依据。
荆丹, 岳晓凤, 白艺珍, 郭灿, 丁小霞, 李培武, 张奇. 花生黄曲霉侵染力[J]. 中国农业科学, 2021, 54(23): 5008-5020.
JING Dan, YUE XiaoFeng, BAI YiZhen, GUO Can, DING XiaoXia, LI PeiWu, ZHANG Qi. The Infectivity of Aspergillus flavus in Peanut[J]. Scientia Agricultura Sinica, 2021, 54(23): 5008-5020.
表1
不同产毒力黄曲霉菌株来源"
来源 Source | 不产毒菌株数 Number of non-toxigenicity strains | 中低产毒菌株数 Number of medium-low toxigenicity strains (0-1500 μg·kg-1) | 高产毒菌株数 Number of high toxigenicity strains (>1500 μg·kg-1) | 合计 Total |
---|---|---|---|---|
辽宁Liaoning | 3 | 5 | 5 | 13 |
山东Shandong | 5 | 3 | 2 | 10 |
河南Henan | 4 | 3 | 3 | 10 |
河北Hebei | 2 | 3 | 3 | 8 |
山西Shanxi | 2 | 1 | 0 | 3 |
江苏Jiangsu | 0 | 1 | 1 | 2 |
江西Jiangxi | 5 | 4 | 5 | 14 |
湖北Hubei | 5 | 3 | 3 | 11 |
四川Sichuan | 1 | 4 | 4 | 9 |
广东Guangdong | 2 | 6 | 4 | 12 |
西藏Tibet | 1 | 3 | 4 | 8 |
云南Yunnan | 0 | 0 | 2 | 2 |
合计Total | 30 | 36 | 36 | 102 |
表2
黄曲霉不同菌株侵染力鉴定结果"
产毒力水平 Toxigenicity level | 菌株编号 Strain number | 产毒力 Toxigenicity (μg·kg-1) | 侵染指数 Infection index (%) | 菌株编号 Strain number | 产毒力 Toxigenicity (μg·kg-1) | 侵染指数 Infection index (%) | 菌株编号 Strain number | 产毒力 Toxigenicity (μg·kg-1) | 侵染指数 Infection index (%) | 菌株编号 Strain number | 产毒力 Toxigenicity (μg·kg-1) | 侵染指数 Infection index (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
不产毒 Non-toxigenicity | LNFX-28-2 | ND | 12.22 | SCPA-25-6 | ND | 64.86 | JXZS-116-1 | ND | 30.56 | SX-1-4 | ND | 39.44 | |||
LNFX-26-2 | ND | 9.17 | SDXT-3 | ND | 38.33 | JXZS-103-14 | ND | 35.97 | SX-1-5 | ND | 30.83 | ||||
LNFXS-7 | ND | 6.67 | SDPY-1 | ND | 20.56 | JXZS-89-1 | ND | 25.42 | HeNSQ-4 | ND | 24.72 | ||||
HBHA-80-1 | ND | 38.47 | SDPY-3 | ND | 26.53 | GDYD-1 | ND | 46.67 | HNZY-17 | ND | 23.06 | ||||
HBYL-5-2 | ND | 32.08 | SDPY-2 | ND | 20.00 | GDMM-2 | ND | 58.61 | HeNQF-3 | ND | 37.92 | ||||
HBHA-116-8 | ND | 44.58 | SDXT-2 | ND | 12.78 | HeBBD-2 | ND | 15.83 | HNZY-3 | ND | 25.42 | ||||
HBHA-69-1 | ND | 29.86 | JXZS-121-6 | ND | 54.86 | HeBBD-5 | ND | 24.44 | XZCY-18-5 | ND | 29.17 | ||||
HuBXY-33 | ND | 29.72 | JXZS-104-9 | ND | 34.17 | ||||||||||
中低产毒 Medium-low toxigenicity (0-1500 μg·kg-1) | HBTS-127-1 | 2.28 | 46.81 | GDZJ-126-2 | 51.36 | 62.08 | GDZJ-105-9 | 420.39 | 57.36 | XZCY-16-2 | 900.83 | 24.83 | |||
XZCY-18-1 | 5.14 | 27.50 | HBTS-147-3 | 221.37 | 28.33 | GDZJ-103-3 | 502.53 | 57.78 | HNZY-15 | 928.95 | 21.53 | ||||
