中国农业科学 ›› 2023, Vol. 56 ›› Issue (3): 519-528.doi: 10.3864/j.issn.0578-1752.2023.03.010
收稿日期:
2022-04-06
接受日期:
2022-06-06
出版日期:
2023-02-01
发布日期:
2023-02-14
通信作者:
巩彪,E-mail:gongbiao@sdau.edu.cn
联系方式:
刘明慧,E-mail:liuminghuiaq@163.com。
基金资助:
LIU MingHui1(), TIAN HongYu2, LIU ZhiGuang2, GONG Biao1()
Received:
2022-04-06
Accepted:
2022-06-06
Published:
2023-02-01
Online:
2023-02-14
摘要:
【目的】褪黑素对植物具有多种有益功效,但其化学性质活泼,限制了其在农业生产中的应用。本研究通过包膜技术制备出含褪黑素的尿素缓释功能肥(以下简称功能肥),研究其对番茄生长、产量、品质和磷素利用效率的影响,为褪黑素高效施用和番茄节肥生产提供理论依据。【方法】首先以水泡法研究功能肥中褪黑素的释放速率,然后以穴盘育苗方式研究功能肥对番茄幼苗生长的影响。采用盆栽方式,设置4个处理,分别是施磷(记作+P)和不施磷(记作-P)两个磷处理水平,再分别添加尿素缓释肥(对照,仍记作-P和+P)或功能肥(记作-P+M和+P+M),研究功能肥对植株生长和干物质分配、根系生长、磷素吸收和分配、磷肥利用率、肥料产量贡献率、根系磷酸酶活性、果实产量和品质的影响。【结果】利用褪黑素制备功能肥时存在一定的损耗,包膜后褪黑素的实际含量为包膜时褪黑素总用量的35%。水泡至60 d时,功能肥中褪黑素残余量为6.61%。番茄穴盘育苗中施用功能肥能显著促进幼苗生长,壮苗指数较对照提升70.2%。盆栽试验表明,-P处理下番茄根、茎、叶、果的生物量分别较+P处理下降低了19.64%、18.51%、28.99%和28.73%,根和茎的干物质分配比例增加了10.03%和11.63%,叶和果的干物质分配比例分别减少了2.74%和2.39%。应用功能肥能显著提升两种磷处理条件下所有组织的生物量积累,增加+P条件下根的干物质分配比例达12.14%,降低-P条件下茎和叶的干物质分配比例达6.00%和5.90%,增加9.06%的果干物质分配比例。-P处理降低根系的总长、总表面积和总体积,增加根尖数量,施用功能肥能提高两种磷水平下根系的总长、总表面积、总体积和根尖数量。-P处理显著降低了番茄植株根、茎、叶、果的磷含量,增加根、茎和叶的磷分配比例,减少果的磷分配比例。应用功能肥能显著提升两种P处理条件下所有组织的磷含量,+P条件下根的磷分配比例,-P条件下茎和叶的磷分配比例,增加果的磷分配比例。应用功能肥能显著提高磷酸酶的活性、全株磷吸收量、肥料利用率与肥料产量贡献率。-P处理使番茄产量降低了17.57%,但-P处理下应用功能肥能使产量提高21.32%,而对+P处理下的产量影响不显著。此外,应用功能肥能全面提高-P或部分提高+P条件下番茄果实的品质。【结论】将褪黑素包膜于缓释肥能显著降低褪黑素的用量,提高番茄幼苗及植株全生育期的生长质量,增加磷肥利用效率,提高产量和果实品质。
刘明慧, 田虹雨, 刘之广, 巩彪. 减磷条件下含褪黑素的尿素缓释功能肥对番茄生长、产量、品质和磷素利用效率的影响[J]. 中国农业科学, 2023, 56(3): 519-528.
LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions[J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
表3
功能肥对番茄全生育期植株生长和干物质分配的影响"
处理 Treatment | 根Root | 茎Stem | 叶Leaf | 果Fruit | 总生物量 TB | ||||
---|---|---|---|---|---|---|---|---|---|
DW | AR | DW | AR | DW | AR | DW | AR | ||
-P | 10.64d | 4.17a | 41.61d | 16.32a | 105.82d | 41.51b | 96.82d | 37.98c | 254.89d |
-P+M | 12.10c | 4.18a | 44.45c | 15.34b | 113.15c | 39.06c | 119.97c | 41.42a | 289.67c |
+P | 13.24b | 3.79b | 51.06b | 14.62c | 149.03b | 42.68a | 135.85b | 38.91b | 349.18b |
+P+M | 15.73a | 4.25a | 54.44a | 14.73c | 157.91a | 42.73a | 141.45a | 38.28bc | 369.53a |
表4
功能肥对番茄全生育期磷利用的影响"
处理 Treatment | 根Root | 茎Stem | 叶Leaf | 果Fruit | 吸收量 U | 肥料利用率 FU | 肥料产量贡献率 CFY | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | AR | C | AR | C | AR | C | AR | ||||
-P | 0.56c | 4.44b | 0.59c | 18.29a | 0.44c | 34.70a | 0.59c | 42.57c | 134.19d | — | — |
-P+M | 0.67b | 4.30b | 0.65b | 15.33b | 0.48bc | 28.81c | 0.81b | 51.56a | 188.49c | — | — |
+P | 0.71b | 4.03c | 0.66b | 14.44c | 0.52b | 33.21b | 0.83b | 48.32b | 233.35b | 11.14b | 28.73b |
+P+M | 0.84a | 4.52a | 0.78a | 14.54c | 0.61a | 32.98b | 0.99a | 47.95b | 292.04a | 17.73a | 31.55a |
表5
功能肥对番茄全生育期番茄品质的影响"
处理 Treatment | 单株产量 Yield (kg/plant) | 单果重 Fruit weight (g) | 第1穗果坐果至 果实转色的时间 Mature period (d) | 可溶性固形物 Soluble solid (%) | 可溶性糖 Soluble sugar (%) | 可滴定酸 Titratable acid (%) | 糖酸比 Sugar/acid ratio | 维生素C Vc (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
-P | 2.58c | 172c | 36.4b | 5.19c | 2.86d | 0.91a | 3.14d | 144c |
-P+M | 3.13b | 209b | 34.5c | 6.45a | 3.02c | 0.86b | 3.51c | 213a |
+P | 3.39ab | 226ab | 38.6a | 6.03b | 3.29ab | 0.83c | 3.96b | 169b |
+P+M | 3.64a | 243a | 35.7b | 6.62a | 3.49a | 0.82c | 4.26a | 221a |
[1] |
许秀美, 邱化蛟, 周先学, 于瑞忠, 冷寿慈. 植物对磷素的吸收、运转和代谢. 山东农业大学学报(自然科学版), 2001, 32(3): 397-400. doi: 10.3969/j.issn.1000-2324.2001.03.031.
doi: 10.3969/j.issn.1000-2324.2001.03.031 |
XU X M, QIU H J, ZHOU X X, YU R Z, LENG S C. The absorption, translocation and metabolism of phosphorus of plant. Journal of Shandong Agricultural University, 2001, 32(3): 397-400. doi: 10.3969/j.issn.1000-2324.2001.03.031. (in Chinese)
doi: 10.3969/j.issn.1000-2324.2001.03.031 |
|
[2] |
胡宁, 袁红, 蓝家程, 袁道先, 傅瓦利, 文志林. 岩溶石漠化区不同植被恢复模式土壤无机磷形态特征及影响因素. 生态学报, 2014, 34(24): 7393-7402. doi: 10.5846/stxb201303190452.
doi: 10.5846/stxb201303190452 |
HU N, YUAN H, LAN J C, YUAN D X, FU W L, WEN Z L. Factors influencing the distribution of inorganic phosphorus fractions in different vegetation restoration areas in Karst rocky desertification areas. Acta Ecologica Sinica, 2014, 34(24): 7393-7402. doi: 10.5846/stxb201303190452. (in Chinese)
doi: 10.5846/stxb201303190452 |
|
[3] |
巩彪, 史庆华. 园艺作物褪黑素的研究进展. 中国农业科学, 2017, 50(12): 2326-2337. doi: 10.3864/j.issn.0578-1752.2017.12.013.
