中国农业科学 ›› 2022, Vol. 55 ›› Issue (5): 977-990.doi: 10.3864/j.issn.0578-1752.2022.05.011
王慧玲1(),闫爱玲2,孙磊3,张国军1,王晓玥1,任建成1,徐海英1()
收稿日期:
2021-05-17
接受日期:
2021-07-27
出版日期:
2022-03-01
发布日期:
2022-03-08
通讯作者:
徐海英
作者简介:
王慧玲,E-mail: 基金资助:
WANG HuiLing1(),YAN AiLing2,SUN Lei3,ZHANG GuoJun1,WANG XiaoYue1,REN JianCheng1,XU HaiYing1()
Received:
2021-05-17
Accepted:
2021-07-27
Online:
2022-03-01
Published:
2022-03-08
Contact:
HaiYing XU
摘要:
【目的】通过对鲜食葡萄果实单萜合成关键基因进行eQTL定位及候选基因挖掘,深入了解单萜合成调控机制,为优良玫瑰香味葡萄新品种培育及种质改良奠定基础。【方法】以‘摩尔多瓦’ב瑞都香玉’F1代群体及亲本为供试材料,分别在转色期和成熟期采集葡萄果实样品;利用实时荧光定量qPCR技术对7个单萜合成途径基因(VvDXS1、VvDXS3、VvDXR、VvHDR、VvLiner、VvTerp和VvGermD)的表达量进行检测获得表达性状表型数据;基于区间作图法,采用MapQTL6.0软件,对单萜基因表达性状进行eQTL定位分析;将eQTL连锁标记定位到基因组区域,通过Ensembl Plants和NCBI数据库进行基因注释;利用葡萄全基因组芯片技术检测不同发育时期亲本果实样品中候选基因的表达谱。【结果】7个单萜合成基因表达量在F1代群体中呈现连续分布数量遗传特征;各个单萜基因表达之间具有显著的相关性;在转色期,7个表达性状一共定位到13个eQTL,主要位于1号、6号、14号、16号、17号、10号和12号等染色体上,表型解释率介于12.2%—23.5%。其中位于14号染色体的eQTL(qDXS1-v14、qHDR-v14-1和qTerp-v14)覆盖相同的遗传区间57.582—76.979 cM,qLiner-v10、qTerp-v10和qGermD-v10共定位到10号染色体相同的遗传区间;在成熟期,共检测到16个eQTL,主要位于1号、6号、12号、8号、13号和19号等染色体。qDXS1-m6-2、qDXR-m6-2、qLiner-m6和qGermD-m6共定位到6号染色体139.212—143.161 cM遗传区间;针对成熟期与转色期各个基因的表达量比值变化进行定位分析,共检测到18个eQTL,分别位于1号、3号、7号、10号、12号、15号和19号等染色体。定位于12号染色体的qDXS1-r12-1、qDXR-r12-1、qHDR-r12、qLiner-r12和qGermD-r12覆盖相同的遗传区间6.330—6.967 cM。对多个基因表达性状共定位的eQTL区域进行基因注释,共筛选到90个转录因子基因,表达谱及相关性分析最终确定11候选基因。其中4个候选基因(VIT_06s0009g01380、VIT_14s0006g02290、VIT_12s0028g01170和VIT_15s0046g00290)与激素信号通路调控相关,一个候选基因(VIT_12s0028g01110)编码光敏色素作用因子与光响应相关,还有一些编码Myb类、WRKY类转录因子或者未知功能蛋白基因。【结论】在两个不同的生长发育期共检测到37个与单萜合成基因表达性状连锁的eQTL,主要定位于6号、10号、12号和14号染色体。基于基因注释和表达谱分析结果,确定了包含VIT_06s0009g01380和VIT_14s0006g02290在内的11个可能的候选基因,这些候选基因与多个单萜基因表达高度相关。
王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990.
WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape[J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
表1
单萜合成相关基因相对表达之间的相关性分析"
性状Traits | eDXS1 | eDXS3 | eDXR | eHDR | eLiner | eTerp | eGermD |
---|---|---|---|---|---|---|---|
eDXS1 | 0.65** | 0.89** | 0.91** | 0.86** | 0.80** | 0.71** | |
eDXS3 | 0.34** | 0.53** | 0.55** | 0.54** | 0.49** | 0.40** | |
eDXR | 0.90** | 0.47** | 0.85** | 0.86** | 0.85** | 0.79** | |
eHDR | 0.76** | 0.41** | 0.72** | 0.80** | 0.77** | 0.75** | |
eLiner | 0.85** | 0.36** | 0.81** | 0.54** | 0.91** | 0.80** | |
eTerp | 0.85** | 0.35** | 0.79** | 0.55** | 0.94** | 0.85** | |
eGermD | 0.77** | 0.34** | 0.74** | 0.52** | 0.80** | 0.78** |
表2
中性图谱单萜合成相关基因eQTL信息"
时期 Stage | 性状 Trait | eQTL | 染色体 Chr | 遗传区间 Genetic interval (cM) | 连锁标记 Flanking markers | LOD | 贡献率 PVE (%) |
---|---|---|---|---|---|---|---|
转色期 Verasion stage | eDXS1 | qDXS1-v1 | 1 | 82.774-84.732 | Marker 2482511-2542941 | 3.40 | 17.0 |
qDXS1-v6 | 6 | 142.161-144.209 | Marker1008751-945452 | 3.34 | 15.7 | ||
qDXS1-v14 | 14 | 57.582-76.979 | Marker3121221-2890139 | 3.25 | 15.9 | ||
eDXS3 | qDXS3-v12 | 12 | 19.009-32.463 | Marker2115844-2041250 | 3.31 | 16.4 | |
qDXS3-v16 | 16 | 101.122-119.350 | Marker3956150-4116611 | 3.89 | 23.5 | ||
qDXS3-v17 | 17 | 150.480-166.103 | Marker99497-145961 | 4.32 | 23.1 | ||
eDXR | qDXR-v17 | 17 | 159.789-171.002 | Marker179340-108104 | 3.48 | 14.4 | |
eHDR | qHDR-v14-1 | 14 | 55.582-77.612 | Marker3121221-3072285 | 3.47 | 16.7 | |
qHDR-v14-2 | 14 | 118.734-126.198 | Marker3063685-2947572 | 3.27 | 15.6 | ||
eLiner | qLiner-v10 | 10 | 146.183-148.835 | Marker352188-357432 | 3.06 | 14.8 | |
eTerp | qTerp-v10 | 10 | 141.902-158.171 | Marker368243-378995 | 2.74 | 13.7 | |
qTerp-v14 | 14 | 53.582-77.612 | Marker2969612-3072285 | 2.58 | 12.2 | ||
eGermD | qGermD-v10 | 10 | 145.183-148.835 | Marker352188-357432 | 3.17 | 16.0 | |
成熟期 Mature stage | eDXS1 | qDXS1-m1 | 1 | 76.426-80.809 | Marker2437047-2596447 | 3.66 | 17.7 |
qDXS1-m6-1 | 6 | 93.373-106.403 | Marker924262-876360 | 3.55 | 17.2 | ||
qDXS1-m6-2 | 6 | 139.212-146.773 | Marker930737-877032 | 3.82 | 18.3 | ||
qDXS1-m12 | 12 | 17.659-19.009 | Marker2187251-2115844 | 3.54 | 17.1 | ||
eDXS3 | qDXS3-m3 | 3 | 175.011-175.191 | Marker831346-700177 | 3.07 | 13.9 | |
eDXR | qDXR-m1 | 1 | 78.832-81.788 | Marker2560950-2467293 | 3.88 | 18.3 | |
qDXR-m6-1 | 6 | 93.373-114.095 | Marker924262-1008711 | 3.74 | 18.7 | ||
qDXR-m6-2 | 6 | 138.212-147.119 | Marker990833-871012 | 3.68 | 17.7 | ||
qDXR-m12 | 12 | 16.435-19.009 | Marker2088221-2115844 | 3.78 | 18.2 | ||
eHDR | qHDR-m8 | 8 | 152.133-176.371 | Marker1386586-1434785 | 3.4 | 15.1 | |
qHDR-m13 | 13 | 25.115-36.319 | Marker1631867-1651434 | 3.52 | 18.6 | ||
eLiner | qLiner-m6 | 6 | 139.495-141.161 | Marker930737-930878 | 3.53 | 17.1 | |
qLiner-m12 | 12 | 6.330-6.967 | Marker2067228-2134286 | 3.57 | 17.2 | ||
