中国农业科学 ›› 2020, Vol. 53 ›› Issue (9): 1730-1742.doi: 10.3864/j.issn.0578-1752.2020.09.004
• 专题:限制性两阶段多位点全基因组关联分析法的应用 • 上一篇 下一篇
潘丽媛1,贺建波1(),赵晋铭1,王吴彬1,邢光南1,喻德跃1,张小燕3,李春燕3,陈受宜2,盖钧镒1(
)
收稿日期:
2019-08-24
接受日期:
2020-01-02
出版日期:
2020-05-01
发布日期:
2020-05-13
通讯作者:
贺建波,盖钧镒
作者简介:
潘丽媛,E-mail:panly89@126.com。
基金资助:
LiYuan PAN1,JianBo HE1(),JinMing ZHAO1,WuBin WANG1,GuangNan XING1,DeYue YU1,XiaoYan ZHANG3,ChunYan LI3,ShouYi CHEN2,JunYi GAI1(
)
Received:
2019-08-24
Accepted:
2020-01-02
Online:
2020-05-01
Published:
2020-05-13
Contact:
JianBo HE,JunYi GAI
摘要:
【目的】为全面解析大豆重组自交系群体中调控百粒重性状的QTL体系,将限制性两阶段多位点全基因组关联分析方法(RTM-GWAS)和不同定位方法进行比较、优选,为后续候选基因体系探索及分子标记辅助育种设计提供依据。【方法】利用以科丰1号和南农1138-2为亲本衍生的重组自交系群体NJRIKY的427个家系,通过由全基因组39 353个SNP构建的3 683个SNPLDB标记及3个环境下的百粒重表型数据,选用复合区间作图法(CIM)、基于混合线性模型的全基因组关联分析方法(MLM-GWAS)和RTM-GWAS3种方法检测百粒重QTL,通过QTL数目和总的表型变异解释率比较检测功效,挑选最佳定位结果进行NJRIKY群体中的百粒重遗传体系解析。通过候选基因体系的功能注释,挖掘调控大豆百粒重的生物学途径。【结果】科丰1号与南农1138-2的百粒重差异较大,多环境平均数分别为9.0和17.9 g,遗传变异系数为12.4%,遗传率为85.4%,适用于百粒重性状的遗传解析。比较3种方法定位结果表明RTM-GWAS方法表现最佳,检测QTL数目最多(57个),解释表型变异最多(70.78%)。而CIM仅检测到14个QTL,解释了56.47%的表型变异,MLM-GWAS仅定位到6个QTL,解释了18.47%的表型变异。RTM-GWAS共检测到57个QTL,分布在19条染色体上,表型变异解释率为0.03%—7.57%,其中41个QTL覆盖了已报道的来自30个双亲群体的81个百粒重QTL,16个QTL为新发现位点,包含一个表型变异解释率大于3%的大效应位点Sw-09-2。此外,检测的57个QTL中有20个位点与环境存在互作效应。这57个QTL构成了影响NJRIKY群体百粒重性状的遗传体系。通过SNPLDB标记与预测基因内的SNP进行χ2检验,共筛选到36个候选基因,其中4个候选基因来自大效应QTL,剩余32个候选基因来自小效应QTL。通过GO注释发现这些候选基因功能注释丰富,其中13个候选基因与籽粒发育直接相关,剩余的候选基因功能丰富,包含转运、转录调节因子等,表明不同生物学途径的基因共同调控NJRIKY群体中百粒重性状的表达。【结论】3种定位方法中,高效的RTM-GWAS方法检测到较为全面的NJRIKY群体的百粒重QTL,更适用于双亲RIL群体的QTL定位。不同功能的候选基因共同调控了复杂的百粒重性状的表达。
潘丽媛,贺建波,赵晋铭,王吴彬,邢光南,喻德跃,张小燕,李春燕,陈受宜,盖钧镒. RTM-GWAS方法应用于大豆RIL群体百粒重QTL检测的功效[J]. 中国农业科学, 2020, 53(9): 1730-1742.
LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean[J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
表1
多环境下NJRIKY群体百粒重的次数分布和描述统计"
环境 Environment | 亲本 Parent (g) | 重组自交系群体 RIL | |||||
---|---|---|---|---|---|---|---|
科丰1号 Kefeng-1 | 南农1138-2 NN1138-2 | 平均值 Mean | 最小值 Min. | 最大值 Max. | 遗传变异 系数GCV(%) | 遗传率 h2(%) | |
12JP | 8.5 | 15.7 | 11.4 | 7.5 | 16.0 | 13.5 | 93.3 |
13JP | 8.8 | 14.9 | 11.6 | 7.6 | 20.6 | 15.5 | 92.5 |
13SF | 9.8 | 23.2 | 13.9 | 9.2 | 19.5 | 15.1 | 93.9 |
平均 Mean | 9.0 | 17.9 | 12.3 | 8.6 | 17.1 | 12.4 | 85.4 |
表2
NJRIKY群体多环境联合方差分析结果"
变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|
环境 Environment | 2 | 2308.47 | 101.66 | <0.0001 |
重复(环境)Replication(Environment) | 6 | 20.08 | 12.59 | <0.0001 |
区组(环境×重复)Block(Environment×Replication) | 180 | 1.34 | 1.78 | <0.0001 |
家系 Line | 426 | 23.66 | 6.81 | <0.0001 |
家系×环境 Line×Environment | 851 | 3.50 | 4.67 | <0.0001 |
误差 Error | 2245 | 0.75 | ||
合计 Total | 3710 |
表3
NJRIKY群体中利用不同定位方法检测到的百粒重位点结果概要"
定位方法 Method | 检测的QTL Detected QTLs | 表型变异解释率 PVE (%) | 已报道的QTL Reported QTLs |
---|---|---|---|
RTM-GWAS | |||
Mapped QTL | 57(19) | 70.78 | 41(84) |
LC major QTL | 5(5) | 23.30 | |
SC major QTL | 52(19) | 47.48 | |
QTL×Env. | 20(13) | 4.20 | |
Unmapped QTL | 14.52 | ||
CIM | |||
Mapped QTL | 14(8) | 56.47 | 13(16) |
MLM-GWAS | |||
Mapped QTL | 6(3) | 18.47 | 6(18) |
表4
NJRIKY群体中在CIM和MLM-GWAS方法下的百粒重QTL"
标记Marker | LOD/-lgP | 表型变异解释率PVE (%) | SoyBase QTL |
---|---|---|---|
CIM | |||
Gm04_BLOCK_15191938_15271503 | 3.67 | 2.94 | 5-2 |
Gm04_BLOCK_36700318_36900222 | 3.08 | 2.55 | 36-15 |
Gm04_BLOCK_39069193_39185415 | 2.93 | 2.37 | 36-15 |
Gm04_BLOCK_38868989_39068925 | 2.45 | 2.01 | 36-15 |
Gm04_BLOCK_29674388_29831299 | 1.96 | 1.59 | 20-2 |
Gm08_BLOCK_19121233_19314940 | 4.11 | 3.41 | 7-1,34-1,34-13,36-1,37-8 |
Gm09_BLOCK_35812609_35851884 | 6.81 | 5.76 | 40-4 |
Gm09_36859571 | 6.97 | 5.86 | 40-4 |
Gm10_BLOCK_49435374_49524464 | 4.44 | 3.69 | |
Gm11_3955010 | 7.78 | 6.91 | 37-9 |
Gm11_BLOCK_5228756_5269867 | 12.39 | 11.03 | 21-1 |
Gm14_BLOCK_29877119_30044908 | 2.36 | 1.90 | 23-1,13-2 |
Gm15_BLOCK_29781764_29980832 | 3.69 | 2.95 | 6-1,36-12 |
Gm18_54211355 | 4.12 | 3.50 | 3-3 |
总计Total | 56.47 | ||
MLM-GWAS | |||
Gm04_BLOCK_23431433_23626782 | 3.72 | 3.36 | 20-2,5-2,36-15,45-3 |
Gm11_BLOCK_4611160_4662697 | 3.27 | 2.88 | 37-9 |
Gm11_BLOCK_5228756_5269867 | 4.03 | 3.69 | 37-9,21-1,22-2,49-2 |
Gm11_20972740 | 3.12 | 2.73 | 21-1,20-4,20-3,11-1,32-1,4-1,10-3,36-11 |
Gm18_BLOCK_16884478_16885174 | 3.40 | 3.03 | 2-5 |
Gm18_45987500 | 3.17 | 2.78 | 27-1 |
