中国农业科学 ›› 2020, Vol. 53 ›› Issue (9): 1743-1755.doi: 10.3864/j.issn.0578-1752.2020.09.005
• 专题:限制性两阶段多位点全基因组关联分析法的应用 • 上一篇 下一篇
李曙光1,2,曹永策1,贺建波1(),王吴彬1,邢光南1,杨加银2,赵团结1,盖钧镒1()
收稿日期:
2019-08-26
接受日期:
2019-11-30
出版日期:
2020-05-01
发布日期:
2020-05-13
通讯作者:
贺建波,盖钧镒
作者简介:
李曙光,E-mail:dawn0524@126.com。
基金资助:
ShuGuang LI1,2,YongCe CAO1,JianBo HE1(),WuBin WANG1,GuangNan XING1,JiaYin YANG2,TuanJie ZHAO1,JunYi GAI1()
Received:
2019-08-26
Accepted:
2019-11-30
Online:
2020-05-01
Published:
2020-05-13
Contact:
JianBo HE,JunYi GAI
摘要:
【目的】大豆是重要的经济作物,是人类植物蛋白质和油脂的主要来源。蛋白质含量作为大豆育种的主要目标之一,属于多基因控制的复杂数量性状,并且受环境条件的影响。通过对大豆巢式关联作图群体的蛋白质含量进行全基因组关联分析,解析其遗传构成,为高蛋白质含量的大豆品种育种提供理论基础。【方法】以蒙8206为共同亲本,对临河×蒙8206、正阳×蒙8206、蒙8206×通山与蒙8206×WSB分别杂交,通过单粒传法自交7代衍生的4个重组自交系群体,共计623个家系,整合为一个大豆巢式关联作图群体,利用RAD-seq技术进行SNP标记基因分型,并于2012年至2014年将该群体种植在5个不同田间环境,在大豆完熟期R8时测定蛋白质含量,利用限制性两阶段多位点全基因组关联分析方法(RTM-GWAS)来解析蛋白质含量的遗传构成。【结果】试验群体的蛋白质含量变异较大,蛋白质含量性状遗传率较高,遗传变异可解释85.00%的表型变异。多环境联合方差分析表明,蛋白质含量的基因型、环境以及基因型×环境均达到差异极显著水平。全基因组关联分析共检测到90个蛋白质含量QTL,其中新检测到20个QTL,每个QTL的表型变异解释率为0.06%—3.99%,贡献率总和为45.60%。每个QTL包含2—5个等位变异,等位变异效应为-2.434%—2.845%,大多数等位变异效应为-1.000%—1.000%,表明大多数等位变异的效应较小。根据检测的90个蛋白质含量QTL,预测了73个蛋白质含量相关基因,其中Glyma20g24830参与甘氨酸与芳香族氨基酸代谢,Glyma18g03540参与半胱氨酸生物合成,推测其为重要蛋白质含量候选基因。根据试验群体的蛋白质含量QTL-allele矩阵,预测出潜在杂交组合的纯系后代的蛋白质含量育种潜力高达56.5%。【结论】检测到90个大豆蛋白质含量QTL,新检测到20个QTL,预测到73个蛋白质含量相关基因,表明大豆蛋白质含量是由多基因控制的数量性状。
李曙光,曹永策,贺建波,王吴彬,邢光南,杨加银,赵团结,盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析[J]. 中国农业科学, 2020, 53(9): 1743-1755.
ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean[J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
表1
大豆NAM群体中蛋白质含量(%)的次数分布和描述性统计"
环境 Env. a | 组中值Mid-point | 平均值 Mean | 变幅 Range | CV b (%) | h2 (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.0 | 33.0 | 34.0 | 35.0 | 36.0 | 37.0 | 38.0 | 39.0 | 40.0 | 41.0 | 42.0 | 43.0 | 44.0 | 45.0 | 46.0 | 47.0 | 48.0 | |||||
FY2012 | 0 | 0 | 0 | 0 | 0 | 7 | 18 | 54 | 100 | 118 | 162 | 92 | 49 | 13 | 5 | 1 | 0 | 41.0 | 36.1—46.5 | 3.0 | 81.0 |
JP2012 | 0 | 0 | 0 | 0 | 1 | 8 | 23 | 36 | 70 | 133 | 124 | 106 | 66 | 24 | 18 | 2 | 2 | 41.4 | 35.9—47.8 | 3.0 | 82.2 |
JP2013 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 12 | 32 | 76 | 118 | 133 | 113 | 73 | 40 | 17 | 1 | 42.5 | 36.6—47.2 | 3.1 | 80.6 |
JP2014 | 0 | 0 | 0 | 0 | 0 | 4 | 18 | 41 | 91 | 107 | 139 | 121 | 60 | 22 | 14 | 4 | 0 | 41.3 | 36.6—46.6 | 3.6 | 76.9 |
YC2014 | 3 | 7 | 22 | 26 | 48 | 54 | 85 | 99 | 103 | 76 | 53 | 28 | 9 | 3 | 4 | 2 | 0 | 38.5 | 31.5—46.1 | 3.5 | 90.0 |
均值Mean | 0 | 0 | 0 | 0 | 0 | 3 | 15 | 58 | 85 | 162 | 147 | 97 | 40 | 13 | 2 | 1 | 0 | 40.9 | 36.6—46.0 | 3.3 | 85.0 |
表2
大豆NAM群体中蛋白质含量的多环境联合方差分析"
变异来源Source of variation | 自由度Degree of freedom | 均方Mean square | F 值F value | P值P value |
---|---|---|---|---|
环境Environment | 4 | 3652.54 | 49.46 | <0.01 |
重复(环境)Replicate (Environment) | 10 | 71.82 | 40.08 | <0.01 |
基因型Genotype | 622 | 33.05 | 6.79 | <0.01 |
基因型×环境Genotype × Environment | 2467 | 4.95 | 2.76 | <0.01 |
误差Error | 5589 | 1.79 | ||
总计Total | 8692 |
表3
大豆NAM群体中检测到的蛋白质含量QTL"
QTL | 染色体 Chr. | 位置 Position (bp) | 等位变异 No. allele | -lgP | R2(%) | SoyBase QTLa | GWAS QTLb |
---|---|---|---|---|---|---|---|
qProt-6-1 | 6 | 5723944—5861193 | 3 | 89.2 | 3.99 | 30-5, 005, 007, 015 | [16-17] |
qProt-7-2 | 7 | 7895394—7951423 | 4 | 54.5 | 2.46 | 33-5 | [18] |
qProt-20-8 | 20 | 45758806—45958325 | 5 | 52.6 | 2.42 | ||
qProt-19-3 | 19 | 45138372—45336506 | 5 | 39.9 | 1.85 | 2-2, 36-31 | [19] |
qProt-6-4 | 6 | 13682742—13879752 | 4 | 38.4 | 1.74 | 34-2 | [20,17] |
qProt-2-2 | 2 | 8795893—8902236 | 4 | 37.8 | 1.71 | 21-4 | [20] |
qProt-5-5 | 5 | 38956925—39141177 | 4 | 36.1 | 1.64 | 2-1, 9-1, 12-1, 34-1, 011, 014 | |
qProt-18-1 | 18 | 2346289—2531952 | 5 | 31.1 | 1.45 | 26-12, 28-5, 36-25 | [21] |
qProt-8-5 | 8 | 31139492—31248131 | 5 | 27.6 | 1.30 | ||
qProt-14-2 | 14 | 6415938—6607451 | 3 | 23.2 | 1.02 | 1-6, 4-10, 45-1 | [21] |
qProt-13-1 | 13 | 5277987—5435217 | 3 | 22.5 | 0.99 | 36-21 | |
qProt-1-3 | 1 | 52165879—52301103 | 3 | 21.6 | 0.95 | 36-9 | [5] |
qProt-4-2 | 4 | 47959591—48019889 | 5 | 19.3 | 0.92 | 4-2, 37-2 | [21] |
