[1] |
SANTOS-HERNÁNDEZ M, MIRALLES B, AMIGO L, RECIO I. Intestinal signaling of proteins and digestion-derived products relevant to satiety. Journal of Agricultural and Food Chemistry, 2018, 66(39):10123-10131. doi: 10.1021/acs.jafc.8b02355.
doi: 10.1021/acs.jafc.8b02355
|
[2] |
VELDHORST M, SMEETS A, SOENEN S, HOCHSTENBACH- WAELEN A, HURSEL R, DIEPVENS K, LEJEUNE M, LUSCOMBE- MARSH N, WESTERTERP-PLANTENGA M. Protein-induced satiety: effects and mechanisms of different proteins. Physiology & Behavior, 2008, 94(2):300-307. doi: 10.1016/j.physbeh.2008.01.003.
doi: 10.1016/j.physbeh.2008.01.003
|
[3] |
CARON J, DOMENGER D, DHULSTER P, RAVALLEC R, CUDENNEC B. Protein digestion-derived peptides and the peripheral regulation of food intake. Frontiers in Endocrinology, 2017, 8:85. doi: 10.3389/fendo.2017.00085.
doi: 10.3389/fendo.2017.00085
|
[4] |
CUBER J C, BERNARD C, LEVENEZ F, CHAYVIALLE J A. Lipids, proteins and carbohydrates stimulate the secretion of intestinal cholecystokinin in the pig. Reproduction, Nutrition, Development, 1990, 30(2):267-275.
|
[5] |
NAKAJIMA S, HIRA T, HARA H. Calcium-sensing receptor mediates dietary peptide-induced CCK secretion in enteroendocrine STC-1 cells. Molecular Nutrition & Food Research, 2012, 56(5):753-760. doi: 10.1002/mnfr.201100666.
doi: 10.1002/mnfr.201100666
|
[6] |
MACE O J, TEHAN B, MARSHALL F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacology Research & Perspectives, 2015, 3(4):e00155. doi: 10.1002/prp2.155.
doi: 10.1002/prp2.155
|
[7] |
REIMANN F, TOLHURST G, GRIBBLE F M. G-protein-coupled receptors in intestinal chemosensation. Cell Metabolism, 2012, 15(4):421-431. doi: 10.1016/j.cmet.2011.12.019.
doi: 10.1016/j.cmet.2011.12.019
|
[8] |
LIOU A P, CHAVEZ D I, ESPERO E, HAO S Z, WANK S A, RAYBOULD H E. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. American Journal of Physiology Gastrointestinal and Liver Physiology, 2011, 300(5):G895-G902. doi: 10.1152/ajpgi.00521.2010.
doi: 10.1152/ajpgi.00521.2010
|
[9] |
KIM S S, AHN C B, MOON S W, JE J Y. Purification and antioxidant activities of peptides from sea squirt (Halocynthia roretzi) protein hydrolysates using pepsin hydrolysis. Food Bioscience, 2018, 25:128-133. doi: 10.1016/j.fbio.2018.08.010.
doi: 10.1016/j.fbio.2018.08.010
|
[10] |
NISHI T, HARA H, TOMITA F. Soybean beta-conglycinin peptone suppresses food intake and gastric emptying by increasing plasma cholecystokinin levels in rats. The Journal of Nutrition, 2003, 133(2):352-357. doi: 10.1093/jn/133.2.352.
doi: 10.1093/jn/133.2.352
|
[11] |
WU W D, ZHOU H R, PESTKA J J. Potential roles for calcium- sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin). Archives of Toxicology, 2017, 91(1):495-507. doi: 10.1007/s00204-016-1687-x.
doi: 10.1007/s00204-016-1687-x
|
[12] |
FLANNERY B M, CLARK E S, PESTKA J J. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicological Sciences, 2012, 130(2):289-297. doi: 10.1093/toxsci/kfs255.
