中国农业科学 ›› 2020, Vol. 53 ›› Issue (9): 1806-1819.doi: 10.3864/j.issn.0578-1752.2020.09.009
周天宇1,李姜玲1,杨澜1,阮仁武2,杨宇衡3(),李中安1()
收稿日期:
2019-12-17
接受日期:
2020-02-12
出版日期:
2020-05-01
发布日期:
2020-05-13
通讯作者:
杨宇衡,李中安
作者简介:
周天宇,E-mail:1522619059@qq.com。
基金资助:
TianYu ZHOU1,JiangLing LI1,Lan YANG1,RenWu RUAN2,YuHeng YANG3(),ZhongAn LI1()
Received:
2019-12-17
Accepted:
2020-02-12
Online:
2020-05-01
Published:
2020-05-13
Contact:
YuHeng YANG,ZhongAn LI
摘要:
【目的】通过亲本条锈病的抗性评价预测F1代杂交种的抗病性,增强杂交小麦抗病育种的可预见性。【方法】以CYR23、CYR31、CYR33、CYR34 4个小麦条锈菌(Puccinia striiformis f. sp. tritici)生理小种作为供试菌源,感病小麦品种铭贤169作为阴性对照,通过成株期混合接种,对13份恢复系(父本)材料和21份不育系(母本)材料及其F1代杂交种进行抗病性鉴定,并利用Yr5、Yr9、Yr10、Yr15、Yr17、Yr18、Yr26等抗条锈基因的分子标记或基因标记对其可能携带的抗条锈基因进行分子检测。同时通过半定量PCR方法在亲本及部分F1代植株的成株期进行条锈菌侵染量测定。【结果】所有材料均未鉴定到Yr5、Yr10、Yr15,Yr26多存在于四川品系,Yr9、Yr17多存在于北方品系,本研究所有恢复系材料均未鉴定到Yr18。亲本抗条锈基因在F1代杂交种得到了聚合,符合遗传规律,表明分子标记可以用于杂交小麦抗病辅助选育。来自四川的恢复系及其F1代杂交种整体表现优良抗性,推测其具有纯合显性的抗条锈基因,同时,这些小麦材料可以用于我国小麦抗条锈育种。F1代的实际鉴定反应型趋于亲本反应型的平均值,二元回归分析结果表明亲本和F1代的反应型之间有显著相关性(R2=0.812)。来自四川的恢复系及其F1代对新毒性小种CYR34表现优良抗性,但亲本中未检测到Yr5、Yr15,推测其可能含有未知的抗条锈病基因。利用半定量PCR方法对所有恢复系、不育系和部分F1代杂交种分别进行了供试条锈菌生理小种的菌量测定,结果显示所有亲本及其杂种中均未检测到CYR23,恢复系15CA50、不育系17L6078和15L7128有少量CYR31侵染,恢复系川13品6、MR1101和川麦98及其F1代杂交种未检测到CYR33、CYR34。同时发现,对不同生理小种抗性互补的亲本能有效提高F1代的抗病性。【结论】根据双亲对条锈病的反应型可以预测其F1代杂交种的抗性水平,双亲的抗病水平越高,其F1代杂交种的抗性就越好。同时可以选用具有不同条锈病生理小种抗性互补的亲本来提高F1代杂交种的抗性水平。研究结果有助于探究亲本与F1代杂交种之间的抗病规律,同时为杂交小麦抗病育种提供可参考的实践方案。
周天宇,李姜玲,杨澜,阮仁武,杨宇衡,李中安. 基于亲本对条锈病敏感性预测小麦杂交种的抗性[J]. 中国农业科学, 2020, 53(9): 1806-1819.
TianYu ZHOU,JiangLing LI,Lan YANG,RenWu RUAN,YuHeng YANG,ZhongAn LI. The Resistance Prediction of Wheat Hybrids Based on the Sensibility of Their Parents to Stripe Rust[J]. Scientia Agricultura Sinica, 2020, 53(9): 1806-1819.
