[1] |
http://www.moa.gov.cn/govpublic/XMYS/201510/t20151023_4875680.htm.
|
[2] |
中国畜牧兽医年鉴编辑委员会. 中国畜牧兽医年鉴-2022. 北京: 中国农业出版社, 2022.
|
|
China Animal Husbandry and Veterinary Yearbook Editorial Committee. China Animal Husbandry and Veterinary Yearbook-2022. Beijing: China Agriculture Press, 2022. (in Chinese)
|
[3] |
宋英今, 王冠超, 李然, 陈冠益. 沼液处理方式及资源化研究进展. 农业工程学报, 2021, 37(12): 237-250.
|
|
SONG Y J, WANG G C, LI R, CHEN G Y. Research progress of biogas slurry treatment and resource utilization. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 237-250. (in Chinese)
|
[4] |
张明慧, 高大文. 臭氧组合絮凝工艺处理牛粪沼液的研究. 中国沼气, 2020, 38(1): 37-44.
|
|
ZHANG M H, GAO D W. Ozonation and flocculation combination treating biogas slurry of cow dung. China Biogas, 2020, 38(1): 37-44. (in Chinese)
|
[5] |
ABUBAKER J, RISBERG K, PELL M. Biogas residues as fertilisers: Effects on wheat growth and soil microbial activities. Applied Energy, 2012, 99: 126-134.
doi: 10.1016/j.apenergy.2012.04.050
|
[6] |
SELEIMAN M F, SELIM S, JAAKKOLA S, MÄKELÄ P S A. Chemical composition and in vitro digestibility of whole-crop maize fertilized with synthetic fertilizer or digestate and harvested at two maturity stages in Boreal growing conditions. Agricultural and Food Science, 2017, 26(1): 47.
doi: 10.23986/afsci.60068
|
[7] |
BARZEE T J, EDALATI A, EL-MASHAD H, WANG D Y, SCOW K, ZHANG R H. Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system. Frontiers in Sustainable Food Systems, 2019, 3: 58.
doi: 10.3389/fsufs.2019.00058
|
[8] |
NKOA R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, 2014, 34(2): 473-492.
doi: 10.1007/s13593-013-0196-z
|
[9] |
YU F B, LUO X P, SONG C F, ZHANG M X, SHAN S D. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2010, 60(3): 262-268.
|
[10] |
BILALIS D, KROKIDA M, ROUSSIS I, PAPASTYLIANOU P, TRAVLOS I, CHEIMONA N, DEDE A. Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.). Folia Horticulturae, 2018, 30(2): 321-332.
doi: 10.2478/fhort-2018-0027
|
[11] |
乔锋, 肖洋, 赵淑苹. 海林农场沼肥连年施用对玉米产量和土壤化学性质的影响. 中国农学通报, 2018, 34(36): 93-98.
doi: 10.11924/j.issn.1000-6850.casb18080109
|
|
QIAO F, XIAO Y, ZHAO S P. Consecutive application of biogas manure affects maize production and soil chemical properties in Hailin farm. Chinese Agricultural Science Bulletin, 2018, 34(36): 93-98. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb18080109
|
[12] |
|
|
ZHANG J H, MA L L, LI J M. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato. Scientia Agricultura Sinica, 2018, 51(14): 2788-2798. doi: 10.3864/j/issn.0578-1752.2018.14.015. (in Chinese)
|
[13] |
王红宁, 林琭, 汤昀, 李永平, 孙俊宝, 张生智, 吴晓璇. 沼液营养液对基质栽培草莓叶片气体交换日变化的影响. 河北农业大学学报, 2019, 42(6): 57-64.
|
|
WANG H N, LIN L, TANG Y, LI Y P, SUN J B, ZHANG S Z, WU X X. Effects of nutrient solution based on biogas slurry on diurnal change leaf gas exchange of strawberry in soilless cultivation. Journal of Agricultural University of Hebei, 2019, 42(6): 57-64. (in Chinese)
|
[14] |
XIE X T, MACHIKOWA T, WONPRASAID S. Fertigation based on a nutrient balance model for cassava production in two different textured soils. Plant Production Science, 2020, 23(4): 407-416.
doi: 10.1080/1343943X.2020.1743189
|
[15] |
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
|
|
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
|
[16] |
蔡庆生. 植物生理学实验. 北京: 中国农业大学出版社, 2013.