SX-1-7 | 5.18 | 25.69 | LNFX-90-1 | 262.98 | 3.89 | JXZS-118-6 | 518.35 | 36.11 | LNFX-73-1 | 932.38 | 12.50 | ||||
XZCY-18-4 | 5.74 | 32.08 | JXZS-114-6 | 284.25 | 40.00 | JXZS-117-1 | 575.56 | 46.67 | HNZY-8 | 1112.40 | 19.17 | ||||
HBTS-125-1 | 12.92 | 43.06 | HBHA-130-2 | 293.48 | 67.50 | JXZS-117-3 | 629.58 | 33.89 | HBHA-137-1 | 1175.05 | 31.67 | ||||
SCPA-20-3 | 43.00 | 40.42 | SCPA-22-5 | 303.64 | 62.08 | GDZJ-101-1 | 680.98 | 51.11 | SDJY-104-1 | 1191.30 | 6.94 | ||||
SCPA-23-4 | 43.28 | 42.42 | GDZJ-101-2 | 346.15 | 57.36 | HBHA-131-1 | 730.08 | 62.92 | LNFX-26-1 | 1222.25 | 10.00 | ||||
LNFX-4-5 | 43.99 | 13.06 | GDZJ-106-1 | 356.06 | 53.06 | SDJY-42-1 | 824.38 | 24.17 | HeNQF-2 | 1227.90 | 42.50 | ||||
LNFX-25-3 | 44.86 | 36.81 | JSRS-17-2 | 369.88 | 19.86 | SDJY-135-1 | 880.53 | 29.17 | SCPA-32-12 | 1490.49 | 63.06 | ||||
高产毒 High toxigenicity (>1500 μg·kg-1) | GDZJ-110-4 | 1531.99 | 42.08 | HeNSQ-18 | 2660.25 | 24.44 | LNFX-25-1 | 3545.22 | 25.56 | JXZS-69-3 | 6087.31 | 43.06 | |||
HeNQF-1 | 1705.95 | 39.72 | YNGN-20-6 | 2698.18 | 21.39 | XZCY-30-1 | 3570.74 | 40.42 | HBTS-28-2 | 6348.68 | 37.22 | ||||
JXZS-119-1 | 2049.86 | 26.39 | XZCY-21-5 | 2703.36 | 42.22 | HBTS-94-2 | 3903.05 | 27.64 | SDJY-50-1 | 6495.97 | 36.67 | ||||
XZCY-16-4 | 2147.79 | 24.86 | JXZS-126-9 | 2762.77 | 49.17 | XZCY-21-2 | 3908.80 | 22.50 | GDZJ-105-2 | 9354.93 | 22.92 | ||||
LNFX-103-2 | 2155.32 | 28.33 | YNGN-15-2 | 2844.27 | 40.00 | SCPA-14-3 | 3957.07 | 25.69 | LNFX-103-1 | 9469.96 | 13.89 | ||||
GDZJ-119-4 | 2247.91 | 46.39 | GDZJ-108-15 | 3085.41 | 53.89 | LNFX-45-3 | 4436.47 | 14.44 | HBHA-125-1 | 10643.80 | 21.94 | ||||
JXZS-117-2 | 2314.62 | 31.94 | HBHA-147-1 | 3197.12 | 45.56 | SCPA-40-4 | 4913.89 | 22.36 | JSRG-18-1 | 13272.40 | 31.53 | ||||
JXZS-132-9 | 2362.42 | 49.44 | LNFX-77-1 | 3245.92 | 17.78 | HBTS-26-7 | 4976.00 | 25.00 | SCPA-14-6 | 13456.28 | 64.58 | ||||
HBHA-131-2 | 2480.35 | 52.08 | HeNSQ-19 | 3389.85 | 26.11 | SCPA-27-5 | 5486.87 | 37.50 | SDJY-60-1 | 18038.50 | 30.69 | ||||
CGMCC 3.4408 | 2296.53 | 45.00 |
表3
不同产毒力等级的黄曲霉菌株侵染指数"
产毒力水平 Toxigenicity level | 侵染指数范围 Infection index range (%) | 平均侵染指数Average of infection index (%) | |||
---|---|---|---|---|---|
中花6号 Zhonghua 6 | 粤油256 Yueyou 256 | 豫花37 Yuhua 37 | 均值 Average | ||
不产毒Non-toxigenicity | 6.67-64.86 | 47.19b | 13.36b | 31.74b | 30.76b |