总计Total | 18.47 |
表5
NJRIKY群体中与百粒重性状关联的QTL位点"
QTL | 标记 Marker | -lgP | 贡献率 R2 (%) | QTL | 标记 Marker | -lgP | 贡献率 R2 (%) | |
---|---|---|---|---|---|---|---|---|
Sw-11-2 | Gm11_BLOCK_5228756_5269867 | 56.22 | 7.57* | Sw-05-1 | Gm05_BLOCK_28628661_28825701 | 7.42 | 0.82* | |
Sw-09-2 | Gm09_BLOCK_34358756_34538440 | 39.72 | 5.12* | Sw-04-1 | Gm04_BLOCK_10110270_10257050 | 6.78 | 0.74 | |
Sw-04-7 | Gm04_BLOCK_39928569_39957258 | 29.72 | 3.72* | Sw-06-1 | Gm06_BLOCK_5723355_5918489 | 6.58 | 0.71 | |
Sw-08-1 | Gm08_16468204 | 28.90 | 3.61 | Sw-06-3 | Gm06_30304358 | 6.52 | 0.71* | |
Sw-10-1 | Gm10_BLOCK_41285429_41285653 | 26.41 | 3.27 | Sw-15-2 | Gm15_25471398 | 6.31 | 0.68 | |
Sw-18-5 | Gm18_59805347 | 24.23 | 2.98* | Sw-16-5 | Gm16_BLOCK_23266112_23462965 | 5.98 | 0.64 | |
Sw-13-1 | Gm13_31358574 | 23.33 | 2.86* | Sw-02-1 | Gm02_BLOCK_2190737_2384686 | 5.72 | 0.61* | |
Sw-17-1 | Gm17_BLOCK_2938402_3123352 | 20.28 | 2.45 | Sw-04-4 | Gm04_BLOCK_19626939_19826251 | 5.51 | 0.59 | |
Sw-04-9 | Gm04_BLOCK_40868266_40917625 | 19.75 | 2.38 | Sw-03-2 | Gm03_BLOCK_41020781_41042956 | 5.12 | 0.54 | |
Sw-16-1 | Gm16_BLOCK_12959169_13153966 | 16.33 | 1.94 | Sw-03-1 | Gm03_3970385 | 4.52 | 0.47 | |
Sw-01-2 | Gm01_BLOCK_55629182_55799927 | 15.79 | 1.87* | Sw-15-3 | Gm15_36895087 | 4.48 | 0.46 | |
Sw-18-1 | Gm18_BLOCK_1922631_2035120 | 15.72 | 1.86* | Sw-06-2 | Gm06_20892550 | 4.34 | 0.45* | |
Sw-14-4 | Gm14_BLOCK_44088379_44288183 | 15.18 | 1.79* | Sw-04-2 | Gm04_BLOCK_10815779_11015107 | 3.97 | 0.40 | |
Sw-14-1 | Gm14_1033115 | 14.10 | 1.65 | Sw-10-3 | Gm10_BLOCK_41542940_41691982 | 3.68 | 0.37 | |
Sw-07-1 | Gm07_BLOCK_1944869_1966911 | 12.09 | 1.40 | Sw-01-1 | Gm01_BLOCK_12639088_12838656 | 3.65 | 0.36 | |
Sw-09-1 | Gm09_BLOCK_264001_463636 | 11.95 | 1.38* | Sw-12-2 | Gm12_BLOCK_37972975_37975786 | 3.46 | 0.34* | |
Sw-15-1 | Gm15_BLOCK_9079223_9250661 | 11.21 | 1.29* | Sw-14-2 | Gm14_BLOCK_13649138_13846641 | 3.19 | 0.31 | |
Sw-04-8 | Gm04_BLOCK_40184350_40334324 | 10.84 | 1.24 | Sw-14-3 | Gm14_BLOCK_42062012_42261888 | 2.98 | 0.29 | |
Sw-18-2 | Gm18_36907653 | 10.77 | 1.23 | Sw-04-11 | Gm04_BLOCK_47626591_47646641 | 2.94 | 0.28 | |
Sw-10-2 | Gm10_41392627 | 10.09 | 1.15 | Sw-16-2 | Gm16_15575581 | 2.92 | 0.28 | |
Sw-08-2 | Gm08_BLOCK_19121233_19314940 | 9.71 | 1.10 | Sw-04-10 | Gm04_41805915 | 2.65 | 0.25 | |
Sw-09-3 | Gm09_BLOCK_39036252_39210642 | 9.27 | 1.04 | Sw-16-4 | Gm16_BLOCK_21928405_22126811 | 2.54 | 0.24 | |
Sw-11-1 | Gm11_BLOCK_767896_842085 | 8.80 | 0.99 | Sw-04-6 | Gm04_BLOCK_26906733_27091677 | 2.54 | 0.24* | |