|
|
CAI Q S. Plant Physiology Experiment. Beijing: China Agricultural University Press, 2013. (in Chinese)
|
[17] |
REDDY K R, MATCHA S K. Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis. Industrial Crops and Products, 2010, 31(1): 185-191.
doi: 10.1016/j.indcrop.2009.10.004
|
[18] |
SHIRATSUCHI H, YAMAGISHI T, ISHII R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Research, 2006, 95(2/3): 291-304.
doi: 10.1016/j.fcr.2005.04.005
|
[19] |
NAEEM M, KHAN M M A, IDREES M, AFTAB T. Phosphorus ameliorates crop productivity, photosynthetic efficiency, nitrogen- fixation, activities of the enzymes and content of nutraceuticals of Lablab purpureus L. Scientia Horticulturae, 2010, 126(2): 205-214.
doi: 10.1016/j.scienta.2010.07.009
|
[20] |
XU C M, TIAN Y, SUN Y X, DONG L M. Effects of biogas slurry irrigation on growth, photosynthesis, and nutrient status of Perilla frutescens seedlings. Communications in Soil Science and Plant Analysis, 2013, 44(22): 3381-3390.
doi: 10.1080/00103624.2013.847447
|
[21] |
LUO A R, ZHOU C N, CHEN J L. The associated with carbon conversion rate and source-sink enzyme activity in tomato fruit subjected to water stress and potassium application. Frontiers in Plant Science, 2021, 12: 681145.
doi: 10.3389/fpls.2021.681145
|
[22] |
JIN Z W, SUN R H, PING L F, ZHANG C A, YING M F, DING S H. Evaluating the key factors of soil fertility and tomato yield with fresh and aged biogas slurry addition through greenhouse experiment. Biomass Conversion and Biorefinery, 2023, 13(6): 5073-5084.
doi: 10.1007/s13399-021-01583-x
|
[23] |
CRISTINA G, CAMELIN E, TOMMASI T, FINO D, PUGLIESE M. Anaerobic digestates from sewage sludge used as fertilizer on a poor alkaline sandy soil and on a peat substrate: Effects on tomato plants growth and on soil properties. Journal of Environmental Management, 2020, 269: 110767.
doi: 10.1016/j.jenvman.2020.110767
|
[24] |
PEREZ-ESPINOSA A, MORENO-CASELLES J, MORAL R, PEREZ- MURCIA M D, GOMEZ I. Effect of sewage sludge and cobalt treatments on tomato fruit yield, weight, and quality. Journal of Plant Nutrition, 1999, 22(2): 379-385.
doi: 10.1080/01904169909365635
|
[25] |
BOURIOUG M, ALAOUI-SEHMER L, LAFFRAY X, BENBRAHIM M, ALEYA L, ALAOUI-SOSSÉ B. Sewage sludge fertilization in larch seedlings: Effects on trace metal accumulation and growth performance. Ecological Engineering, 2015, 77: 216-224.
doi: 10.1016/j.ecoleng.2015.01.031
|
[26] |
ZHANG Y T, KIRIIWA Y, NUKAYA A. Influence of nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate. The Horticulture Journal, 2015, 84(1): 37-45.
doi: 10.2503/hortj.MI-003
|
[27] |
GRUDA N, CARON J, PRASAD M, MAHER M J. Growing Media. Encyclopedia of Soil Sciences, 2016.
|
[28] |
PAN W L, MADSEN I J, BOLTON R P, GRAVES L, SISTRUNK T. Ammonia/ammonium toxicity root symptoms induced by inorganic and organic fertilizers and placement. Agronomy Journal, 2016, 108(6): 2485-2492.
doi: 10.2134/agronj2016.02.0122
|
[29] |
MA L L, ZHANG J W, REN R D, FAN B H, HOU L P, LI J M. Effects of different organic nutrient solution formulations and supplementation on tomato fruit quality and aromatic volatiles. Archives of Agronomy and Soil Science, 2021, 67(4): 563-575.
doi: 10.1080/03650340.2020.1740208
|
[30] |
TENG Y F, SHANG B, TAO X P. Effects of digested pig slurry on photosynthesis, carbohydrate metabolism and yield of tomato (Solanum lycopersicum L.). Agronomy, 2022, 12(9): 2042.
doi: 10.3390/agronomy12092042
|
[31] |
MOYA C, OYANEDEL E, VERDUGO G, FLORES M F, URRESTARAZU M, ÁLVARO J E. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience, 2017, 52(6): 868-872.
doi: 10.21273/HORTSCI12026-17
|