表1
小麦抗条锈病基因的引物序列"
Yr 基因 Yr genes | 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 退火温度 Anneal temperature (℃) | 片段大小 Fragment size (bp) |
---|---|---|---|---|
Yr5 | Yr5-InsertionF[ Yr5-InsertionR | CTCACGCATTTGACCATATACAACT TATTGCATAACATGGCCTCCAGT | 52 | +1281 |
Yr9 | AF1[ AF4 | F: GGAGACATCATGAAACATTTG R: CTGTTGTTGGGCAGAAAG | 46 | +1500 |
Yr10 | Yr10F1[ Yr10R1 | TTGGAATTGGCGACAAGCGT GTGATGATTACCCACTTCCTC | 50 | +755 |
Yr15 | Y15K1_F2[ uhw301R | GGAGATAGAGCACATTACAGAC TTTCGCATCCCACCCTACTG | 55 | +992 |
W_2F | TGCACGCGGATATTAGGTAGG | 55 | +2014 | |
W_2R | TGATGAAGAGGACCAACGCA | |||
Yr17 | VENTRIUP[ LN2 | AGGGGCTACTGACCAAGGCT TGCAGCTACAGCAGTATGTACACAAAA | 55 | +262 |
Yr18 | L34DINT9F[ L34PLUSR | TTGATGAAACCAGTTTTTTTTCTA GCCATTTAACATAATCATGATGGA | 45 | +517 |
Yr26 | WE173F[ WE173R | GGGACAAGGGGAGTTGAAGC GAGAGTTCCAAGCAGAACAC | 50 | +451 -730 |
表2
小麦条锈菌生理小种特异性引物序列"
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 退火温度 Anneal temperature (℃) | |
---|---|---|---|
CYR23 | S360[ S413 | F: AAGCGGCCTC R: GGTGGTCCAAG | 50 |
CYR31 | CY31SP-1[ CY31SP-2 | F: GCTACGTCAAGATGCGATACACC R: TGTCAGAAGCAAGTGGTAAACTAGG | 50 |
CYR33 | CYR33SP-1[ CYR33SP-2 | F: TGTCGTCTCGCCAATCTTT R: GCGGGTGTCAGTTTCTCC | 50 |
CYR34 | V26SP-1[ V26SP-2 | F: CTGTAAAGCGGATAAAGGAA R: CATAAGAGCCACACTTGACC | 57 |
Pst elongation factor | Pst_EF | F: TTCGCCGTCCGTGATATGAGACAA R: ATGCGTATCATGGTGGTGGAGTGA | 55 |
表3
亲本抗病表现"
品系 Line | 反应型 Infection type | 抗病评价 Resistance evaluation | Yr 基因 Yr genes | |
---|---|---|---|---|
恢复系 Restorer lines | 小偃22 Xiaoyan 22 | 9 | S | Yr9 |
陕987 Shaan 987 | 5 | MR | Yr9+Yr17 | |
高大1号 Gaoda No.1 | 7 | MS | Yr9+Yr17 | |
伟隆121 Weilong 121 | 4 | MR | Yr17 | |
15CA50 | 7 | MS | - | |
丰德存5号 Fengdecun No.5 | 7 | MS | - | |
西农807 Xinong 807 | 7 | MS | - | |
川14品16 Chuan 14 pin 16 | 2 | R | Yr26 | |
川13品6 Chuan 13 pin 6 | 2 | R | Yr26 | |
川麦93 Chuanmai 93 | 0 | R | Yr26 | |
川麦98 Chuanmai 98 | 0 | R | Yr17+Yr26 | |
MR1101 | 2 | R | Yr26 | |
MY13-3 | 2 | R | Yr17 | |
不育系 Sterile lines | 08L5070 | 6 | MR | Yr9 |
15L7109 | 4 | MR | Yr9 | |
15L7128 | 6 | MR | Yr9 | |
15L7152 | 2 | R | Yr9+Yr18 | |
17L6019 | 6 | MR | Yr9 | |
17L6062 | 3 | R | Yr9 | |
17L6065 | 3 | R | Yr9+Yr17 | |
17L6067 | 3 | R | Yr9+Yr17 | |
17L6078 | 6 | MR | Yr9 | |
17L6085 | 5 | MR | Yr9+Yr17+Yr18 | |
17L7030 | 6 | MR | Yr9+Yr17+Yr18 | |
17L7106 | 3 | R | Yr9+Yr18 | |
17L7123 | 3 | R | Yr9+Yr18 | |
17L7140 | 3 | R | Yr9 | |
17L9066 | 6 | MR | - | |
17L9154 | 4 | MR | Yr9+Yr17 | |
17L9160 | 3 | R | Yr9+Yr17 | |
17L9163 | 6 | MR | Yr9 | |
17L9195 | 3 | R | Yr9 | |
17L9210 | 2 | R | Yr9+Yr17 | |
17L9217 | 4 | MR | Yr9 |
表4
F1代杂交种抗病表现"
编号 Number | F1代 F1 hybrids | 反应型 Infection type | 抗病评价 Resistance evaluation | Yr基因 Yr genes | 亲本反应型平均值 Infection type (average of parents) |
---|---|---|---|---|---|
1 | 17L6065×小偃22 17L6065×Xiaoyan 22 | 5 | MR | Yr9+Yr17 | 6 |
2 | 17L6067×小偃22 17L6067×Xiaoyan 22 | 5 | MR | Yr9+Yr17 | 6 |
3 | 17L9160×小偃22 17L9160×Xiaoyan 22 | 5 | MR | Yr9+Yr17 | 6 |
4 | 17L9154×陕987 17L9154×Shaan 987 | 4 | MR | Yr9+Yr17 | 4.5 |
5 | 17L9160×陕987 17L9160×Shaan 987 | 4 | MR | Yr9+Yr17 | 4 |