doi: 10.3864/j.issn.0578-1752.2017.12.013 |
GONG B, SHI Q H. Review of melatonin in horticultural crops. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337. doi: 10.3864/j.issn.0578-1752.2017.12.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.013 |
|
[4] |
ARNAO M B, J HERNÁNDEZ-RUIZ. Melatonin against environmental plant stressors: A review. Current Protein and Peptide Science, 2021, 22(5): 413-429.
doi: 10.2174/1389203721999210101235422 pmid: 33397256 |
[5] |
CRNMBEZ H, MOTTE H, BEECKMAN T. Tackling plant phosphate starvation by the roots. Developmental Cell, 2019, 48(5): 599-615.
doi: S1534-5807(19)30002-4 pmid: 30861374 |
[6] |
RAMÓN, PELAGIO-FLORES, EDITHh, MUOZ-PARRA, RANDY, ORTIZ-CASTRO, JOEÉ, LÓPEZ-BUCIO. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. Journal of Pineal Research, 2012, 53(3): 279-288.
doi: 10.1111/j.1600-079X.2012.00996.x |
[7] | WEN D, GONG B, SUN S S, LIU S Q, WANG X F, WEI M, YANG F J, LI Y, SHI Q H. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science, 2016, 7: 718. |
[8] |
REN S X, RUTTO L, KATUURAMU D, OONO Y. Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS ONE, 2019, 14(8): e0221687.
doi: 10.1371/journal.pone.0221687 |
[9] |
XU Y, SHI Q H, GONG B. Characterization of COMT1-mediated low phosphorus resistance mechanism by metabolomics in tomato plants. Environmental and Experimental Botany, 2020, 179: 104187.
doi: 10.1016/j.envexpbot.2020.104187 |
[10] |
ZHANG M R, SUN Y K, WEN J, LIU Z Y, YAN S. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. Journal of Pineal Research, 2017, 62(4): e12403.
doi: 10.1111/jpi.12403 |
[11] | 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响. 作物杂志, 2022(1): 174-178. |
DU X, LI B, MAO L X, CHEN W, ZHANG Y X, CAO L. Effects of melatonin on yield and AsA-GSH cycle in soybean under drought stress. Crops, 2022(1): 174-178. (in Chinese) | |
[12] |
WANG P, SUN X, LI C, WEI Z W, LIANG D, MA F W. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 2012, 54(3): 292-302.
doi: 10.1111/jpi.12017 |
[13] |
GONG B, YAN Y Y, WEN D, SHI Q H. Hydrogen peroxide produced by NADPH oxidase: A novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 2017, 160(4): 396-409.
doi: 10.1111/ppl.12581 |
[14] |
SUN Q Q, ZHANG N, WANG J F, ZHANG H J, LI D B, SHI J, LI R, WEEDA S, ZHAO B, REN S X, GUO Y D. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 2015, 66(3): 657-668. doi: 10.1093/jxb/eru332.
doi: 10.1093/jxb/eru332 pmid: 25147270 |
[15] |
刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展. 植物学报, 2022, 57(1): 111-126. doi: 10.11983/CBB21146.
doi: 10.11983/CBB21146 |
LIU D S, YAO L, XU W R, FENG M, YAO W K. Research progress of melatonin in plant stress resistance. Bulletin of Botany, 2022, 57(1): 111-126. doi: 10.11983/CBB21146. (in Chinese)
doi: 10.11983/CBB21146 |
|
[16] |
杨相东, 曹一平, 江荣风, 张福锁. 几种包膜控释肥氮素释放特性的评价. 植物营养与肥料学报, 2005, 11(4): 501-507. doi: 10.3321/j.issn:1008-505X.2005.04.012.
doi: 10.3321/j.issn:1008-505X.2005.04.012 |
YANG X D, CAO Y P, JIANG R F, ZHANG F S. Evaluation of nutrients release feature of coated controlled-release fertilizer. Plant Nutrition and Fertilizer Science, 2005, 11(4): 501-507. doi: 10.3321/j.issn:1008-505X.2005.04.012. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2005.04.012 |
|
[17] |
YAN Y Y, JING X, TANG H, LI X, GONG B, SHI Q H. Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant and Cell Physiology, 2019, 60(9): 2051-2064.