qProt-16-3 | 16 | 34706667—34803913 | 5 | 19.1 | 0.91 | 41-6 | |
qProt-10-1 | 10 | 3262276 | 2 | 19.2 | 0.79 | 41-11 | [22] |
qProt-20-4 | 20 | 18696597—18710242 | 3 | 17.7 | 0.73 | 1-3, 1-4, 3-12, 10-1, 11-1, 30-1, 31-1, 36-26, 37-8, 47-8, 003 | [23] |
qProt-13-4 | 13 | 39868073—40038639 | 5 | 14.8 | 0.72 | 26-11 | |
qProt-6-7 | 6 | 20701467—20900668 | 5 | 13.9 | 0.68 | 012 | |
qProt-6-9 | 6 | 41656522—41677922 | 3 | 13.9 | 0.61 | ||
QTL | 染色体 Chr. | 位置 Position (bp) | 等位变异 No. allele | -lgP | R2(%) | SoyBase QTLa | GWAS QTLb |
qProt-7-4 | 7 | 18234251 | 2 | 14.3 | 0.58 | 47-1 | |
qProt-6-3 | 6 | 10921339—11119531 | 3 | 12.9 | 0.57 | ||
qProt-14-3 | 14 | 9912397—10112026 | 3 | 12.9 | 0.57 | 21-8 | |
qProt-9-1 | 9 | 35965266—36048472 | 4 | 12.0 | 0.56 | 5-3, 33-3, 34-6, 35-4, 36-28, 36-29, 36-30, 37-11 | |
qProt-11-1 | 11 | 5786106—5983572 | 5 | 11.1 | 0.55 | 3-2, 16-1, 34-7, 36-2, 37-1 | [20-23] |
qProt-2-1 | 2 | 4025110 | 2 | 12.9 | 0.52 | [24] | |
qProt-5-2 | 5 | 1708219 | 2 | 12.4 | 0.50 | ||
qProt-5-3 | 5 | 32642277—32673061 | 3 | 11.4 | 0.50 | 36-1 | |
qProt-7-1 | 7 | 176227—372535 | 5 | 10.1 | 0.50 | ||
qProt-19-2 | 19 | 39675711—39753005 | 4 | 9.2 | 0.44 | 30-7, 36-32 | |
qProt-20-3 | 20 | 10292622—10303142 | 4 | 9.2 | 0.44 | 1-3, 1-4, 3-12, 10-1, 11-1, 30-1, 36-26, 37-8, 47-8 | [25] |
qProt-6-6 | 6 | 16510997—16689830 | 4 | 9.1 | 0.43 | 21-3, 26-7, 35-1, 36-7, 36-8 | |
qProt-10-3 | 10 | 43721962—43903254 | 5 | 8.3 | 0.42 | 27-5 | [1,26] |
qProt-20-6 | 20 | 34459783—34480867 | 4 | 8.6 | 0.41 | 26-5, 34-11 | [26] |
qProt-1-4 | 1 | 54251785—54443212 | 5 | 7.9 | 0.40 | 36-9 | [22] |
qProt-8-3 | 8 | 23303969—23383404 | 3 | 9.2 | 0.40 | ||
qProt-1-1 | 1 | 2560155—2683983 | 4 | 8.2 | 0.39 | [21-22] | |
qProt-15-1 | 15 | 3194114 | 2 | 9.5 | 0.38 | 30-3 | [1,16] |
qProt-1-2 | 1 | 4621764—4727603 | 5 | 7.1 | 0.37 | [21] | |
qProt-15-3 | 15 | 50539746—50738644 | 5 | 7.1 | 0.37 | ||
qProt-14-5 | 14 | 16634057—16648499 | 3 | 7.5 | 0.33 | ||
qProt-16-1 | 16 | 4780910 | 2 | 8.2 | 0.32 | 4-7 | [6,25] |
qProt-8-1 | 8 | 7846414—8000705 | 5 | 5.8 | 0.31 | 26-1, 30-4, 34-4, 34-5, 013, 016 | |
qProt-16-5 | 16 | 37249323—37294601 | 4 | 6.5 | 0.31 | 41-6 | |
qProt-18-4 | 18 | 51679638—51878009 | 4 | 6.2 | 0.30 | 34-9 | |
qProt-8-6 | 8 | 46434966—46595148 | 3 | 6.5 | 0.28 | 14-1, 21-1 | [25] |
qProt-3-1 | 3 | 1011738 | 2 | 7.1 | 0.27 | 010 | |
qProt-3-2 | 3 | 39567898—39600101 | 5 | 4.9 | 0.27 | 36-34, 21-9, 36-37 | |
qProt-5-1 | 5 | 1531632—1531635 | 2 | 6.8 | 0.26 | ||
qProt-18-3 | 18 | 5553907—5635734 | 2 | 6.7 | 0.26 | 47-6 | |
qProt-1-5 | 1 | 55836890—55889699 | 3 | 5.8 | 0.25 | ||