Sw-12-1 | Gm12_BLOCK_35239969_35240158 | 8.77 | 0.98 | Sw-18-4 | Gm18_56862453 | 2.13 | 0.19 | |
Sw-17-2 | Gm17_BLOCK_7387475_7572446 | 8.11 | 0.90* | Sw-04-3 | Gm04_BLOCK_17249185_17373282 | 2.03 | 0.18 | |
Sw-16-3 | Gm16_BLOCK_17551378_17602014 | 8.03 | 0.89 | Sw-05-2 | Gm05_30058805 | 1.83 | 0.16* | |
Sw-18-3 | Gm18_BLOCK_56236139_56414021 | 8.00 | 0.89 | Sw-12-3 | Gm12_BLOCK_38208501_38296133 | 1.61 | 0.13* | |
Sw-02-2 | Gm02_BLOCK_48637411_48823121 | 7.59 | 0.84 | Sw-20-1 | Gm20_236372 | 1.52 | 0.13 | |
Sw-04-5 | Gm04_BLOCK_23431433_23626782 | 7.59 | 0.84* | 共计Total | 57 | 70.78 |
表6
RTM-GWAS方法中检测到的与百粒重相关的候选基因体系"
QTL | 解释率 R2 (%) | 候选基因 Candidate gene | SNP数目 No. of SNPs | GO注释 GO description |
---|---|---|---|---|
Sw-01-2 | 1.87 | Glyma01g45220 | 6 | 胚胎发育Embryo Development |
Sw-02-1 | 0.61 | Glyma02g02860 | 1 | PSII相关的光收集复合物II过程PSII associated light-harvesting complex II process |
Sw-02-2 | 0.84 | Glyma02g43960 | 2 | 种子休眠时胚胎发育终止Embryo development ending in seed dormancy |
Sw-03-1 | 0.47 | Glyma03g04020 | 1 | 多糖分解过程Polysaccharide catabolic process |
Sw-03-2 | 0.54 | Glyma03g33360 | 1 | 麦芽糖代谢过程Maltose metabolic process |
Sw-04-1 | 0.74 | Glyma04g11582 | 1 | 转运Transport |
Sw-04-7 | 3.72 | Glyma04g34070 | 1 | 响应镉离子Response to cadmium- ion |
Sw-04-9 | 2.38 | Glyma04g34660 | 1 | 脂肪酸代谢过程Fatty acid catabolic process |
Sw-04-10 | 0.25 | Glyma04g35511 | 1 | 转录的调节,依赖DNA Regulation of transcription, DNA-dependent |
Sw-04-11 | 0.28 | Glyma04g41810 | 2 | 蛋白质糖基化Protein glycosylation |
Sw-05-1 | 0.82 | Glyma05g23100 | 1 | |
Sw-06-1 | 0.71 | Glyma06g07880 | 2 | 种子休眠时胚胎发育终止Embryo development ending in seed dormancy |
Sw-07-1 | 1.40 | Glyma07g02940 | 3 | ATP分解过程ATP catabolic process |
Sw-08-1 | 3.61 | Glyma08g21620 | 3 | 分生组织生长调节Regulation of meristem growth |
Sw-08-2 | 1.10 | Glyma08g24950 | 1 | 细胞生长Cell growth |
Sw-09-1 | 1.38 | Glyma09g00430 | 4 | 响应脱落酸Response to abscisic acid stimulus |
Sw-09-3 | 1.04 | Glyma09g32540 | 2 | 毒素分解过程Toxin catabolic process |
Sw-10-1, | 3.27 | Glyma10g32920 | 2 | 种子发育Seed development |
Sw-10-2 | 1.15 | 2 | ||
Sw-10-3 | 0.37 | Glyma10g33160 | 1 | 花器官的形成Floral organ formation |
Sw-11-1 | 0.99 | Glyma11g01405 | 4 | 鸟苷四磷酸代谢过程Guanosine tetraphosphate metabolic process |
Sw-11-2 | 7.57 | Glyma11g07430 | 1 | 葡糖醛酸木聚糖代谢过程Glucuronoxylan metabolic process |
Sw-12-1 | 0.98 | Glyma12g31670 | 2 | 细胞过程规则Abaxial cell fate specification |
Sw-12-3 | 0.13 | Glyma12g35020 | 4 | 转录正调控Positive regulation of transcription |
Sw-13-1 | 2.86 | Glyma13g28260 | 1 | |