6 | 17L7123×高大1号 17L7123×Gaoda No.1 | 5 | MR | Yr9+Yr17+Yr18 | 5 |
7 | 17L7140×高大1号 17L7140×Gaoda No.1 | 5 | MR | Yr9+Yr17 | 5 |
8 | 17L7030×高大1号 17L7030×Gaoda No.1 | 7 | MS | Yr9+Yr17+Yr18 | 6.5 |
9 | 17L6078×高大1号 17L6078×Gaoda No.1 | 6 | MR | Yr9+Yr17 | 6.5 |
10 | 17L9066×高大1号 17L9066×Gaoda No.1 | 6 | MR | Yr9+Yr17 | 6.5 |
11 | 17L9154×高大1号 17L9154×Gaoda No.1 | 6 | MR | Yr9+Yr17 | 5.5 |
12 | 17L6067×丰德存5号 17L6067×Fengdecun No.5 | 6 | MR | Yr9+Yr17 | 5 |
13 | 17L6019×丰德存5号 17L6019×Fengdecun No.5 | 5 | MR | Yr9 | 6.5 |
14 | 17L6065×丰德存5号 17L6065×Fengdecun No.5 | 5 | MR | Yr9+Yr17 | 5 |
15 | 17L7106×丰德存5号 17L7106×Fengdecun No.5 | 7 | MS | Yr9+Yr18 | 5 |
16 | 17L7030×丰德存5号 17L7030×Fengdecun No.5 | 7 | MS | Yr9+Yr17+Yr18 | 6.5 |
17 | 17L7123×丰德存5号 17L7123×Fengdecun No.5 | 7 | MS | Yr9+Yr18 | 7 |
18 | 17L9154×丰德存5号 17L9154×Fengdecun No.5 | 5 | MR | Yr9+Yr17 | 5.5 |
19 | 15L7109×丰德存5号 15L7109×Fengdecun No.5 | 6 | MR | Yr9 | 5.5 |
20 | 17L6067×西农807 17L6067×Xinong 807 | 6 | MR | Yr9+Yr17 | 5 |
21 | 17L6019×西农807 17L6019×Xinong 807 | 6 | MR | Yr9 | 6.5 |
22 | 17L7030×西农807 17L7030×Xinong 807 | 5 | MR | Yr9+Yr17+Yr18 | 6.5 |
23 | 17L7123×西农807 17L7123×Xinong 807 | 5 | MR | Yr9+Yr18 | 5 |
24 | 17L7140×西农807 17L7140×Xinong 807 | 5 | MR | Yr9 | 5 |
25 | 17L9154×西农807 17L9154×Xinong 807 | 6 | MR | Yr9+Yr17 | 5.5 |
26 | 15L7109×西农807 15L7109×Xinong 807 | 5 | MR | Yr9 | 5.5 |
27 | 17L6067×川14品16 17L6067×Chuan 14 pin 16 | 2 | R | Yr9+Yr17+Yr26 | 2.5 |
28 | 15L7109×川14品16 15L7109×Chuan 14 pin 16 | 2 | R | Yr9+Yr26 | 3 |
29 | 15L7128×川14品16 15L7128×Chuan 14 pin 16 | 2 | R | Yr9+Yr26 | 4 |
30 | 15L7152×川14品16 15L7152×Chuan 14 pin 16 | 2 | R | Yr9+Yr18+Yr26 | 2 |
31 | 17L6065×川13品6 17L6065×Chuan 13 pin 6 | 2 | R | Yr9+Yr17+Yr26 | 3 |
32 | 17L6067×川13品6 17L6067×Chuan 13 pin 6 | 2 | R | Yr9+Yr17+Yr26 | 3 |
33 | 17L9154×川13品6 17L9154×Chuan 13 pin 6 | 2 | R | Yr9+Yr17+Yr26 | 3.5 |
34 | 17L6065×MR1101 | 2 | R | Yr9+Yr17+Yr26 | 2.5 |
35 | 17L6067×MR1101 | 2 | R | Yr9+Yr17+Yr26 | 2.5 |
36 | 17L6085×MR1101 | 2 | R | Yr9+Yr17+Yr18+Yr26 | 3.5 |
37 | 17L7106×MR1101 | 2 | R | Yr9+Yr26+Yr18 | 2.5 |
38 | 17L7030×MR1101 | 2 | R | Yr9+Yr17+Yr26+Yr18 | 4 |
39 | 17L7123×MR1101 | 2 | R | Yr9+Yr26+Yr18 | 2.5 |
40 | 17L7140×MR1101 | 2 | R | Yr9+Yr26 | 2.5 |
41 | 17L9154×MR1101 | 0 | R | Yr9+Yr17+Yr26 | 3 |
42 | 15L7109×MR1101 | 0 | R | Yr9+Yr26 | 3 |
编号 Number | F1代 F1 hybrids | 反应型 Infection type | 抗病评价 Resistance evaluation | Yr基因 Yr genes | 亲本反应型平均值 Infection type (average of parents) |
43 | 15L7128×MR1101 | 1 | R | Yr9 +Yr26 | 4 |
44 | 15L7152×MR1101 | 2 | R | Yr9+Yr18+Yr26 | 2 |
45 | 08L5070×MR1101 | 2 | R | Yr9+Yr26 | 4 |
46 | 17L6065×MY13-3 | 2 | R | Yr9+Yr17 | 2.5 |
47 | 17L6067×MY13-3 | 2 | R | Yr9+Yr17 | 2.5 |
48 | 17L6085×MY13-3 | 2 | R | Yr9+Yr17+Yr18 | 3.5 |
49 | 17L7106×MY13-3 | 2 | R | Yr9+Yr17+Yr18 | 2.5 |
50 | 17L7030×MY13-3 | 2 | R | Yr9+Yr17+Yr18 | 4 |
51 | 17L7123×MY13-3 | 2 | R | Yr9+Yr17+Yr18 | 2.5 |
52 | 17L7140×MY13-3 | 2 | R | Yr9+Yr17 | 2.5 |
53 | 17L9154×MY13-3 | 2 | R | Yr9+Yr17 | 3 |
54 | 17L9163×MY13-3 | 2 | R | Yr9+Yr17 | 4 |