qProt-4-1 | 4 | 41014079 | 2 | 6.5 | 0.25 | ||
qProt-2-5 | 2 | 49426511—49624658 | 4 | 5.0 | 0.24 | 37-4 | |
qProt-16-4 | 16 | 34859125—35032972 | 5 | 5.5 | 0.24 | 41-6 | [27] |
qProt-13-2 | 13 | 18987333-18987363 | 2 | 6.0 | 0.23 | 26-13, 36-20, 36-21, 36-23 | [5] |
qProt-15-2 | 15 | 4817369 | 2 | 6.1 | 0.23 | 30-3 | [18,27-29] |
qProt-6-11 | 6 | 48032833—48165768 | 4 | 4.4 | 0.22 | 13-2 | |
qProt-6-2 | 6 | 6233427—6256962 | 2 | 5.6 | 0.21 | 30-5, 31-4, 005, 007, 015 | |
QTL | 染色体 Chr. | 位置 Position (bp) | 等位变异 No. allele | -lgP | R2(%) | SoyBase QTLa | GWAS QTLb |
qProt-6-8 | 6 | 22700125—22889619 | 4 | 4.2 | 0.21 | ||
qProt-8-4 | 8 | 27091794—27092100 | 3 | 4.9 | 0.21 | ||
qProt-11-3 | 11 | 36538681—36538733 | 2 | 5.6 | 0.21 | 26-6 | |
qProt-20-7 | 20 | 42051825—42200759 | 5 | 3.8 | 0.21 | ||
qProt-12-1 | 12 | 36587265 | 2 | 5.5 | 0.20 | 5-2, 21-10, 33-1 | |
qProt-17-1 | 17 | 33206802—33271301 | 4 | 4.1 | 0.20 | 36-14, 36-16 | |
qProt-6-5 | 6 | 14689566—14795226 | 4 | 3.8 | 0.19 | 34-2 | [1] |
qProt-6-10 | 6 | 42894533—43089859 | 4 | 3.7 | 0.19 | 24-1 | |
qProt-14-1 | 14 | 4726017—4860851 | 4 | 3.7 | 0.19 | 1-6, 4-11, 45-1 | [22] |
qProt-20-2 | 20 | 5157137 | 2 | 4.5 | 0.16 | 1-3, 1-4, 3-12, 10-1, 11-1, 30-1, 36-26, 37-8, 47-8 | |
qProt-3-3 | 3 | 44249912—44442395 | 3 | 3.4 | 0.15 | 36-35, 27-4 | |
qProt-6-12 | 6 | 48187414 | 2 | 4.2 | 0.15 | 13-2 | [20-21] |
qProt-8-2 | 8 | 8219073—8363193 | 5 | 2.4 | 0.15 | 26-1, 30-4, 34-4, 34-5, 013, 016 | [6,26] |
qProt-14-4 | 14 | 13291266 | 2 | 4.2 | 0.15 | ||
qProt-18-8 | 18 | 62050016—62248618 | 5 | 2.5 | 0.15 | 30-10 | |
qProt-20-9 | 20 | 46154443 | 2 | 4.2 | 0.15 | ||
qProt-3-4 | 3 | 44486103—44672295 | 4 | 3.3 | 0.14 | 36-35, 27-4 | |
qProt-18-2 | 18 | 2963699—3158571 | 5 | 2.2 | 0.14 | 20-1, 47-6 | [6] |
qProt-20-5 | 20 | 33207484—33279787 | 3 | 2.9 | 0.13 | 1-1, 1-2, 15-1, 26-5, 34-11, 39-4 | [30] |
qProt-7-3 | 7 | 18234233 | 2 | 3.5 | 0.12 | 47-1 | |
qProt-7-5 | 7 | 35580968—35653659 | 3 | 2.8 | 0.12 | 41-9 | |
qProt-18-7 | 18 | 60127020—60312441 | 5 | 1.9 | 0.12 | 3-10, 30-10 | |
qProt-2-4 | 2 | 47360405 | 2 | 3.2 | 0.11 | 40-5 | [23] |
qProt-11-2 | 11 | 7962963 | 2 | 3.2 | 0.11 | ||
qProt-16-2 | 16 | 33179205 | 2 | 3.1 | 0.11 | ||
qProt-13-3 | 13 | 36897211 | 2 | 3.0 | 0.10 | 6-2, 24-2 | |
qProt-18-5 | 18 | 52822014 | 2 | 3.0 | 0.10 | 3-8, 28-2 | |
qProt-18-6 | 18 | 54160848 | 2 | 2.9 | 0.10 | 3-9 | |
qProt-2-3 | 2 | 12237524 | 2 | 2.6 | 0.09 | 36-12 | |
qProt-19-1 | 19 | 37053052—37053084 | 2 | 2.4 | 0.08 | ||
qProt-20-1 | 20 | 1315771—1315813 | 2 | 2.5 | 0.08 | 26-3, 26-4, 37-7, 37-9, 41-4 | |