doi: 10.1093/pcp/pcz126 |
[18] |
张彦才, 李若楠, 王丽英, 刘孟朝, 武雪萍, 吴会军, 李银坤. 磷肥对日光温室番茄磷营养和产量及土壤酶活性的影响. 植物营养与肥料学报, 2008, 14(6): 1193-1199. doi: 10.3321/j.issn:1008-505X. 2008.06.026.
doi: 10.3321/j.issn:1008-505X. 2008.06.026 |
ZHANG Y C, LI R N, WANG L Y, LIU M C, WU X P, WU H J, LI Y K. Effect of phosphorus fertilization on tomato phosporous nutrition, yield and soil enzyme activities. Plant Nutrition and Fertilizer Science, 2008, 14(6): 1193-1199. doi: 10.3321/j.issn:1008-505X.2008.06.026. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2008.06.026 |
|
[19] | 王秀峰. 蔬菜栽培学各论:北方本. 4版. 北京: 中国农业出版社, 2011. |
WANG X F. Various Theories of Vegetable Cultivation:Northern Edition. 4th ed. Beijing: China Agriculture Press, 2011. (in Chinese) | |
[20] |
李恺, 张丽丽, 邵长勇, 仲崇山, 曹逼力, 史庆华, 巩彪. 亚高温下冷等离子体处理番茄种子对幼苗生长和光能利用的影响. 园艺学报, 2021, 48(11): 2286-2298. doi: 10.16420/j.issn.0513-353x.2020-0698.
doi: 10.16420/j.issn.0513-353x.2020-0698 |
LI K, ZHANG L L, SHAO C Y, ZHONG C S, CAO B L, SHI Q H, GONG B. Effects of cold plasma seed treatment on tomato seedling growth and light energy utilization under daytime sub-high temperature environment. Acta Horticulturae Sinica, 2021, 48(11): 2286-2298. doi: 10.16420/j.issn.0513-353x.2020-0698. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0698 |
|
[21] |
丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48(5): 872-881. doi: 10.3864/j.issn.0578-1752.2015.05.05.
doi: 10.3864/j.issn.0578-1752.2015.05.05 |
DING H, ZHANG Z M, DAI L X, YANG J S, CI D W, QIN F F, SONG W W, WAN S B. Effects of water and nitrogen interaction on peanut root growth and yield. Scientia Agricultura Sinica, 2015, 48(5): 872-881. doi: 10.3864/j.issn.0578-1752.2015.05.05. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.05.05 |
|
[22] |
张丽丽, 刘德兴, 史庆华, 巩彪. 黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用. 中国农业科学, 2018, 51(8): 1547-1555. doi: 10.3864/j.issn.0578-1752.2018.08.012.
doi: 10.3864/j.issn.0578-1752.2018.08.012 |
ZHANG L L, LIU D X, SHI Q H, GONG B. Physiological regulatory effects of fulvic acid on stress tolerance of tomato seedlings against phosphate deficiency. Scientia Agricultura Sinica, 2018, 51(8): 1547-1555. doi: 10.3864/j.issn.0578-1752.2018.08.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.08.012 |
|
[23] |
张丽丽, 史庆华, 巩彪. 中、碱性土壤条件下黄腐酸与磷肥配施对番茄生育和磷素利用率的影响. 中国农业科学, 2020, 53(17): 3567-3575. doi: 10.3864/j.issn.0578-1752.2020.17.013.
doi: 10.3864/j.issn.0578-1752.2020.17.013 |
ZHANG L L, SHI Q H, GONG B. Application of fulvic acid and phosphorus fertilizer on tomato growth, development, and phosphorus utilization in neutral and alkaline soil. Scientia Agricultura Sinica, 2020, 53(17): 3567-3575. doi: 10.3864/j.issn.0578-1752.2020.17.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.17.013 |
|
[24] |
WANG B, GAO Z Y, SHI Q H, GONG B. SAMS1 stimulates tomato root growth and P availability via activating polyamines and ethylene synergetic signaling under low-P condition. Environmental and Experimental Botany, 2022, 197: 104844.