Sw-14-1 | 1.65 | Glyma14g01790 | 1 | 多糖生物合成过程Polysaccharide biosynthetic process |
Sw-14-3 | 0.29 | Glyma14g33820 | 1 | 花发育调节作用Regulation of flower development |
Sw-14-4 | 1.79 | Glyma14g35260 | 1 | 核转录mRNA分解代谢过程Nuclear-transcribed mRNA catabolic process |
Sw-15-1 | 1.29 | Glyma15g12410 | 4 | 蛋白质糖基化Protein glycosylation |
Sw-16-5 | 0.64 | Glyma16g20730 | 1 | 过渡金属离子转运Transition metal ion transport |
Sw-17-1 | 2.45 | Glyma17g04360 | 1 | |
Sw-17-2 | 0.90 | Glyma17g09961 | 3 | |
Sw-18-1 | 1.86 | Glyma18g02940 | 1 | 转录调控Regulation of transcription |
Sw-18-3 | 0.89 | Glyma18g46517 | 2 | |
Sw-18-4 | 0.19 | Glyma18g47240 | 1 | 表皮细胞分裂调节Regulation of epidermal cell division |
Sw-18-5 | 2.98 | Glyma18g50760 | 3 | 多糖生物合成过程Polysaccharide biosynthetic process |
Sw-20-1 | 0.13 | Glyma20g00565 | 4 | |
共计Total | 54.12 | 36 |
[1] |
SMITH T J, CAMPER H M . Effect of seed size on soybean performance. Agronomy Journal, 1970,67(5):681-684.
doi: 10.1002/(SICI)1097-0215(19960904)67:5&lt;681::AID-IJC15&gt;3.0.CO;2-8 pmid: 8782658 |
[2] | BURRIS J S, EDJE O T, WAHAB A H . Effects of seed size on seedling performance in soybeans: II. seedling growth and photosynthesis and field performance1. Crop Science, 1973,13(2):207. |
[3] |
ZENG Z . Precision mapping of quantitative trait loci. Genetics, 1994,136(4):1457-1468.
pmid: 8013918 |
[4] |
FUJII K, SAYAMA T, TAKAGI K, TAKAGI K, KOSUGE K, OKANO K, KAGA A, ISHINOTO M . Identification and dissection of single seed weight QTLs by analysis of seed yield components in soybean. Breeding Science, 2018,68(2):177-187.
doi: 10.1270/jsbbs.17098 pmid: 29875601 |
[5] |
ZHANG Y, LI W, LIN Y, ZHANG L, WANG C, XU R . Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing. BMC Genomics, 2018,19(1):641.
doi: 10.1186/s12864-018-5035-9 pmid: 30157757 |
[6] |
ZHOU Z, JIANG Y, WANG Z, GOU Z, LYU J, LI W, YU Y, SHU L, ZHAO Y, MA Y, FANG C, SHEN Y, LIU T, LI C, LI Q, WU M, WANG M, WU Y, DONG Y, WAN W, WANG X, DING Z, GAO Y, XIANG H, ZHU B, LEE S H, WANG W, TIAN Z . Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015,33(4):408-414.
doi: 10.1038/nbt.3096 pmid: 25643055 |
[7] | ZHANG H, HAO D, SITOE H M, YIN Z, HU Z, ZHANG G, YU D, SINGH R . Genetic dissection of the relationship between plant architecture and yield component traits in soybean (Glycine max) by association analysis across multiple environments. Plant Breeding, 2015,134(5):564-572. |
[8] |
CONTRERAS-SOTO R I, MORA F, DE OLIVEIRA M A, HIGASHI, W, SCAPIM C A, SCHUSTER I A . Genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis. PLoS ONE, 2017,12(2):e0171105.