55 | 15L7109×MY13-3 | 2 | R | Yr9+Yr17 | 3 |
56 | 15L7128×MY13-3 | 2 | R | Yr9+Yr17 | 4 |
57 | 15L7152×MY13-3 | 2 | R | Yr9+Yr17+Yr18 | 2 |
58 | 08L5070×MY13-3 | 2 | R | Yr9+Yr17 | 4 |
59 | 17L6065×川麦93 17L6065×Chuanmai 93 | 1 | R | Yr9+Yr17+Yr26 | 1.5 |
60 | 17L6067×川麦93 17L6067×Chuanmai 93 | 1 | R | Yr9+Yr17+Yr26 | 1.5 |
61 | 17L6085×川麦93 17L6085×Chuanmai 93 | 1 | R | Yr9+Yr26 | 2.5 |
62 | 17L7106×川麦93 17L7106×Chuanmai 93 | 1 | R | Yr9+Yr26+Yr18 | 1.5 |
63 | 17L7030×川麦93 17L7030×Chuanmai 93 | 2 | R | Yr9+Yr17+Yr26+Yr18 | 3 |
64 | 17L7123×川麦93 17L7123×Chuanmai 93 | 1 | R | Yr9+Yr26+Yr18 | 1.5 |
65 | 17L7140×川麦93 17L7140×Chuanmai 93 | 1 | R | Yr9+Yr26 | 1.5 |
66 | 17L9154×川麦93 17L9154×Chuanmai 93 | 1 | R | Yr9+Yr17+Yr26 | 2 |
67 | 17L9163×川麦93 17L9163×Chuanmai 93 | 2 | R | Yr9+Yr26 | 3 |
68 | 15L7109×川麦93 15L7109×Chuanmai 93 | 2 | R | Yr9+Yr26 | 2 |
69 | 15L7128×川麦93 15L7128×Chuanmai 93 | 2 | R | Yr9+Yr26 | 3 |
70 | 15L7152×川麦93 15L7152×Chuanmai 93 | 2 | R | Yr9+Yr18+Yr26 | 1 |
71 | 08L5070×川麦93 08L5070×Chuanmai 93 | 2 | R | Yr9+Yr26 | 3 |
72 | 17L6065×川麦98 17L6065×Chuanmai 98 | 2 | R | Yr9+Yr17+Yr26 | 1.5 |
73 | 17L6067×川麦98 17L6067×Chuanmai 98 | 2 | R | Yr9+Yr17+Yr26 | 1.5 |
74 | 17L6085×川麦98 17L6085×Chuanmai 98 | 2 | R | Yr9 +Yr17+Yr18+Yr26 | 2.5 |
75 | 17L7106×川麦98 17L7106×Chuanmai 98 | 2 | R | Yr9+Yr18+Yr26 | 1.5 |
76 | 17L7030×川麦98 17L7030×Chuanmai 98 | 2 | R | Yr9+Yr17+Yr18+Yr26 | 3 |
77 | 17L7123×川麦98 17L7123×Chuanmai 98 | 2 | R | Yr9+Yr18+Yr26 | 3 |
78 | 17L7140×川麦98 17L7140×Chuanmai 98 | 2 | R | Yr9+Yr26 | 1.5 |
79 | 17L9160×15CA50 | 6 | MR | Yr9+Yr17 | 5 |
80 | 17L6062×15CA50 | 7 | MS | Yr9 | 5 |
81 | 17L7106×15CA50 | 6 | MR | Yr9+Yr18 | 5 |
82 | 17L7140×15CA50 | 5 | MR | Yr9 | 5 |
83 | 17L9160×伟隆121 17L9160×Weilong 121 | 4 | MR | Yr9+Yr17 | 3.5 |
84 | 17L6062×伟隆121 17L6062×Weilong 121 | 4 | MR | Yr9+Yr17 | 3.5 |
85 | 17L6065×伟隆121 17L6065×Weilong 121 | 4 | MR | Yr9+Yr17 | 3.5 |
86 | 17L7106×伟隆121 17L7106×Weilong 121 | 3 | R | Yr9+Yr17+Yr18 | 3.5 |
[1] |
GODFRAY H C J, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C . Food security: The challenge of feeding 9 billion people. Science, 2010,327(5967):812-818.
doi: 10.1126/science.1185383 pmid: 20110467 |
[2] |
FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D, O’CONNELL C, RAY D K, WEST P C, BALZER C, BENNETT E M, CARPENTER S R, HILL J, MONFREDA C, POLASKY S, ROCKSTROM J, SHEEHAN J, SIEBERT S, TILMAN D, ZAKS D P M . Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620 |
[3] |
RAY D K, RAMANKUTTY N, MUELLER N D, WEST P C, FOLEY J A . Recent patterns of crop yield growth and stagnation. Nature Communications, 2012,3:1293.
doi: 10.1038/ncomms2296 pmid: 23250423 |
[4] |
RAY D K, MUELLER N D, WEST P C, FOLEY J A . Yield trends are insufficient to double global crop production by 2050. PloS ONE, 2013,8(6):e66428.
doi: 10.1371/journal.pone.0066428 pmid: 23840465 |
[5] |
WHITFORD R, FLEURY D, REIF J C, GARCIA M, OKADA T, KORZUN V, LANGRIDGE P . Hybrid breeding in wheat: Technologies to improve hybrid wheat seed production. Journal of Experimental Botany, 2013,64(18):5411-5428.