doi: 10.1093/toxsci/kfs255
|
[13] |
SHIN S J, KIM D, KIM J S, KIM I, LEE J R, KIM S C, KIM B J. Effects of gamisoyo-San decoction, a traditional Chinese medicine, on gastrointestinal motility. Digestion, 2018, 98(4):231-237. doi: 10.1159/000489455.
doi: 10.1159/000489455
|
[14] |
LE THUC O, NOËL J, ROVÈRE C. An ex vivo perifusion method for quantitative determination of neuropeptide release from mouse hypothalamic explants. BIO-PROTOCOL, 2017, 16(7):1-9. doi: 10.21769/bioprotoc.2521.
doi: 10.21769/bioprotoc.2521
|
[15] |
SYMONDS E L, PEIRIS M, PAGE A J, CHIA B, DOGRA H, MASDING A, GALANAKIS V, ATIBA M, BULMER D, YOUNG R L, BLACKSHAW L A. Mechanisms of activation of mouse and human enteroendocrine cells by nutrients. Gut, 2015, 64(4):618-626. doi: 10.1136/gutjnl-2014-306834.
doi: 10.1136/gutjnl-2014-306834
|
[16] |
HU Y J, XIE Y H, WANG Y Q, CHEN X M, SMITH D E. Development and characterization of a novel mouse line humanized for the intestinal peptide transporter PEPT1. Molecular Pharmaceutics, 2014, 11(10):3737-3746. doi: 10.1021/mp500497p.
doi: 10.1021/mp500497p
|
[17] |
PATKAR P P, HAO Z, MUMPHREY M B, TOWNSEND R L, BERTHOUD H R, SHIN A C. Unlike calorie restriction, Roux-en-Y gastric bypass surgery does not increase hypothalamic AgRP and NPY in mice on a high-fat diet. International Journal of Obesity, 2019, 43(11):2143-2150. doi: 10.1038/s41366-019-0328-x.
doi: 10.1038/s41366-019-0328-x
|
[18] |
SUFIAN M, HIRA T, MIYASHITA K, NISHI T, ASANO K, HARA H. Pork peptone stimulates cholecystokinin secretion from enteroendocrine cells and suppresses appetite in rats. Bioscience, Biotechnology, and Biochemistry, 2006, 70(8):1869-1874. doi: 10.1271/bbb.60046.
doi: 10.1271/bbb.60046
|
[19] |
LIU C, WANG H L, CUI Z M, HE X L, WANG X S, ZENG X X, MA H. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chemistry, 2007, 102(4):1310-1316. doi: 10.1016/j.foodchem.2006.07.017.
doi: 10.1016/j.foodchem.2006.07.017
|
[20] |
NISHI T, HARA H, ASANO K, TOMITA F. The soybean beta- conglycinin beta 51-63 fragment suppresses appetite by stimulating cholecystokinin release in rats. The Journal of Nutrition, 2003, 133(8):2537-2542. doi: 10.1093/jn/133.8.2537.
doi: 10.1093/jn/133.8.2537
|
[21] |
OHSU T, AMINO Y, NAGASAKI H, YAMANAKA T, TAKESHITA S, HATANAKA T, MARUYAMA Y, MIYAMURA N, ETO Y. Involvement of the calcium-sensing receptor in human taste perception. Journal of Biological Chemistry, 2010, 285(2):1016-1022. doi: 10.1074/jbc.M109.029165.
doi: 10.1074/jbc.M109.029165
|
[22] |
RAY K, NORTHUP J. Evidence for distinct cation and calcimimetic compound (NPS 568) recognition domains in the transmembrane regions of the human Ca2+ receptor. Journal of Biological Chemistry, 2002, 277(21):18908-18913. doi: 10.1074/jbc.M202113200.