中低产毒Medium-low toxigenicity | 3.89-67.50 | 53.07a | 17.63a | 40.41a | 37.04a |
高产毒High toxigenicity | 13.89-64.58 | 50.20ab | 15.96ab | 34.29ab | 33.48ab |
表4
不同省(自治区)黄曲霉菌株侵染差异显著性分析"
省(自治区) Province (Autonomous Region) | 平均侵染指数 Average of infection index (%) | 广东 Guandong | 河北 Hebei | 河南 Henan | 湖北 Hubei | 江苏 Jiangsu | 江西 Jiangxi | 辽宁 Liaoning | 山东 Shandong | 山西 Shanxi | 四川 Sichuan | 西藏 Tibet | 云南 Yunnan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
广东Guangdong | 51.89 | ||||||||||||
河北Hebei | 27.41 | 19.57* | |||||||||||
河南Henan | 29.14 | 25.07* | 5.50 | ||||||||||
湖北Hubei | 35.21 | 13.65* | 5.92 | 11.41* | |||||||||
江苏Jiangsu | 25.69 | 27.04* | 7.47 | 1.97 | 13.38* | ||||||||
江西Jiangxi | 38.40 | 15.77* | 3.81 | 9.30* | 2.11 | 11.27 | |||||||
辽宁Liaoning | 15.72 | 36.65* | 17.08* | 11.59* | 22.99* | 9.60 | 20.89* | ||||||
山东Shandong | 24.48 | 29.95* | 10.38* | 4.89 | 16.30* | 2.92 | 14.19* | 6.70 | |||||
山西Shanxi | 31.99 | 18.61* | 0.96 | 6.45 | 4.96 | 8.43 | 2.84 | 18.04* | 11.34* | ||||
四川Sichuan | 47.00 | 9.25* | 10.32* | 15.81* | 4.40 | 17.78* | 6.51 | 27.40* | 20.70* | 9.36 | |||
西藏Tibet | 30.50 | 20.81* | 1.24 | 4.26 | 7.16 | 6.23 | 5.04 | 15.85* | 9.15* | 2.20 | 11.56* | ||
云南Yunnan | 30.69 | 24.40* | 4.83 | 0.67 | 10.75 | 2.64 | 8.63 | 12.25 | 5.56 | 5.79 | 15.15* | 3.59 |
表5
不同产区黄曲霉菌株侵染差异"
菌株来源 Source | 侵染指数范围 Infection index range (%) | 平均侵染指数 Average of infection index (%) | |
---|---|---|---|
东北产区Northeast region | 辽宁阜新Fuxin, Liaoning | 3.89-36.81 | 15.72 |
北方产区North region | 河北保定Baoding, Hebei | 15.83-24.44 | 20.14 |
河北唐山Tangshan, Hebei | 25.00-46.81 | 34.68 | |
河南正阳Zhengyang, Henan | 19.17-25.42 | 22.29 | |
河南商丘Shangqiu, Henan | 22.44-26.11 | 25.09 | |
河南清风Qingfeng, Henan | 37.92-42.50 | 40.05 | |
山东平邑Pingyi, Shandong | 20.00-26.56 | 22.36 | |
山东新泰Xintai, Shandong | 12.78-38.33 | 25.56 | |
山东济阳Jiyang, Shandong | 6.94-36.67 | 25.53 | |
山西襄汾Linfen, Shanxi | 25.69-39.44 | 31.99 | |
长江流域产区Yangtze River region | 江苏如皋Rugao, Jiangsu | 19.86-31.53 | 25.69 |
湖北红安Hongan, Hubei | 21.94-67.50 | 43.84 | |
湖北襄阳Xiangyang, Hubei | 29.72 | 29.72 | |
湖北阳逻Yangluo, Hubei | 32.08 | 32.08 | |
四川蓬安Peng’an, Sichuan | 22.36-64.86 | 47.00 | |
江西樟树Zhangshu, Jiangxi | 25.42-54.86 | 38.40 | |
南方产区South region | 云南广南Guangnan, Yunnan | 21.39-40.00 | 30.69 |
广东英德Yingde, Guangdong | 46.67 | 46.67 | |