doi: 10.1093/jxb/ert333 pmid: 24179097 |
[6] | 丁位华, 冯素伟, 姜小苓, 王丹, 杨艳艳, 李婷婷, 茹振刚 . 播期、密度和行距对BNS型杂交小麦光合及产量的影响. 麦类作物学报, 2017,37(3):366-375. |
DING W H, FENG S W, JIANG X L, WANG D, YANG Y Y, LI T T, RU Z G . Effect of sowing date, density and row spacing on photosynthetic characteristic and yield of BNS hybrid wheat. Journal of Triticeae Crops, 2017,37(3):366-375. (in Chinese) | |
[7] |
KOEMEL J E, GUENZI A C, CARVER B F, PAYTON M E, MORGAN G H, SMITH E L . Hybrid and pure line hard winter wheat yield and stability. Crop Science, 2004,44(1):107-113.
doi: 10.2135/cropsci2004.1070 |
[8] |
KEMPE K, GILS M . Pollination control technologies for hybrid breeding. Molecular Breeding, 2011,27(4):417-437.
doi: 10.1007/s11032-011-9555-0 |
[9] |
TUCKER E J, BAUMANN U, KOUIDRI A, SUCHECKI R, BAES M, GARCIA M, OKADA T, DONG C M, WU Y Z, SANDHU A, SINGH M, LANGRIDGE P, WOLTERS P, ALBERTSEN M C, CIGAN A M, WHITFORD R . Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nature Communications, 2017,8(1):869.
doi: 10.1038/s41467-017-00945-2 pmid: 29021581 |
[10] |
LONGIN C F, MÜHLEISEN J, MAURER H P, ZHANG H L, GOWDA M, REIF J C . Hybrid breeding in autogamous cereals. Theoretical and Applied Genetics, 2012,125(6):1087-1096.
doi: 10.1007/s00122-012-1967-7 pmid: 22918662 |
[11] | 朱冠楠, 曹幸穗 . 杂交水稻和杂交小麦的选育(1960-2000年)—面向国民经济主战场的新中国农业科技. 中国科学院院刊, 2019,34(9):1036-1045. |
ZHU G N, CAO X S . Breeding of hybrid rice and hybrid wheat (1960-2000)-China agricultural science and technology facing the main battlefield of national economy. Bulletin of Chinese Academy of Sciences, 2019,34(9):1036-1045. (in Chinese) | |
[12] |
RASHEED A, XIA X C . From markers to genome-based breeding in wheat. Theoretical and Applied Genetics, 2019,132(3):767-784.
doi: 10.1007/s00122-019-03286-4 pmid: 30673804 |
[13] |
CUI Y R, LI R D, LI G W, ZHANG F, ZHU T T, ZHANG Q F, ALI J, LI Z K, XU S D . Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal, 2020,18(1):57-67.
doi: 10.1111/pbi.13170 pmid: 31124256 |
[14] | 张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民 . 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学: 生命科学, 2019,49(11):1479-1507. |
ZHANG J, DONG S M, WANG W, ZHAO J H, CHEN X W, GUO H S, HE G C, HE Z H, KANG Z S, LI Y, PENG Y L, WANG G L, ZHOU X P, WANG Y C, ZHOU J M . Plant immunity and sustainable control of pests in China: Advances, opportunities and challenges. Scientia Sinica Vitae, 2019,49(11):1479-1507. (in Chinese) | |
[15] |
GUPTA P K, BALYAN H S, GAHLAUT V, SARIPALLI G, PAL B, BASNET B R, JOSHI A K . Hybrid wheat: Past, present and future. Theoretical and Applied Genetics, 2019,132(9):2463-2483.
doi: 10.1007/s00122-019-03397-y pmid: 31321476 |
[16] | 史丽丽, 张改生, 牛娜, 马守才, 李红霞, 徐开杰 . 杂交小麦杂种一代白粉病抗性表现规律的研究. 麦类作物学报, 2009,29(5):919-924. |
SHI L L, ZHANG G S, NIU N, MA S C, LI H X, XU K J . Performance on powdery mildew resistance of F1 generation in hybrid wheat. Journal of Triticeae Crops, 2009,29(5):919-924. (in Chinese) | |
[17] |
LIU F, ZHAO Y S, BEIER S, JIANG Y, THORWARTH P, HLONGIN C F, GANAL M, HIMMELBACH A, REIF J C, SCHULTHESS A W . Exome association analysis sheds light onto leaf rust (Puccinia triticina) resistance genes currently used in wheat breeding (Triticum aestivum L.). Plant Biotechnology Journal, 2019, doi: 10.1111/pbi.13303.
doi: 10.1111/pbi.13303 pmid: 31782598 |
[18] |
BOEVEN P H, WURSCHU T, WEISSMANN S, MIEDANER T, MAURER H P . Prediction of hybrid performance for Fusarium head blight resistance in triticale (× Triticosecale Wittmack). Euphytica, 2016,207(3):475-490.
doi: 10.1007/s10681-015-1498-9 |
[19] |
ALI N, HESLOP-HARRISON J P, AHMAD H, GRAYBOSCH R A, HEIN G L, SCHWARZACHER T . TIntrogression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity, 2016,177(2):114-123.