eTerp | qTerp-m7 | 7 | 92.355 | Marker2374114 | 3.52 | 17.5 | |
qTerp-m19 | 19 | 158.927-163.008 | Marker3714935-r3520942 | 3.79 | 18.2 | ||
eGermD | qGermD-m6 | 6 | 139.212-143.161 | Marker930737-930878 | 3.66 | 17.7 | |
成熟期/转色期 Mature/Verasion | eDXS1 | qDXS1-r7 | 7 | 92.355-100.371 | Marker2345090-Marker2198875 | 3.72 | 15.5 |
qDXS1-r12-1 | 12 | 4.153-11.756 | Marker2118601-2076541 | 3.86 | 15.7 | ||
qDXS1-r12-2 | 12 | 13.602-19.660 | Marker2083394-2088370 | 3.66 | 14.4 | ||
eDXS3 | qDXS3-r1 | 1 | 146.688-148.053 | Marker2438419-2557770 | 3.85 | 15.3 | |
qDXS3-r3 | 3 | 180.498-180.525 | Marker751963-733688 | 3.65 | 13.6 | ||
eDXR | qDXR-r7 | 7 | 92.355 | Marker2345090-2374114 | 3.59 | 14.1 | |
qDXR-r12-1 | 12 | 6.330-6.967 | Marker2067228-2134286 | 3.54 | 13.2 | ||
qDXR-r12-2 | 12 | 13.602-18.491 | Marker2083394-2178064 | 3.5 | 12.5 | ||
eHDR | qHDR-r10 | 10 | 120.227-130.912 | Marker237117-341831 | 3.8 | 18.8 | |
qHDR-r12 | 12 | 9.490-10.127 | Marker2051100-2158802 | 3.53 | 11.0 | ||
qHDR-r15 | 15 | 103.260-123.35 | Marker1985545-1825916 | 3.75 | 14.9 | ||
eLiner | qLiner-r12 | 12 | 5.419-10.756 | Marker2067228-2076541 | 3.73 | 12.9 | |
qLiner-r19 | 19 | 159.927-160.217 | Marker3714935-3690871 | 3.58 | 12.2 | ||
eTerp | qTerp-r7 | 7 | 92.355-100.371 | Marker2345090-2198875 | 3.65 | 16.0 | |
qTerp-r19 | 19 | 158.927-163.008 | Marker3714935-3520942 | 3.86 | 14.8 | ||
eGermD | qGermD-r3 | 3 | 178.095-180.525 | Marker738834-733688 | 3.66 | 15.1 | |
qGermD-r12 | 12 | 6.330-6.967 | Marker2067228-2134286 | 3.55 | 14.6 |
表3
eQTL位点可能的候选基因"
染色体Chromosome | 基因ID Gene ID | 基因注释 Gene annotation |
---|---|---|
6 | VIT_06s0009g00880 | 轴向调控蛋白YABBY2 PREDICTED: Putative axial regulator YABBY 2 [Vitis vinifera] |
VIT_06s0004g05120 | 未知功能Myb类蛋白LOC100253567 PREDICTED: Uncharacterized protein LOC100253567 [Vitis vinifera] Myb-like | |
VIT_06s0009g01380 | 乙烯不敏感类蛋白3 PREDICTED: Protein ETHYLENE INSENSITIVE 3-like [Vitis vinifera] | |
14 | VIT_14s0006g01280 | 未知功能蛋白LOC100265568 Uncharacterized protein LOC100265568 [Vitis vinifera] |
VIT_14s0006g01620 | 转录抑制因子MYB4 PREDICTED: Transcription repressor MYB4 [Vitis vinifera] | |
VIT_14s0006g01340 | 未命名Myb类蛋白 Unnamed protein product [Vitis vinifera] Myb-like | |
VIT_14s0006g02290 | 类乙烯响应转录因子ERF034 PREDICTED: Ethylene-responsive transcription factor ERF034-like [Vitis vinifera] | |
10 | VIT_10s0116g01200 | 类WRKY 6转录因子 PREDICTED: WRKY transcription factor 6-like [Vitis vinifera] |
12 | VIT_12s0028g01110 | 类光敏色素作用因子PIF5 PREDICTED: Transcription factor PIF5-like [Vitis vinifera] |
VIT_12s0028g01170 | 类生长素响应因子6 PREDICTED: Auxin response factor 6-like [Vitis vinifera] | |
15 | VIT_15s0046g00290 | 类生长素响应因子18 PREDICTED: Auxin response factor 18-like [Vitis vinifera] |
[1] |
MATEO J J, JIMÉNEZ M. Monoterpenes in grape juice and wines. Journal of Chromatography A, 2000, 881(1/2):557-567. doi: 10.1016/s0021-9673(99)01342-4.