doi: 10.1074/jbc.M202113200
|
[23] |
DIAKOGIANNAKI E, PAIS R, TOLHURST G, PARKER H E, HORSCROFT J, RAUSCHER B, ZIETEK T, DANIEL H, GRIBBLE F M, REIMANN F. Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium- sensing receptor. Diabetologia, 2013, 56(12):2688-2696. doi: 10.1007/s00125-013-3037-3.
doi: 10.1007/s00125-013-3037-3
|
[24] |
PAIS R, GRIBBLE F M, REIMANN F. Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides, 2016, 77:9-15. doi: 10.1016/j.peptides.2015.07.019.
doi: 10.1016/j.peptides.2015.07.019
|
[25] |
王绿阳, 李英英, 李忠鑫, 杭苏琴. 动物胃肠道氨基酸感应与转运. 动物营养学报, 2020, 32(7):3031-3038. doi: 10.3969/j.issn.1006-267x.2020.07.011.
doi: 10.3969/j.issn.1006-267x.2020.07.011
|
|
WANG L Y, LI Y Y, LI Z X, HANG S Q. Amino acid sensing and transport in animal gastrointestinal tract. Chinese Journal of Animal Nutrition, 2020, 32(7):3031-3038. doi: 10.3969/j.issn.1006-267x.2020.07.011. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2020.07.011
|
[26] |
SAM A H, TROKE R C, TAN T M, BEWICK G A. The role of the gut/brain axis in modulating food intake. Neuropharmacology, 2012, 63(1):46-56. doi: 10.1016/j.neuropharm.2011.10.008.
doi: 10.1016/j.neuropharm.2011.10.008
|
[27] |
WÓJCIK-GŁADYSZ A, SZLIS M. Hypothalamo-gastrointestinal axis-role in food intake regulation. Journal of Animal and Feed Sciences, 2016, 25(2):97-108. doi: 10.22358/jafs/65569/2016.
doi: 10.22358/jafs/65569/2016
|
[28] |
LIU W L, JIN Y Y, WILDE P J, HOU Y Y, WANG Y P, HAN J Z. Mechanisms, physiology, and recent research progress of gastric emptying. Critical Reviews in Food Science and Nutrition, 2021, 61(16):2742-2755. doi: 10.1080/10408398.2020.1784841.
doi: 10.1080/10408398.2020.1784841
|
[29] |
RAYBOULD H E, ZITTEL T T, HOLZER H H, LLOYD K C, MEYER J H. Gastroduodenal sensory mechanisms and CCK in inhibition of gastric emptying in response to a meal. Digestive Diseases and Sciences, 1994, 39(12 Suppl.):41S-43S. doi: 10.1007/BF02300368.
doi: 10.1007/BF02300368
|
[30] |
GOYAL R K, GUO Y, MASHIMO H. Advances in the physiology of gastric emptying. Neurogastroenterology and Motility, 2019, 31(4):e13546. doi: 10.1111/nmo.13546.
doi: 10.1111/nmo.13546
|
[31] |
FAN W, ELLACOTT K L J, HALATCHEV I G, TAKAHASHI K, YU P X, CONE R D. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nature Neuroscience, 2004, 7(4):335-336. doi: 10.1038/nn1214.
doi: 10.1038/nn1214
|
[32] |
隋啸一, 高琴, 刘磊, 李福昌. 饲粮蛋白质水平对家兔食欲肽基因表达的影响. 动物营养学报, 2015, 27(9):2947-2954.
|
|
SUI X Y, GAO Q, LIU L, LI F C. Effects of dietary protein level on appetitive peptide gene expression of rabbits. Chinese Journal of Animal Nutrition, 2015, 27(9):2947-2954. (in Chinese)
|
[33] |
CHU S C, CHEN P N, HO Y J, YU C H, HSIEH Y S, KUO D Y. Both neuropeptide Y knockdown and Y1 receptor inhibition modulate CART-mediated appetite control. Hormones and Behavior, 2015, 67:38-47. doi: 10.1016/j.yhbeh.2014.11.005.
doi: 10.1016/j.yhbeh.2014.11.005
|