doi: 10.1371/journal.pone.0171105 pmid: 28152092 |
[9] |
HU Z, ZHANG D, ZHANG G, KAN G, HONG D, YU D . Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breeding Science, 2014,63(5):441-449.
doi: 10.1270/jsbbs.63.441 pmid: 24757383 |
[10] |
ZHANG J, SONG Q, CREGAN P B, JIANG G . Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theoretical and Applied Genetics, 2016,129(1):117-130.
doi: 10.1007/s00122-015-2614-x pmid: 26518570 |
[11] |
SONAH H, O'DONOUGHUE L, COBER E, RAJCAN I, BELZILE F . Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnology Journal, 2015,13(2):211-221.
doi: 10.1111/pbi.12249 pmid: 25213593 |
[12] |
YAN L, HOFMANN N, LI S, FERREIRA M E, SONG B, JIANG G, REN S, QUIGLEY C, FICKUS E, GREGAN P, SONG Q . Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. BMC Genomics, 2017,18(1):529.
doi: 10.1186/s12864-017-3922-0 pmid: 28701220 |
[13] |
WANG J, CHU S, ZHANG H, ZHU Y, CHENG HAO, YU D . Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Scientific Reports, 2016,6:20728.
doi: 10.1038/srep20728 pmid: 26856884 |
[14] |
COPLEY T R, DUCEPPE M O, O'DONOUGHUE L S . Identification of novel loci associated with maturity and yield traits in early maturity soybean plant introduction lines. BMC Genomics, 2018,19(1):167.
doi: 10.1186/s12864-018-4558-4 pmid: 29490606 |
[15] |
JING Y, ZHAO X, WANG J, TENG W, QIU L, HAN Y, LI W . Identification of the genomic region underlying seed weight per plant in soybean (Glycine max L. Merr.) via high-throughput single- nucleotide polymorphisms and a genome-wide association study. Frontiers in Plant Science, 2018,9:1392.
doi: 10.3389/fpls.2018.01392 pmid: 30369935 |
[16] |
HE J, MENG S, ZHAO T, XING G, YANG S, LI Y, GUANG R, LU J, WANG Y, XIA Q, YANG B, GAI J . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017,130(11):2327-2343.
doi: 10.1007/s00122-017-2962-9 pmid: 28828506 |
[17] |
LI S, CAO Y, HE J, ZHAO T, GAI J . Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theoretical and Applied Genetics, 2017,130(11):2297-2314.
doi: 10.1007/s00122-017-2960-y pmid: 28799029 |
[18] |
ZHANG Y, HE J, WANG Y, XING G, ZHAO J, LI Y, YANG S, PALMER R G, ZHAO T, GAI J . Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Journal of Experimental Botany, 2015,66(20):6311-6325.
doi: 10.1093/jxb/erv342 pmid: 26163701 |
[19] |
MENG S, HE J, ZHAO T, XING G, LI Y, YANG S, LU J, WANG Y, GAI J . Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theoretical and Applied Genetics, 2016,129(8):1557-1576.
doi: 10.1007/s00122-016-2724-0 pmid: 27189002 |
[20] |
ZHANG Y, HE J, WANG H, WANG H, MENG S, XING G, LI Y, YANG S, ZHAO J, ZHAO T, GAI J . Detecting the QTL-allele system of seed oil traits using multi-locus genome-wide association analysis for population characterization and optimal cross prediction in soybean. Frontiers in Plant Science, 2018,9:1793.
doi: 10.3389/fpls.2018.01793 pmid: 30568668 |
[21] | ZHANG Y, HE J, MENG S, LIU M, XING G, LI Y, YANG S, YANG J, ZHAO T, GAI J . Identifying QTL-allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions. Euphytica, 2018,214(9), 157. |
[22] |
KHAN M A, TONG F, WANG W, HE J, ZHAO T, GAI J . Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Planta, 2018,248(4):947-962.
doi: 10.1007/s00425-018-2952-4 pmid: 29980855 |
[23] |
MACKAY I, POWELL W . Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007,12(2):57-63.
doi: 10.1016/j.tplants.2006.12.001 pmid: 17224302 |
[24] |
MALOSETTI M, VAN EEUWIJK F A, BOER M P, CASAS A M, ELIA M, MORALEJO M, BHAT P R, RAMSAY L, MOLINA CONO J L . Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theoretical and Applied Genetics, 2011,122(8):1605-1616.