doi: 10.1016/s0021-9673(99)01342-4 |
[2] |
MARTIN D M, CHIANG A, LUND S T, BOHLMANN J. Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012, 236(3):919-929. doi: 10.1007/s00425-012-1704-0.
doi: 10.1007/s00425-012-1704-0 |
[3] |
DOLIGEZ A, AUDIOT E, BAUMES R, THIS P. QTLs for Muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Molecular Breeding, 2006, 18(2):109-125. doi: 10.1007/s11032-006-9016-3.
doi: 10.1007/s11032-006-9016-3 |
[4] |
DUCHÊNE E, BUTTERLIN G, CLAUDEL P, DUMAS V, JAEGLI N, MERDINOGLU D. A grapevine (Vitis vinifera L.) deoxy-D- xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theoretical and Applied Genetics, 2009, 118(3):541-552.
doi: 10.1007/s00122-008-0919-8 |
[5] |
BATTILANA J, COSTANTINI L, EMANUELLI F, SEVINI F, SEGALA C, MOSER S, VELASCO R, VERSINI G, GRANDO M S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theoretical and Applied Genetics, 2009, 118(4):653-669. doi: 10.1007/s00122- 008-0927-8.
doi: 10.1007/s00122- 008-0927-8 |
[6] |
EMANUELLI F, BATTILANA J, COSTANTINI L, CUNFF L L, GRANDO M S. A candidate gene association study for muscat flavor in grapevine Vitis vinifera L. BMC Plant Biology, 2010, 10(1):241.
doi: 10.1186/1471-2229-10-241 |
[7] |
BATTILANA J, EMANUELLI F, GAMBINO G, GRIBAUDO I, GASPERI F, BOSS P K, GRANDO M S. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. Journal of Experimental Botany, 2011, 62(15):5497-5508.
doi: 10.1093/jxb/err231 |
[8] | 刘翠霞. 葡萄果实单萜化合物含量的QTL定位及其合成调控的候选基因筛选[D]. 武汉: 中国科学院武汉植物园, 2017. |
LIU C X. QTL mapping of monoterpene content in grape berry and screening of candidate genes related to regulation [D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. (in Chinese) | |
[9] | LIN H, GUO Y S, YANG X X, KONDO S, ZHAO Y H, LIU Z D, LI K, GUO X W. QTL identification and candidate gene identification for monoterpene content in grape(Vitis vinifera L.) berries. Vitis-Geilweilerhof, 2020, 59(1):19-28. |
[10] | 刘若瑾. 葡萄单萜遗传规律及全基因组单标记关联分析[D]. 北京: 北京林业大学, 2020. |
LIU R J. Genetic rules and genome-wide single marker analysis of monoterpenoids in grapes[D]. Beijing: Beijing Forestry University, 2020. (in Chinese) | |
[11] |
JANSEN R C, NAP J P. Genetical genomics: The added value from segregation. Trends in Genetics, 2001, 17(7):388-391. doi: 10.1016/s0168-9525(01)02310-1.