广东茂名Maoming, Guangdong | 58.61 | 58.61 | |
广东湛江Zhanjiang, Guangdong | 22.92-62.08 | 50.40 | |
西藏高原Tibetan Plateau region | 西藏察隅Chayu, Tibet | 22.50-42.22 | 30.50 |
[1] |
AMAIKE S, KELLER N P. Aspergillus flavus. Annual Review of Phytopathology, 2011, 49:107-133.
doi: 10.1146/phyto.2011.49.issue-1 |
[2] |
WILLIAMS J H, PHILLIPS T D, JOLLY P E, STILES J K, JOLLY C M, AGGARWAL D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition, 2004, 80(5):1106-1122.
doi: 10.1093/ajcn/80.5.1106 |
[3] |
DING X X, WU L X, LI P W, ZHANG Z W, ZHOU H Y, BAI Y Z, CHEN X M, JIANG J. Risk assessment on dietary exposure to aflatoxin B1 in post-harvest peanuts in the Yangtze River ecological region. Toxins, 2015, 7(10):4157-4174.
doi: 10.3390/toxins7104157 |
[4] |
WU L X, DING X X, LI P W, DU X H, ZHOU H Y, BAI Y Z, ZHANG L X. Aflatoxin contamination of peanuts at harvest in China from 2010 to 2013 and its relationship with climatic conditions. Food Control, 2016, 60:117-123.
doi: 10.1016/j.foodcont.2015.06.029 |
[5] |
NIGAM S N, WALIYAR F, ARUNA R, REDDY S V, KUMAR P L, CRAUFURD P Q, DIALLO A T, NTARE B R, UPADHYAYA H D. Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Science, 2009, 36(1):42-49.
doi: 10.3146/AT07-008.1 |
[6] | 邱西克, 康彦平, 郭建斌, 喻博伦, 陈伟刚, 姜慧芳, 黄莉, 李威涛, 罗怀勇, 雷永, 廖伯寿. 花生荚壳抗黄曲霉菌侵染的鉴定方法研究及抗性种质发掘. 中国油料作物学报, 2019, 41(1):109-114. |
QIU X K, KANG J P, GUO J B, YU B L, CHEN W G, JIANG H F, HUANG L, LI W T, LUO H Y, LEI Y, LIAO B S. Method for screening resistance of peanut shell to Aspergillus flavus infection and identification of resistant genotypes. Chinese Journal of Oil Crop Sciences, 2019, 41(1):109-114. (in Chinese) | |
[7] | 王后苗. 花生抗黄曲霉菌产毒机制的研究[D]. 北京: 中国农业科学院, 2016. |
WANG H M. Mechanism of resistance to aflatoxin production in peanut (Arachis hypogaea L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[8] | 李春娟, 闫彩霞, 王娟, 孙全喜, 苑翠玲, 单世华, 赵小波. 基于iTRAQ技术的黄曲霉胁迫花生蛋白质组分析. 花生学报, 2020, 49(1):25-30. |
LI C J, YAN C X, WANG J, SUN Q X, YUAN C L, SHAN S H, ZHAO X B. Analysis of differential proteome in peanut under Aspergillus flavus stress based on iTRAQ technique. Journal of Peanut Science, 2020, 49(1):25-30. (in Chinese) | |
[9] |
ZHANG C, SELVARAJ J N, YANG Q, YANG L. A survey of aflatoxin-producing Aspergillus sp. from peanut field soils in four agroecological zones of China. Toxins, 2017, 9(1):40.