qProt-5-4 | 5 | 38098083 | 2 | 2.1 | 0.07 | 12-1, 011, 014 | [6] |
qProt-10-2 | 10 | 40629142—40629143 | 2 | 1.9 | 0.06 | 27-5, 40-1 | |
LC QTL | 10 | 42 | 19.58 | ||||
SC QTL | 80 | 261 | 26.06 | ||||
总计Total | 90 | 303 | 45.64 | 67(119) | 33(45) |
表4
大豆NAM群体5个亲本之间潜在杂交组合后代的蛋白质含量预测值"
组合 Cross | 观测值 Observation | 独立模型 Independence model | 连锁模型 Linkage model | |||||
---|---|---|---|---|---|---|---|---|
Y1 | Y2 | 均值 Mean | P5 | P95 | 均值 Mean | P5 | P95 | |
蒙8206×临河 (LM) | 36.3 | 47.8 | 42.1 | 33.1 | 51.1 | 42.0 | 37.8 | 46.3 |
蒙8206×正阳 (LZ) | 36.3 | 44.7 | 40.5 | 35.8 | 45.2 | 40.5 | 37.1 | 43.9 |
蒙8206×通山 (MT) | 36.3 | 45.1 | 40.7 | 35.8 | 45.6 | 40.7 | 37.5 | 43.9 |
蒙8206×WSB (MW) | 36.3 | 42.9 | 39.6 | 34.3 | 45.0 | 39.6 | 36.4 | 42.7 |
临河×正阳 Linhe×Zhengyang | 47.8 | 44.7 | 46.3 | 36.4 | 56.1 | 46.2 | 41.5 | 50.9 |
临河×通山Linhe×Tongshan | 47.8 | 45.1 | 46.4 | 36.3 | 56.5 | 46.5 | 42.2 | 50.8 |
临河×WSB Linhe×WSB | 47.8 | 42.9 | 45.4 | 35.7 | 54.8 | 45.3 | 40.6 | 50.2 |
正阳×通山 Zhengyang×Tongshan | 44.7 | 45.1 | 44.9 | 39.9 | 49.8 | 44.9 | 41.7 | 48.1 |
正阳×WSB Zhengyang×WSB | 44.7 | 42.9 | 43.8 | 36.7 | 50.7 | 43.8 | 39.6 | 48.0 |
通山×WSB Tongshan×WSB | 45.1 | 42.9 | 44.0 | 36.9 | 51.1 | 44.0 | 39.9 | 48.1 |
[1] | HWANG E Y, SONG Q, JIA G, SPECHT J E, HYTEN D L, COSTA J, CREGAN P B . A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014,15(1):1-12. |
[2] |
PATIL G, MIAN R, VUONG T, PANTALONE V, SONG Q J, CHEN P Y, SHANNON G J, CARTER T C, NGUYEN H T . Molecular mapping and genomics of soybean seed protein: A review and perspective for the future. Theoretical and Applied Genetics, 2017,130(10):1975-1991.
doi: 10.1007/s00122-017-2955-8 pmid: 28801731 |
[3] |
KARIKARI B, LI S G, BHAT J A, CAO Y C, KONG J J, YANG J Y, GAI J Y, ZHAO T J . Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. International Journal of Molecular Sciences, 2019,20(4):979.
doi: 10.3390/ijms20040979 pmid: 30813455 |
[4] |
ZHANG Y, LI W, LIN Y, ZHANG L, WANG C, XU R . Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing BMC Genomics, 2018,19(1):641.
doi: 10.1186/s12864-018-5035-9 pmid: 30157757 |
[5] |
LI D M, ZHAO X, HAN Y P, LI W B, XIE F T . Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics, 2019,111(1):90-95.
doi: 10.1016/j.ygeno.2018.01.004 pmid: 29325965 |
[6] |
WANG Y Y, LI Y Q, WU H Y, HU B, ZHENG J J, ZHAI H, LÜ S X, LIU X L, CHEN X, QIU H M, YANG J, ZONG C M, HAN D Z, WEN Z X, WANG D C, XIA Z J . Genotyping of soybean cultivars with medium-density array reveals the population structure and QTNs underlying maturity and seed traits. Frontiers in Plant Science, 2018,9:610.