doi: 10.1016/s0168-9525(01)02310-1 |
[12] |
KABELITZ T, KAPPEL C, HENNEBERGER K, BENKE E, NOH C, BAURLE I. eQTL Mapping of transposon silencing reveals a position-dependent stable escape from epigenetic silencing and transposition of AtMu1 in the Arabidopsis Lineage. The Plant Cell, 2014, 26(8):3261-3271.
doi: 10.1105/tpc.114.128512 |
[13] |
FU J J, CHENG Y B, LINGHU J J, YANG X H, KANG L, ZHANG Z X, ZHANG J, HE C, DU X M, PENG Z Y, WANG B, ZHAI L H, DAI C M, XU J B, WANG W D, LI X R, ZHENG J, CHEN L, LUO L H, LIU J J, QIAN X J, YAN J B, WANG J, WANG G Y. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4:2832. doi: 10.1038/ncomms3832.
doi: 10.1038/ncomms3832 |
[14] |
JORDAN M C, SOMERS D J, BANKS T W. Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnology Journal, 2007, 5(3):442-453. doi: 10.1111/j.1467-7652.2007.00253.x.
doi: 10.1111/j.1467-7652.2007.00253.x |
[15] |
HUANG Y F, BERTRAND Y, GUIRAUD J L, VIALET S, LAUNAY A, CHEYNIER V, TERRIER N, THIS P. Expression QTL mapping in grapevine: Revisiting the genetic determinism of grape skin colour. Plant Science, 2013, 207:18-24. doi: 10.1016/j.plantsci.2013.02.011.
doi: 10.1016/j.plantsci.2013.02.011 |
[16] |
HUANG Y F, VIALET S, GUIRAUD J L, TORREGROSA L, BERTRAND Y, CHEYNIER V, THIS P, TERRIER N. A negative MYB regulator of proanthocyanidin accumulation,identified through expression quantitative locus mapping in the grape berry. The New Phytologist, 2014, 201(3):795-809. doi: 10.1111/nph.12557.
doi: 10.1111/nph.12557 |
[17] | XU H Y, SUN L, ZHANG G J, YAN A L. ‘Ruidu Xiangyu’: A new table grape with Muscat flavor. Vitis Geilweilerhof, 2012, 51(3):143-144. |
[18] | 牛早柱, 陈展, 赵艳卓, 牛帅科, 魏建国, 杨丽丽. 15个不同葡萄品种果实香气成分的GC-MS分析. 华北农学报, 2019, 34(Z1):85-91. |
NIU Z Z, CHEN Z, ZHAO Y Z, NIU S K, WEI J G, YANG L L. Analysis of aromatic components from the berries of fifteen grape varieties by GC-MS. Acta Agriculturae Boreali-Sinica, 2019, 34(Z1):85-91. (in Chinese) | |
[19] |
WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15:240. doi: 10.1186/s12870-015-0631-1.
doi: 10.1186/s12870-015-0631-1 |
[20] |
王慧玲, 王晓玥, 闫爱玲, 孙磊, 张国军, 任建成, 徐海英. 不同架式‘爱神玫瑰’葡萄果实成熟期间单萜积累及相关基因的表达. 中国农业科学, 2019, 52(7):1136-1149. doi: 10.3864/j.issn.0578-1752.2019.07.002.
doi: 10.3864/j.issn.0578-1752.2019.07.002 |
WANG H L, WANG X Y, YAN A L, SUN L, ZHANG G J, REN J C, XU H Y. The accumulation of monoterpenes and the expression of its biosynthesis related genes in ‘Aishen Meigui’ grape berries cultivated in different trellis systems during ripening stage. Scientia Agricultura Sinica, 2019, 52(7):1136-1149. doi: 10.3864/j.issn.0578-1752.2019.07.002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.07.002 |
|
[21] | 孙磊, 朱保庆, 孙晓荣, 许晓青, 王晓玥, 张国军, 徐海英. ‘亚历山大’葡萄果实单萜生物合成相关基因转录及萜类物质积累规律. 中国农业科学. 2014, 47(7):1379-1386. |
SUN L, ZHU B Q, SUN X R, XU X Q, WANG X Y, ZHANG G J, XU H Y. Terpenes biosynthesis related gene transcript profiles and terpenes accumulation of ‘Aishen Meigui’ grape. Scientia Agricultura Sinica, 2014, 47(7):1379-1386. (in Chinese) | |
[22] |
WANG H L, YAN A L, SUN L, ZHANG G J, WANG X Y, REN J C, XU H Y. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC Plant Biology, 2020, 20:411.