doi: 10.1038/hdy.2016.36 pmid: 27245423 |
[20] | 赵仁慧, 刘炳亮, 寿路路, 陈甜甜, 王海燕, 王秀娥, 别同德 . 分子标记辅助聚合抗小麦黄花叶病和白粉病育种. 麦类作物学报, 2017,37(12):1541-1549. |
ZHAO R H, LIU B L, SHOU L L, CHEN T T, WANG H Y, WANG X E, BIE T D . Pyramiding disease resistance to wheat yellow mosaic virus and powdery mildew by molecular marker-assisted selection. Journal of Triticeae Crops, 2017,37(12):1541-1549. (in Chinese) | |
[21] | 崔彩红, 房伟强, 李兴锋, 王洪刚, 鲍印广 . 携带抗秆锈病基因Sr25、Sr26小麦新种质的分子标记辅助选育. 山东农业科学, 2015,47(4):13-17. |
CUI C H, FANG W Q, LI X F, WANG H G, BAO Y G . Marker assisted selection of wheat germplasms with stem rust resistance genes Sr25 and Sr26. Shandong Agricultural Sciences, 2015,47(4):13-17. (in Chinese) | |
[22] |
CHEN W Q, WELLINGS C, CHEN X M, KANG Z S, LIU T G . Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2014,15(5):433-446.
doi: 10.1111/mpp.12116 pmid: 24373199 |
[23] |
康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽 . 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015,48(17):3439-3453.
doi: 10.3864/j.issn.0578-1752.2015.17.011 |
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L . Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015,48(17):3439-3453. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.011 |
|
[24] | 张玉薇, 刘太国, 刘博, 高利, 陈万权 . 中国75个国审小麦品种抗条锈基因推导. 植物保护学报, 2014,41(1):45-53. |
ZHANG Y W, LIU T G, LIU B, GAO L, CHEN W Q . Gene postulation of stripe rust resistance genes of 75 Chinese commercial wheat cultivars. Journal of Plant Protection, 2014,41(1):45-53. (in Chinese) | |
[25] | 李中安, . 一种以蓝粒为标记性状的两系法杂交小麦的选育方法: CN200610042629.8[P]. (2006-09-06)[2019-12-17]. |
LI Z A . A breeding method of two-line hybrid wheat marked by blue grain: CN200610042629.8[P]. (2006-09-06)[2019-12-17]. (in Chinese) | |
[26] |
MARCHAL C, ZHANG J P, ZHANG P, FENWICK P, STEUERNAGEL B, ADAMSKI N M, BOYD L, MCLNTOSH R, WULFF B B H, BERRY S, LAGUDAH E, UAUY C . BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018,4(9):662-668.
doi: 10.1038/s41477-018-0236-4 pmid: 30150615 |
[27] |
ZENG Q D, HAN D J, WANG Q L, YUAN F P, WU J H, ZHANG L, WANG X J, HAUNG L L, CHEN X M, KANG Z S . Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 2014,196(2):271-284.
doi: 10.1007/s10681-013-1030-z |
[28] |
KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S, FENG L, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JÄÄSKELÄINEN M J, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SØRENSEN C K, HOVMØLLER M S, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A B, SCHULMAN A H, FAHIMA T . Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications, 2018,9(1):3735.
doi: 10.1038/s41467-018-06138-9 pmid: 30282993 |
[29] | YANG Y H, CHEN F J, HAN D J, RUAN R W, LI B Q, YU Y, BI C W . Evaluation of resistance of current wheat cultivars and breeding lines to stripe rust from three Gorges reservoir area. Journal of General Plant Pathology, 2017,83(5):283-290. |
[30] |
李北, 徐琪, 杨宇衡, 王琪琳, 曾庆东, 吴建辉, 穆京妹, 黄丽丽, 康振生, 韩德俊 . 重庆麦区小麦品种(系)抗条锈性评价与基因分析. 中国农业科学, 2017,50(3):413-425.
doi: 10.3864/j.issn.0578-1752.2017.03.001 |
LI B, XU Q, YANG Y H, WANG Q L, ZENG Q D, WU J H, MU J M, HUANG L L, KANG Z S, HAN D J . Stripe rust resistance and genes in Chongqing wheat cultivars and lines. Scientia Agricultura Sinica, 2017,50(3):413-425. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.03.001 |
|
[31] |
CHOQUER M, BOCCARA M, VIDAL-CROS A . A semi- quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Current Genetics, 2003,43(4):303-309.
doi: 10.1007/s00294-003-0397-0 pmid: 12740713 |
[32] | XU Q, TANG C L, WANG L K, ZHAO C C, KANG Z S, WANG X J . Haustoria-arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 2019, doi: 10.1111/mpp.12882. |
[33] | 曹丽华, 康振生, 赵杰, 黄丽丽, 魏国荣 . 中国小麦条锈菌4个流行小种的RAPD标记. 西北农林科技大学学报(自然科学版), 2004,32(7):37-40. |
CAO L H, KANG Z S, ZHAO J, HUANG L L, WEI G R . RAPD markers of Puccinia striiformis f. sp. tritici in China. Journal of Northwest Agriculture and Forestry University (Nature Science Edition), 2004,32(7):37-40. (in Chinese) | |
[34] | 曹丽华, 康振生, 郑文明, 黄丽丽, 李振岐 . 小麦条锈菌条中31号生理小种SCAR检测标记的建立. 菌物学报, 2005,24(1):98-103. |
CAO L H, KANG Z S, ZHENG W M, HUANG L L, LI Z Q . The development of SCAR detection marker of Puccinia striiformis f. sp. tritici race CYR31 in China. Mycosystema, 2005,24(1):98-103. (in Chinese) | |
[35] |
WANG B T, HU X P, LI Q, HAO B J, ZHANG B, LI G B, KANG Z S . Development of race-specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Disease, 2010,94(2):221-228.