doi: 10.3390/toxins9010040 |
[10] |
KLICH M A. Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 2007, 8(6):713-722.
doi: 10.1111/mpp.2007.8.issue-6 |
[11] | SMARTT J. The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, 1994. |
[12] |
HOLBROOK C C, GUO B Z, WILSON D M, TIMPER P. The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Science, 2009, 36(1):50-53.
doi: 10.3146/AT07-009.1 |
[13] | 朱婷婷. 花生土壤中产黄曲霉毒素菌的分布、产毒力与毒素污染研究[D]. 北京: 中国农业科学院, 2018. |
ZHU T T. Study on the distribution, potential of aflatoxigenic fungi and toxins contamination in peanut soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[14] |
余仲东, 余知和, 金世宇, 王龙. 我国黄曲霉遗传多样性与产毒特性. 生物多样性, 2019, 27(8):842-853.
doi: 10.17520/biods.2019034 |
YU Z D, YU Z H, JIN S Y, WANG L. Genetic diversity and toxin-producing characters of Aspergillus flavus from China. Biodiversity Science, 2019, 27(8):842-853. (in Chinese)
doi: 10.17520/biods.2019034 |
|
[15] |
ASIS R, MULLER V, BARRIONUEVO D L, ARAUJO S A, ALDAO M A. Analysis of protease activity in Aspergillus flavus and A. parasiticus on peanut seed infection and aflatoxin contamination. European Journal of Plant Pathology, 2009, 124(3):391-403.
doi: 10.1007/s10658-008-9426-7 |
[16] | 唐兆秀, 纪荣昌, 李光星, 康玉妹, 种藏文. 花生A. flavus菌株产毒性与致病性研究. 福建农业学报, 2000, 15(2):19-22. |
TANG Z X, JI R C, LI G X, KANG Y M, ZHONG Z W. Toxigenicity and pathogenicity of groundnut A. flavus strain. Fujian Journal of Agricultural Sciences, 2000, 15(2):19-22. (in Chinese) | |
[17] | 李毓, 方树民, 蔡宁波, 程忠, 尹亚兵, 庄伟建. 不同产地花生黄曲霉菌致病力研究. 花生学报, 2007, 36(3):21-24. |
LI Y, FANG S M, CAI N B, CHENG Z, YIN Y B, ZHUANG W J. Studies on peanut strains of A. flavus and their infection capacity from different areas. Journal of Peanut Science, 2007, 36(3):21-24. (in Chinese) | |
[18] | 朱婷婷, 陈琳, 岳晓凤, 白艺珍, 丁小霞, 李培武, 张奇, 张文. 湖北省典型花生种植区土壤中黄曲霉菌分布及产毒力研究. 中国油料作物学报, 2019, 41(2):255-260. |
ZHU T T, CHEN L, YUE X F, BAI Y Z, DING X X, LI P W, ZHANG Q, ZHANG W. Distribution, aflatoxin production of Aspergillus flavus in soils of typical peanut planting area in Hubei Province. Chinese Journal of Oil Crop Sciences, 2019, 41(2):255-260. (in Chinese) | |
[19] | 王春玮, 张廷婷, 陈凯, 闫彩霞, 李春娟, 刘宇, 朱启忠, 单世华. 黄曲霉侵染对不同品种花生生理特性的影响. 资源开发与市场, 2012, 28(10):865-867. |
WANG C W, ZHANG T T, CHEN K, YAN C X, LI C J, LIU Y, ZHU Q Z, SHAN S H. Effect of physiological traits on different peanut varieties treated with Aspergillus flavus. Resource Development and Market, 2012, 28(10):865-867. (in Chinese) | |
[20] |
TUBAJIKA K M, DAMANN K E. Sources of resistance to aflatoxin production in maize. Journal of Agricultural and Food Chemistry, 2001, 49(5):2652-2656.