doi: 10.3389/fpls.2018.00610 pmid: 29868067 |
[7] |
王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民 . 中国作物分子设计育种. 作物学报, 2011,37(2):191-201.
doi: 10.3724/SP.J.1006.2011.00191 |
WANG J K, LI H H, ZHANG X C, YIN C B, LI Y, MA Y Z, LI X H, QIU L J, WAN J M . Molecular design breeding in crops in China. Acta Agronomica Sinica, 2011,37(2):191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00191 |
|
[8] |
LI H, BRADBURY P, ERSOZ E, BUCKLER E S, WANG J . Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE, 2011,6(3):e17573.
doi: 10.1371/journal.pone.0017573 pmid: 21423655 |
[9] |
CARDON L R, PALMER L J . Population stratification and spurious allelic association. The Lancet, 2003,361(9357):598-604.
doi: 10.1016/S0140-6736(03)12520-2 pmid: 12598158 |
[10] |
BUCKLER E S, HOLLAND J B, BRADBURY P J, ACHARYA C B, BROWN P J, BROWNE C, ERSOZ E, FLINT-GARCIA S, GARCIA A, GLAUBITZ J C, GOODMAN M M, HARJES C, GUILL K, KROON D E, LARSSON S, LEPAK N K, LI H, MITCHELL S E, PRESSOIR G, PEIFFER J A, ROSAS M O, ROCHEFORD T R, ROMAY M C, ROMERO S, SALVO S, SANCHEZ V H, DA S H S, SUN Q, TIAN F, UPADYAYULA N, WARE D, YATES H, YU J, ZHANG Z, KRESOVICH S, MCMULLEN M D . The genetic architecture of maize flowering time. Science, 2009,325(5941):714-718.
doi: 10.1126/science.1174276 pmid: 19661422 |
[11] |
LI S, CAO Y, HE J, ZHAO T, GAI J . Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theoretical and Applied Genetics, 2017,130(11):2297-2314.
doi: 10.1007/s00122-017-2960-y pmid: 28799029 |
[12] |
HE J, MENG S, ZHAO T, XING G, YANG S, LI Y, GUAN R, LU J, WANG Y, XIA Q, YANG B, GAI J . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017,130(11):2327-2343.
doi: 10.1007/s00122-017-2962-9 pmid: 28828506 |
[13] | 贺建波, 刘方东, 邢光南, 王吴彬, 赵团结, 管荣展, 盖钧镒 . 限制性两阶段多位点全基因组关联分析方法的特点与计算程序. 作物学报, 2018,44(9):1274-1289. |
HE J B, LIU F D, XING G N, WANG W B, ZHAO T J, GUAN R Z, GAI J Y . Characterization and analytical programs of the restricted two-stage multi- locus genome-wide association analysis. Acta Agronomica Sinica, 2018,44(9):1274-1289. (in Chinese) | |
[14] |
MCCOUCH S, CHO Y, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T . Report on QTL nomenclature. Rice Genetics Newsletter, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016 |
[15] |
SCHMUTZ J, CANNON S B, SCHLUETER J, MA J, MITROS T, NELSON W, HYTEN D L, SONG Q, THELEN J J, CHENG J, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, PETO M, GRANT D, SHU S, GOODSTEIN D, BARRY K, FUTRELL-GRIGGS M, ABERNATHY B, DU J, TIAN Z, ZHU L, GILL N, JOSHI T, LIBAULT M, SETHURAMAN A, ZHANG X C, SHINOZAKI K, NGUYEN H T, WING R A, CREGAN P, SPECHT J, GRIMWOOD J, ROKHSAR D, STACEY G, SHOEMAKER R C, JACKSON S A . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463(7278):178-183.
doi: 10.1038/nature08670 pmid: 20075913 |
[16] | BANDILLO N, JARQUIN D, SONG Q J, NELSON R, CREGAN P, SPECHT J, LORENZ A . A population structure and genome-wide association analysis on the USDA soybean germplasm collection. The Plant Genome, 2015,8(3):1-13. |
[17] |
LIU Z X, LI H H, FAN X H, HUANG W, YANG J Y, WEN Z X, LI Y H, GUAN R X, GUO Y, CHANG R Z, WANG D C, CHEN P Y, WANG S M, QIU L J . Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max (L.) Merr.). Plant Science, 2017,256:72-86.