doi: 10.1186/s12870-020-02630-x |
[23] | VAN OOIJEN J W. MapQTL 6.0, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands: Kyazma B.V, 2009. |
[24] |
XIA J, PSYCHOGIOS N, YOUNG N, WISHART D S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 2009, 37(web server issue):W652-W660. doi: 10.1093/nar/gkp356.
doi: 10.1093/nar/gkp356 |
[25] |
COSTANTINI L, KAPPEL C D, TRENTI M, BATTILANA J, EMANUELLI F, SORDO M, MORETTO M, CAMPS C, LARCHER R, DELROT S, GRANDO M S. Drawing links from transcriptome to metabolites: The evolution of aroma in the ripening berry of moscato bianco (Vitis vinifera L.). Frontiers in Plant Science, 2017, 8:780. doi: 10.3389/fpls.2017.00780.
doi: 10.3389/fpls.2017.00780 |
[26] |
MAHMOUD S S, CROTEAU R B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends in Plant Science, 2002, 7(8):366-373. doi: 10.1016/s1360-1385(02)02303-8.
doi: 10.1016/s1360-1385(02)02303-8 |
[27] |
董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展. 植物学报, 2020, 55(3):340-350. doi: 10.11983/CBB19186.
doi: 10.11983/CBB19186 |
DONG Y M, ZHANG W Y, LING Z Y, LI J R, BAI H T, LI H, SHI L. Advances in transcription factors regulating plant terpenoids biosynthesis. Chinese Bulletin of Botany, 2020, 55(3):340-350. doi: 10.11983/CBB19186. (in Chinese)
doi: 10.11983/CBB19186 |
|
[28] |
SARKER L S, ADAL A M, MAHMOUD S S. Diverse transcription factors control monoterpene synthase expression in lavender (Lavandula). Planta, 2019, 251(1):1-5. doi: 10.1007/s00425-019-03298-w.
doi: 10.1007/s00425-019-03298-w |
[29] |
LI X, XU Y Y, SHEN S L, YIN X R, KLEE H, ZHANG B, CHEN K S. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany, 2017, 68(17):4929-4938. doi: 10.1093/jxb/erx316.
doi: 10.1093/jxb/erx316 |
[30] |
LI T, JIANG Z, ZHANG L, TAN D, WEI Y, YUAN H, LI T, WANG A. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal, 2016, 88(5):735-748. doi: 10.1111/tpj.13289.
doi: 10.1111/tpj.13289 |
[31] |
CRAMER G R, GHAN R, SCHLAUCH K A, TILLETT R L, HEYMANN H, FERRARINI A, DELLEDONNE M, ZENONI S, FASOLI M, PEZZOTTI M. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biology, 2014, 14:370.
doi: 10.1186/s12870-014-0370-8 |
[32] |
LICAUSI F, GIORGI F M, ZENONI S, OSTI F, PEZZOTTI M, PERATA P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11:719.
doi: 10.1186/1471-2164-11-719 |
[33] |
XU Y Y, ZHU C Q, XU C J, SUN J, CHEN K S. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules, 2019, 24(14):2564.
doi: 10.3390/molecules24142564 |
[34] |
LI X Y, HE L, AN X H. VviWRKY40, a WRKY transcription factor, regulates glycosylated monoterpenoid production by VviGT14 in grape berry. Genes, 2020, 11(5):485.
doi: 10.3390/genes11050485 |
[35] |
MANNEN K, MATSUMOTO T, TAKAHASHI S, YAMAGUCHI Y, TSUKAGOSHI M, SANO R, SUZUKI H, SAKURAI N, SHIBATA D, KOYAMA T, NAKAYAMA T. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochemical and Biophysical Research Communications, 2014, 443(2):768-774. doi: 10.1016/j.bbrc.2013.12.040.