doi: 10.1021/jf001333i |
[21] |
LIAO B, ZHUANG W, TANG R, ZHANG X, SHAN S, JIANG H, HUANG J. Peanut aflatoxin and genomics research in China: Progress and perspectives. Peanut Science, 2009, 36(1):21-28.
doi: 10.3146/AT07-004.1 |
[22] | 丁小霞. 中国产后花生黄曲霉毒素污染与风险评估方法研究[D]. 北京: 中国农业科学院, 2011. |
DING X X. Study on post-harvest peanut aflatoxins contamination and risk assessment in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[23] | 张杏, 岳晓凤, 丁小霞, 李培武, 余秋玉, 谢华里, 张奇, 张兆威, 张文. 中国西南花生产区黄曲霉菌分布、产毒力及花生黄曲霉毒素污染. 中国油料作物学报, 2019, 41(5):773-780. |
ZHANG X, YUE X F, DING X X, LI P W, YU Q Y, XIE H L, ZHANG Q, ZHANG Z W, ZHANG W. Distribution and aflatoxin contamination by Aspergillus flavus in peanut from the southwest China. Chinese Journal of Oil Crop Sciences, 2019, 41(5):773-780. (in Chinese) | |
[24] | 王后苗, 潘婷, 魏杰, 雷永, 吕建伟, 成良强, 徐辰武, 廖伯寿. 花生收获前黄曲霉毒素污染抗性及其与花生安全贮藏关系的分析. 扬州大学学报(农业与生命科学版), 2018, 39(3):58-62. |
WANG H M, PAN T, WEI J, LEI Y, LÜ J W, CHENG L Q, XU C W, LIAO B T. Resistance to preharvest aflatoxin contamination in peanut and the relationship of the resistance with safe storage. Journal of Yangzhou University (Agriculture and Life Science Edition), 2018, 39(3):58-62. (in Chinese) | |
[25] |
MEHANATHAN M, BEDRE R, MANGU V, RAJASEKARAN K, BHATNAGAR D, BAISAKH N. Identification of candidate resistance genes of cotton against Aspergillus flavus infection using a comparative transcriptomics approach. Physiology and Molecular Biology of Plants, 2018, 24(3):513-519.
doi: 10.1007/s12298-018-0522-7 |
[26] |
WANG H, LEI Y, YAN L, WAN L, REN X, CHEN S, DAI X, GUO W, JIANG H, LIAO B. Functional genomic analysis of Aspergillus flavus interacting with resistant and susceptible peanut. Toxins, 2016, 8(2):46.
doi: 10.3390/toxins8020046 |
[27] |
蒋艺飞, 喻博伦, 丁膺宾, 陈伟刚, 郭建斌, 陈海文, 罗怀勇, 刘念, 黄莉, 周小静, 姜慧芳, 雷永, 晏立英, 康彦平, 姜成红, 廖伯寿. 花生抗黄曲霉大果种质的创制与鉴定. 中国油料作物学报, 2021. DOI: 10.19802/j.issn.1007-9084.2020304.