doi: 10.1016/j.plantsci.2016.11.009 pmid: 28167041 |
[18] |
WEN Z, BOYSE J F, SONG Q, CREGAN P B, WANG D . Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics, 2015,16:671.
doi: 10.1186/s12864-015-1872-y pmid: 26334313 |
[19] |
HAN Y, ZHAO X, LIU D, LI Y, LIGHTFOOT D A, YANG Z, ZHAO L, ZHOU G, WANG Z, HUANG L, ZHANG Z, QIU L, ZHENG H, LI W . Domestication footprints anchor genomic regions of agronomic importance in soybeans. The New Phytologist, 2016,209(2):871-884.
doi: 10.1111/nph.13626 pmid: 26479264 |
[20] | DIAS D A, POLO L R T, LAZZARI F, SILVA G J D, SCHUSTER I . IGenome-wide association for mapping QTLs linked to protein and oil contents in soybean. Pesquisa Agropecuária Brasileira, 2017,52(10):896-904. |
[21] |
ZHANG K, LIU S, LI W, LIU S, LI X, FANG Y, ZHANG J, WANG Y, XU S, ZHANG J, SONG J, QI Z, TIAN X, TIAN Z, LI W X, NING H . Identification of QTNs controlling seed protein content in soybean using multi-locus genome-wide association studies. Frontiers in Plant Science, 2018,9:1690.
doi: 10.3389/fpls.2018.01690 pmid: 30519252 |
[22] |
FANG C, MA Y M, WU S W, LIU Z, WANG Z, YANG R, HU G H, ZHOU Z K, YU H, ZHANG M, PAN Y, ZHOU G A, REN H X, DU W G, YAN H R, WANG Y P, HAN D Z, SHEN Y T, LIU S L, LIU T F, ZHANG J X, QIN H, YUAN J, YUAN X H, KONG F J, LIU B H, LI J Y, ZHANG Z W, WANG G D, ZHU B G, TIAN Z X . Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology, 2017,18(1):161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319 |
[23] | ZHANG Y H, HE J B, MENG S, LIU M F, XING G N, LI Y, YANG S P, YANG J Y, ZHAO T J, GAI J Y . Identifying QTL-allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions. Euphytica, 2018,214(9):157. |
[24] |
LI Y H, REIF J C, HONG H L, LI H H, LIU Z X, MA Y S, LI J, TIAN Y, LI Y F, LI W B, QIU L J . Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Science, 2018,266:95-101.
doi: 10.1016/j.plantsci.2017.04.013 pmid: 29241572 |
[25] |
SONAH H, O'DONOUGHUE L, COBER E, RAJCAN I, BELZILE F . FIdentification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnology Journal, 2015,13(2):211-221.
doi: 10.1111/pbi.12249 pmid: 25213593 |
[26] |
LIU Z, LI H, WEN Z, FAN X, LI Y, GUAN R, GUO Y, WANG S, WANG D, QIU L . Comparison of genetic diversity between Chinese and American soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Frontiers in Plant Science, 2017,8:2014.
doi: 10.3389/fpls.2017.02014 pmid: 29250088 |
[27] |
ZHANG J P, WANG X Z, LU Y M, BHUSAL S J, SONG Q J, CREGAN P B, YEN Y, BROWN M, JIANG G L . Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Molecular Plant, 2018,11(3):460-472.
doi: 10.1016/j.molp.2017.12.016 pmid: 29305230 |
[28] |
VAUGHN J N, NELSON R L, SONG Q J, CREGAN P B, LI Z L . The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. Genes Genomes Genetics, 2014,4(11):2283-2294.
doi: 10.1534/g3.114.013433 pmid: 25246241 |
[29] |
ZHANG D, KAN G Z, HU Z B, CHENG H, ZHANG Y, WANG Q, WANG H, YANG Y M, LI H Y, HAO D R, YU D Y . Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theoretical and Applied Genetics, 2014,127(9):1905-1915.
doi: 10.1007/s00122-014-2348-1 pmid: 24952096 |
[30] |
LEE S, VAN K, SUNG M, NELSON R, LAMANTIA J, MCHALE L K, MIAN M A R . Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV. Theoretical and Applied Genetics, 2019,132(6):1639-1659.