doi: 10.1094/PDIS-94-2-0221 pmid: 30754258 |
[36] | 郭婧, 李敏州, 夏滔, 李高宝, 申雪雪, 樊玉, 李强, 王保通 . 小麦条锈菌新菌系V26的SCAR 检测标记. 植物病理学报, 2014,44(5):449-454. |
GUO J, LI M Z, XIA T, LI G B, SHEN X X, FAN Y, LI Q, WANG B T . Race-specific SCAR marker for new strain V26 of Puccinia strifformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2014,44(5):449-454. (in Chinese) | |
[37] |
MIEDANER T, SCHULTHESS A W, GOWDA M, REIF J C, LONGIN C F H . High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid-parent values in wheat. Theoretical and Applied Genetics, 2017,130(2):461-470.
doi: 10.1007/s00122-016-2826-8 pmid: 27866226 |
[38] | 吴春太, 徐如宏, 张庆勤 . 高产抗病优质互补的品种间杂交研究. 西南农业学报, 2010,23(6):1891-1894. |
WU C T, XU R H, ZHANG Q Q . Study of hybridization between varieties with exchangeable supply in high-yield disease resistance and good quality. Southwest China Journal of Agricultural Sciences, 2010,23(6):1891-1894. (in Chinese) | |
[39] | 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权 . 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017,47(5):681-687. |
LIU B, LIU T G, ZHANG Z Y, JIA Q Z, WANG B T, GAO L, PENG Y L, JIN S L, CHEN W Q . Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2017,47(5):681-687. (in Chinese) | |
[40] | 姚强, 王洁荣, 孟岩, 詹刚明, 黄丽丽, 康振生 . 中国小麦条锈病菌CYR32和CYR33的毒性及基因型多样性. 植物保护学报, 2018,45(1):46-52. |
YAO Q, WANG J R, MENG Y, ZHAN G M, HUANG L L, KANG Z S . Virulence and genotypic diversity of wheat stripe rust races CYR32 and CYR33 in China. Journal of Plant Protection, 2018,45(1):46-52. (in Chinese) | |
[41] | 黄苗苗, 孙振宇, 曹世勤, 贾秋珍, 刘太国, 陈万权 . 223份小麦农家品种田间抗条锈病性评价及抗病基因分子检测. 植物保护学报, 2018,45(1):90-100. |
HUANG M M, SUN Z Y, CAO S Q, JIA Q Z, LIU T G, CHEN W Q . Evaluation of the resistance of 223 wheat landraces in Gansu Province to stripe rust and molecular detection. Journal of Plant Protection, 2018,45(1):90-100. (in Chinese) | |
[42] | REHMAN A U, SAJJAD M, KHAN S H, AHMAD N . Prospects of wheat breeding for durable resistance against brown, yellow and black rust fungi. International Journal of Agriculture and Biology, 2013,15(6):1209-1220. |
[43] |
LIU G Z, ZHAO Y S, GOWDA M, LONGIN C F, REIF J C, METTE M F . Predicting hybrid performance for quality traits through genomic-assisted approaches in Central European wheat. PLoS ONE, 2016,11(7):e0158635.
doi: 10.1371/journal.pone.0158635 pmid: 27383841 |
[44] | STEINER B, BUERSTMAYR M, MICHEL S, SCHWEIGER W, LEMMENS M, BUERSTMAYR H . Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Tropical Plant Pathology, 2017,42(3):165-174. |
[45] |
AGOSTINELLI A M, CLARK A J, BROWN-GUEDIRA G, VAN SANFORD D A . Optimizing phenotypic and genotypic selection for Fusarium head blight resistance in wheat. Euphytica, 2012,186(1):115-126.
doi: 10.1534/g3.116.032532 pmid: 27440921 |
[46] |
SALAMEH A, BUERSTMAYR M, STEINER B, NEUMAYER A, LEMMENS M, BUERSTMAYR H . Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Molecular Breeding, 2010,28(4):485-494.
doi: 10.1007/s11032-010-9498-x |
[47] |
KIM M S, OUK S, JUNG K H, SONG Y, YANG J Y, CHO Y G . Breeding hybrid rice with genes resistant to diseases and insects using marker-assisted selection and evaluation of biological assay. Plant Breeding and Biotechnology, 2019,7(3):272-286.
doi: 10.9787/PBB.2019.7.3.272 |
[48] | SINGH R P, HUERTA-ESPINO J, WILLIAM H M . Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 2005,29(2):121-127. |
[49] |
SINGH R P, SINGH P K, RUTKOSKI J, HODSON D P, HE X, JORGENSEN L N, HOVMOLLER M S, HUERTA-ESPINO J . Disease impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology, 2016,54:303-322.