doi: 10.19802/j.issn.1007-9084.2020304 |
JIANG Y F, YU B L, DING Y B, CHEN W G, GUO J B, CHEN H W, LUO H Y, LIU N, HUANG L, ZHOU X J, JIANG H F, LEI Y, YAN L Y, KANG Y P, JIANG C H, LIAO B S. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination. Chinese Journal of Oil Crop Sciences, 2021. DOI: 10.19802/j.issn.1007-9084.2020304. (in Chinese)
doi: 10.19802/j.issn.1007-9084.2020304 |
|
[28] | 王后苗, 廖伯寿, 雷永, 黄家权, 晏立英. 黄曲霉菌主要真菌毒素次级代谢与调控的研究进展. 微生物学通报, 2014, 41(7):1425-1438. |
WANG H M, LIAO B S, LEI Y, HUANG J Q, YAN L Y. Progresses on research of secondary metabolite and regulation of primary mycotoxins in Aspergillus flavus. Microbiology China, 2014, 41(7):1425-1438. (in Chinese) | |
[29] |
YU J, CHANG P K, EHRLICH K C, CARY J W, BHATNAGAR D, CLEVELAND T E, PAYNE G A, LINZ J E, WOLOSHUK C P, BENNETT J W. Clustered pathway genes in aflatoxin biosynthesis. Applied and Environmental Microbiology, 2004, 70(3):1253-1262.
doi: 10.1128/AEM.70.3.1253-1262.2004 |
[1] | 吴月,隋新华,戴良香,郑永美,张智猛,田云云,于天一,孙学武,孙棋棋,马登超,吴正锋. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8): 1518-1528. |
[2] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
[3] | 王娟,陈皓宁,石大川,于天一,闫彩霞,孙全喜,苑翠玲,赵小波,牟艺菲,王奇,李春娟,单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. |
[4] | 郭灿,岳晓凤,白艺珍,张良晓,张奇,李培武. 花生黄曲霉毒素平衡取样-随机森林风险预警模型的应用研究[J]. 中国农业科学, 2022, 55(17): 3426-3436. |
[5] | 史晓龙,郭佩,任婧瑶,张鹤,董奇琦,赵新华,周宇飞,张正,万书波,于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[6] | 郝静,李秀坤,崔顺立,邓洪涛,侯名语,刘盈茹,杨鑫雷,穆国俊,刘立峰. 花生每荚种子数相关性状QTL的定位[J]. 中国农业科学, 2022, 55(13): 2500-2508. |
[7] | 冯晨,黄波,冯良山,郑家明,白伟,杜桂娟,向午燕,蔡倩,张哲,孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61-73. |
[8] | 孟鑫浩,邓洪涛,李丽,崔顺立,Charles Y.Chen,侯名语,杨鑫雷,刘立峰. 栽培种花生株型相关性状的QTL定位[J]. 中国农业科学, 2021, 54(8): 1599-1612. |
[9] | 陈歌,曹立冬,许春丽,赵鹏跃,曹冲,李凤敏,黄啟良. 溶剂蒸发法制备丙硫菌唑微囊及其性能研究[J]. 中国农业科学, 2021, 54(4): 754-767. |
[10] | 顾博文,杨劲峰,鲁晓玲,吴怡慧,李娜,刘宁,安宁,韩晓日. 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响[J]. 中国农业科学, 2021, 54(21): 4552-4561. |
[11] | 薛华龙,娄梦玉,李雪,王飞,郭彬彬,郭大勇,李海港,焦念元. 施磷水平对不同茬口下冬小麦生长发育及产量的影响[J]. 中国农业科学, 2021, 54(17): 3712-3725. |
[12] | 张毛宁,黄冰艳,苗利娟,徐静,石磊,张忠信,孙子淇,刘华,齐飞艳,董文召,郑峥,张新友. 巢式杂交分离群体的花生籽仁性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2021, 54(13): 2916-2930. |
[13] | 魏晓,张奇,张文,李慧,李培武. 农产品中黄曲霉毒素产毒菌标识性分子大容量反应体系 提高ELISA灵敏度[J]. 中国农业科学, 2020, 53(7): 1473-1481. |
[14] | 胡廷会,成良强,王军,吕建伟,饶庆琳. 不同基因型花生耐荫性评价及其鉴定指标的筛选[J]. 中国农业科学, 2020, 53(6): 1140-1153. |
[15] | 徐志军,赵胜,徐磊,胡小文,安东升,刘洋. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发[J]. 中国农业科学, 2020, 53(4): 695-706. |
|