doi: 10.1007/s00122-019-03304-5 pmid: 30806741 |
[31] | 盖钧镒 . 植物数量性状遗传体系的分离分析方法研究. 遗传, 2005,27(1):130-136. |
GAI J Y . Segregation analysis of genetic system of quantitative traits in plants. Hereditas (Beijing), 2005,27(1):130-136. (in Chinese) | |
[32] |
TAJUDDIN T, WATANABE S, YAMANAKA N, HARADA K . Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breeding Science, 2003,53(2):133-140.
doi: 10.1270/jsbbs.53.133 |
[33] |
PATHAN S M, VUONG T, CLARK K, LEE J D, SHANNON J G, ROBERTS C A, ELLERSIECK M R, BURTON J W, CREGAN P B, HYTEN D L, NGUYEN H T, SLEPER D A . Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Science, 2013,53(3):765-774.
doi: 10.2135/cropsci2012.03.0153 |
[34] |
ESKANDARI M, COBER E R, RAJCAN I . Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theoretical and Applied Genetics, 2013,126(6):1677-1687.
doi: 10.1007/s00122-013-2083-z pmid: 23536049 |
[35] | MANSUR L M, ORF J H, CHASE K, JARVIK T, CREGAN P B, LARK K G . Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science, 1996,36(5):1327-1336. |
[36] |
MAO T T, JIANG Z F, HAN Y P, TENG W L, ZHAO X, LI W B . Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breeding, 2013,132(6):630-641.
doi: 10.1111/pbr.12091 |
[37] |
LU W G, WEN Z X, LI H C, YUAN D H, LI J Y, ZHANG H, HUANG Z W, CUI S Y, DU W J . Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics, 2013,126(2):425-433.
doi: 10.1007/s00122-012-1990-8 pmid: 23052024 |
[38] |
KABELKA E A, DIERS B W, FEHR W R, LEROY A R, BAIANU I C, YOU T, NEECE D J, NELSON R L . Putative alleles for increased yield from soybean plant introductions. Crop Science, 2004,44(3):784-791.
doi: 10.2135/cropsci2004.7840 |
[39] |
REINPRECHT Y, POYSA V W, YU K, RAJCAN I, ABLETT G R, PAULS K P . Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006,49(12):1510-1527.
doi: 10.1139/g06-112 pmid: 17426766 |
[40] |
LIANG H Z, YU Y L, WANG S F, LIAN Y, WANG T F, WEI Y L, GONG P T, LIU X Y, FANG X J, ZHANG M C . QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China, 2010,9(8):1108-1116.
doi: 10.1016/S1671-2927(09)60197-8 |
[41] |
DIERS B W, KEIM P, FEHR W R, SHOEMAKER R C . RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992,83(5):608-612.
doi: 10.1007/BF00226905 pmid: 24202678 |
[42] |
LEE S H, BAILEY M A, MIAN M A, JR CARTER T, SHIPE E R, ASHLEY D A, PARROTT W A, HUSSEY R S, BOERMA H R . RFLP loci associated with soybean seed protein and oil content across populations and locations. Theoretical and Applied Genetics, 1996,93(5):649-657.
doi: 10.1007/BF00224058 pmid: 24162390 |
[43] | AKOND M, LIU S M, BONEY M, KANTARTZI S K, MEKSEM K, BELLALOUI N, LIGHTFOOT D A, KASSEM M A . Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. American Journal of Plant Sciences, 2014,5(1):158-167. |
[44] |
ZHANG Y H, LIU M F, HE J B, WANG Y F, XING G N, LI Y, YANG S P, ZHAO T J, GAI J Y . Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics, 2015,128(6):1061-1072.
doi: 10.1007/s00122-015-2490-4 pmid: 25754423 |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[4] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[5] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[6] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[7] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[8] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[9] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[10] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[11] | 汝晨,胡笑涛,吕梦薇,陈滇豫,王文娥,宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303-3320. |
[12] | 赵晓慧,张艳艳,戎亚思,段剑钊,贺利,刘万代,郭天财,冯伟. 不同水氮条件下冬小麦穗器官临界氮稀释模型研究[J]. 中国农业科学, 2022, 55(17): 3321-3333. |
[13] | 王巧娟,何虹,李亮,张超,蔡焕杰. 基于AquaCrop模型的大豆灌溉制度优化研究[J]. 中国农业科学, 2022, 55(17): 3365-3379. |
[14] | 原程,张玉先,王孟雪,黄炳林,辛明强,尹小刚,胡国华,张明聪. 中耕时间和深度对大豆光合特性及产量形成的影响[J]. 中国农业科学, 2022, 55(15): 2911-2926. |
[15] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
|