doi: 10.1007/s00122-011-1558-z pmid: 21373796 |
[25] |
PAN L, HE J, ZHAO T, XING G, WANG Y, YU D, CHEN S, GAI J . Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theoretical and Applied Genetics, 2018,131(12):2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759 |
[26] |
RIYAN C, LIM J E, SAMOCHA K E, SOKOLOFF G, ABNEY M, SKOL A D, PALMER A A . Genome-wide association studies and the problem of relatedness among advanced intercross lines and other highly recombinant populations. Genetics, 2010,185(3):1033.
doi: 10.1534/genetics.110.116863 pmid: 20439773 |
[27] | 王永军, 喻德跃, 章元明, 陈受宜, 盖钧镒 . 重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用. 作物学报, 2004,30(5):413-418. |
WANY Y J, YU D Y, ZHANG Y M, CHEN S Y, GAI J Y . Method of evaluation and adjustment of recombinant inbred line population and its application to the soybean RIL population NJRIKY. Acta Agronomica Sinica, 2004,30(5):413-418. (in Chinese) | |
[28] | 盖钧镒, 邱家驯, 赵团结 . 大豆品种南农493-1和南农1138-2与其衍生新品种的亲缘关系及其育种价值分析. 南京农业大学学报, 1997,20(1):1-8. |
GAI J Y, QIU J X, ZHAO T J . An analysis of genetic relationship of Nannong493-1 and Nannong 1138-2 with their derivative cultivars and their potential in future breeding. Journal of Nanjing Agricultural University, 1997,20(1):1-8. (in Chinese) | |
[29] |
MURRAY M G, THOMPSON W F . Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[30] |
ROBERTS A, MCMILLAN L, WANG W, PARKER J, RUSYN I, THREADGILL D . Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinformatics, 2007,23(13):401-407.
doi: 10.1093/bioinformatics/btm220 pmid: 17646323 |
[31] |
YU J M, PRESSOIR G, BRIGGS W H, BI I V, YAMASAKI M, DOEBLEY J F, MCMULLEN M D, GAUT B S, NIELSEN D M, HOLLAND J B, KRESOVICH S, BUCKLER E S . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006,38(2):203-208.
doi: 10.1038/ng1702 pmid: 16380716 |
[32] |
BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS V, BUCKER E S . TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23(19):2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[33] |
STRIMMER K . fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 2008,24(12):1461-1462.
doi: 10.1093/bioinformatics/btn209 pmid: 18441000 |
[34] | GAI J . Quantitative Inheritance//MALOY S, HUGHES K. eds. Brenner’s Encyclopedia of Genetics. 2nd ed. San Diego: Academic Press, 2013: 18-21. |
[35] |
LU X, XIONG Q, CHENG T, LI Q, LIU X, BI Y, LI W, ZHANG W, MA B, LAI Y, DU W, MAN W, CHEN S, ZHANG J . A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017,10(5):670-684.
doi: 10.1016/j.molp.2017.03.006 pmid: 28363587 |
[36] |
GAI J, WANG Y, WU X, CHEN S . A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Frontiers of Agriculture in China, 2007,1(1):1-7.
doi: 10.1007/s11703-007-0001-3 |
[37] |
ZHANG W K, WANG Y J, LUO G Z, ZHANG J, HE C, WU X, GAI J, CHEN S . QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theoretical and Applied Genetics, 2004,108(6):1131-1139.
doi: 10.1007/s00122-003-1527-2 pmid: 15067400 |
[38] |
HAN Y, LI D, ZHU D, LI H, LI X, TENG W, LI W . QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theoretical and Applied Genetics, 2012,125(4):671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120 |
[39] | CHEN Q, ZHANG Z, LIU C, XIN D, QIU H, SHAN D, SHAN C, HU G . QTL analysis of major agronomic traits in soybean. Agricultural Sciences in China, 2007,6(4):399-405. |
[40] |
WANG P, ZHAO Y, LI Z, HSU C, LIU C, FU L, HOU Y, DU Y, XIE S, ZHANG C, GAO J, CAO M, HUANG X, ZHU Y, TANG K, WANG X, TAO W, XIONG Y, ZHU J . Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell, 2018,69(1):100-112.
doi: 10.1016/j.molcel.2017.12.002 pmid: 29290610 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[4] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[5] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[8] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[9] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[10] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[11] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[12] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[13] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[14] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[15] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
|