doi: 10.1146/annurev-phyto-080615-095835 pmid: 27296137 |
[50] | 李峰奇, 韩德俊, 魏国荣, 曾庆东, 黄丽丽, 康振生 . 黄淮麦区126 个小麦品种(系)抗条锈病基因的分子检测. 中国农业科学, 2008,41(10):3060-3069. |
LI F Q, HAN D J, WEI G R, ZENG Q D, HUANG L L, KANG Z S . Molecular detection of stripe rust resistant genes in 126 winter wheat varieties from the Huanghuai wheat region. Scientia Agricultura Sinica, 2008,41(10):3060-3069. (in Chinese) | |
[51] | 任勇, 李生荣, 周强, 杜小英, 何员江, 魏育明, 郑有良 . 134份四川小麦品种(系)的条锈病抗性评价. 麦类作物学报, 2014,34(6):847-853. |
REN Y, LI S R, ZHOU Q, DU X Y, HE Y J, WEI Y M, ZHENG Y L . Evaluation of resistance to stripe rust of 134 wheat cultivars and lines from Sichuan Province. Journal of Triticeae Crops, 2014,34(6):847- 853. (in Chinese) | |
[52] | SAVADI S, PRASAD P, KASHYAP P L, BHARDWAJ S C . Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathology, 2018,67(4):771-791. |
[53] |
WANG Y P, CHENG X, SHAN Q W, ZHANG Y, LIU J X, CAO C X, QIU J L . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014,32(9):947-951.
doi: 10.1038/nbt.2969 pmid: 25038773 |
[54] |
ARAKI M, ISHII T . Towards social acceptance of plant breeding by genome editing. Trends in Plant Science, 2015,20(3):145-149.
doi: 10.1016/j.tplants.2015.01.010 pmid: 25726138 |
[1] | 胡朝月, 王凤涛, 郎晓威, 冯晶, 李俊凯, 蔺瑞明, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析[J]. 中国农业科学, 2022, 55(3): 491-502. |
[2] | 方桃红,张敏,马春花,郑晓晨,谭文静,田冉,燕琼,周新力,李鑫,杨随庄,黄可兵,王建锋,韩德俊,王晓杰,康振生. 小麦抗条锈基因Yr52在品种改良中的应用[J]. 中国农业科学, 2022, 55(11): 2077-2091. |
[3] | 习玲, 王昱琦, 杨修, 朱微, 陈国跃, 王益, 覃鹏, 周永红, 康厚扬. 243份云南普通小麦地方品种抗条锈病鉴定及分子标记检测[J]. 中国农业科学, 2021, 54(4): 684-695. |
[4] | 李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. |
[5] | 徐默然,蔺瑞明,王凤涛,冯晶,徐世昌. 103份小麦品种(系)抗条锈性和遗传多样性评价及基因检测[J]. 中国农业科学, 2020, 53(4): 748-760. |
[6] | 管方念,龙黎,姚方杰,王昱琦,江千涛,康厚扬,蒋云峰,李伟,邓梅,李豪,陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测[J]. 中国农业科学, 2020, 53(18): 3629-3637. |
[7] | 黄苗苗,陈万权,曹世勤,孙振宇,贾秋珍,高利,刘博,刘太国. 甘肃、青海地区小麦条锈菌监测及群体遗传多样性分析[J]. 中国农业科学, 2020, 53(18): 3693-3706. |
[8] | 姬万丽,朱红菊,路绪强,赵胜杰,何楠,耿丽华,刘文革. 四倍体西瓜抗枯萎病菌生理小种1的机理[J]. 中国农业科学, 2018, 51(19): 3750-3765. |
[9] | 李北,徐琪,杨宇衡,王琪琳,曾庆东,吴建辉,穆京妹,黄丽丽,康振生,韩德俊. 重庆麦区小麦品种(系)抗条锈性评价与基因分析[J]. 中国农业科学, 2017, 50(3): 413-425. |
[10] | 黄亮,刘太国,肖星芷,屈春艳,刘博,高利,罗培高,陈万权. 中国79个小麦品种(系)抗条锈病评价及基因分子检测[J]. 中国农业科学, 2017, 50(16): 3122-3134. |
[11] | 李娜,王吉明,尚建立,李楠楠,徐永阳,马双武. 西瓜枯萎病生理小种1抗性QTL精细定位与InDel标记开发[J]. 中国农业科学, 2017, 50(1): 131-141. |
[12] | 李志江,贾冠清,李祥羽,李易初,马金丰,智 慧,汤 沙,张 硕,柴 杨,李艳东,刁现民. 谷瘟病菌生理小种鉴别及谷子标准品种体系的构建[J]. 中国农业科学, 2016, 49(17): 3308-3318. |
[13] | 周新力,詹刚明,黄丽丽,韩德俊,康振生. 80份国外春小麦种质资源抗条锈性评价[J]. 中国农业科学, 2015, 48(8): 1518-1526. |
[14] | 王吐虹,郭青云,蔺瑞明,姚强,冯晶,王凤涛,陈万权,徐世昌. 中国40个小麦农家品种和甘肃南部40个生产品种抗条锈病基因推导[J]. 中国农业科学, 2015, 48(19): 3834-3847. |
[15] | 康振生,王晓杰,赵杰,汤春蕾,黄丽丽. 小麦条锈菌致病性及其变异研究进展[J]. 中国农业科学, 2015, 48(17): 3439-3453. |
|