doi: 10.1016/j.bbrc.2013.12.040 |
[36] |
ZHANG H H, FAN P G, LIU C X, WU B H, LI S H, LIANG Z C. Sunlight exclusion from Muscat grape alters volatile profiles during berry development. Food Chemistry, 2014, 164:242-250. doi: 10.1016/j.foodchem.2014.05.012.
doi: 10.1016/j.foodchem.2014.05.012 |
[37] |
SASAKI K, TAKASE H, MATSUYAMA S, KOBAYASHI H, MATSUO H, IKOMA G, TAKATA R. Effect of light exposure on linalool biosynthesis and accumulation in grape berries. Bioscience, Biotechnology, and Biochemistry, 2016, 80(12):2376-2382. doi: 10.1080/09168451.2016.1217148.
doi: 10.1080/09168451.2016.1217148 |
[38] | ZHOU F, SUN T H, ZHAO L, PAN X W, LU S. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Frontier in Plant Science, 2015, 6:304 |
[39] |
TOLEDO-ORTIZ G, JOHANSSON H, LEE K P, BOU-TORRENT J, STEWART K, STEEL G, RODRÍGUEZ-CONCEPCIÓN M, HALLIDAY K J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 2014, 10(6):e1004416.
doi: 10.1371/journal.pgen.1004416 |
[1] | 徐倩, 王晗, 马赛, 胡秋辉, 马宁, 苏安祥, 李辰, 马高兴. 杏鲍菇多糖及其消化产物对淀粉消化酶的抑制及相互作用[J]. 中国农业科学, 2023, 56(2): 357-367. |
[2] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[3] | 李旭飞,杨盛迪,李松琦,刘海楠,裴茂松,韦同路,郭大龙,余义和. 葡萄VlCKX4表达特性分析与转录调控预测[J]. 中国农业科学, 2023, 56(1): 144-155. |
[4] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[5] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[6] | 郭泽西,孙大运,曲俊杰,潘凤英,刘露露,尹玲. 查尔酮合成酶基因在葡萄抗灰霉病和霜霉病中的作用[J]. 中国农业科学, 2022, 55(6): 1139-1148. |
[7] | 唐子云,胡健欣,陈进,陆毅兴,孔伶俐,刁露,张发福,熊文广,曾振灵. 动物源金黄色葡萄球菌生物被膜形成能力与分子分型关系研究[J]. 中国农业科学, 2022, 55(3): 602-612. |
[8] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[9] | 王博,覃富强,邓凤莹,罗惠格,陈祥飞,成果,白扬,黄小云,韩佳宇,曹雄军,白先进. ‘阳光玫瑰’葡萄一年两收果实类黄酮组分及含量差异分析[J]. 中国农业科学, 2022, 55(22): 4473-4486. |
[10] | 董泽宽,张水勤,李燕婷,高强,赵秉强,袁亮. 添加螯合剂对磷酸二铵溶解、固定及转化的影响[J]. 中国农业科学, 2022, 55(21): 4225-4236. |
[11] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[12] | 马玉全,王小龙,李玉梅,王孝娣,刘凤之,王海波. 不同砧木对葡萄‘87-1’氮磷钾等养分吸收利用的影响[J]. 中国农业科学, 2022, 55(19): 3822-3830. |
[13] | 冀晓昊,刘凤之,王宝亮,刘培培,王海波. 葡萄醇酰基转移酶编码基因遗传变异研究[J]. 中国农业科学, 2022, 55(14): 2797-2811. |
[14] | 杨盛迪,孟祥轩,郭大龙,裴茂松,刘海楠,韦同路,余义和. SO2引起巨峰葡萄采后落粒的共表达网络和转录调控分析[J]. 中国农业科学, 2022, 55(11): 2214-2226. |
[15] | 韩晓, 杨航宇, 陈为凯, 王军, 何非. 不同砧木对欧亚种葡萄‘丹娜’果实类黄酮物质的影响[J]. 中国农业科学, 2022, 55(10): 2013-2025. |
|