doi: 10.1016/j.envexpbot.2022.104844 |
[25] |
HARDELAND R. Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 2015, 66(3): 627-646. doi: 10.1093/jxb/eru386.
doi: 10.1093/jxb/eru386 pmid: 25240067 |
[26] |
MADEBO M P, LUO S M, WANG L, ZHENG Y H, JIN P. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit. Journal of Integrative Agriculture, 2021, 20(11): 3060-3074.
doi: 10.1016/S2095-3119(20)63485-2 |
[27] |
陈开, 唐瑭, 张冬平, 陈云, 吕冰. 生长素和细胞分裂素参与构建水稻根系的研究进展. 植物生理学报, 2020, 56(12): 2495-2509. doi: 10.13592/j.cnki.ppj.2020.0398.
doi: 10.13592/j.cnki.ppj.2020.0398 |
CHEN K, TANG T, ZHANG D P, CHEN Y, LÜ B. Recent advances in auxin-cytokinin interactions involved in shaping architecture of rice root system. Plant Physiology Journal, 2020, 56(12): 2495-2509. doi: 10.13592/j.cnki.ppj.2020.0398. (in Chinese)
doi: 10.13592/j.cnki.ppj.2020.0398 |
|
[28] |
高利娟, 张猛, 魏建林, 刘冬梅, 丁效东. 磷肥减施对设施番茄根系形态、磷吸收及土壤微生物量磷含量的影响. 天津农业科学, 2019, 25(8): 16-22. doi: 10.3969/j.issn.1006-6500.2019.08.004.
doi: 10.3969/j.issn.1006-6500.2019.08.004 |
GAO L J, ZHANG M, WEI J L, LIU D M, DING X D. Effects of phosphorus fertilizer reduction on phosphorus uptake, root morphology, and microbial biomass phosphorus content in rhizosphere soil of tomato. Tianjin Agricultural Sciences, 2019, 25(8): 16-22. doi: 10.3969/j.issn.1006-6500.2019.08.004. (in Chinese)
doi: 10.3969/j.issn.1006-6500.2019.08.004 |
|
[29] |
臧祎娜, 张德闪, 李海港, 程凌云, 张朝春, 申建波. 褪黑素调控根系生长和根际互作的机制研究进展. 植物营养与肥料学报, 2019, 25(4): 671-682. doi: 10.11674/zwyf.18401.
doi: 10.11674/zwyf.18401 |
ZANG Y N, ZHANG D S, LI H G, CHENG L Y, ZHANG C C, SHEN J B. Progress in mechanism of melatonin regulation of root growth and rhizosphere interactions. Plant Nutrition and Fertilizer Science, 2019, 25(4): 671-682. doi: 10.11674/zwyf.18401. (in Chinese)
doi: 10.11674/zwyf.18401 |
|
[30] |
ZIA S F, BERKOWITZ O, BEDON F, WHELAN J, FRANKS A E, PLUMME K M. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biology, 2019, 19: 567.
doi: 10.1186/s12870-019-2158-3 |
[31] |
YANG L, YOU J, LI J Z, WANG Y P, CHAN Z L. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. Journal of Experimental Botany, 2021, 72(15): 5599-5611. doi: 10.1093/jxb/erab196.
doi: 10.1093/jxb/erab196 |
[32] | BOZZO G G, DUNN E L, PLAXTON W C. Differential synthesis of phosphate-starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings. Plant Cell & Environment, 2010, 29: 303-313. |
[33] | ZHANG Z X, HU Q, LIU Y N, CHENG P L, CHENG H, LIU W X, XING X J, GUAN Z Y, FANG W M, CHEN S M, JIANG J F, CHEN F D. Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner. Journal of Pineal Research, 2019, 67(7): e12582. |
[34] |
ZHU X F, ZHU C Q, WANG C, DONG X Y, SHEN R F. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice. Journal of Experimental Botany, 2017, 68(3): 753-760. doi: 10.1093/jxb/erw480.
doi: 10.1093/jxb/erw480 pmid: 28064177 |
[1] | 卢猛, 胡凤明, 屠焰, 刁其玉. 白头翁皂苷B4对犊牛生长性能、消化代谢和瘤胃发酵的影响[J]. 中国农业科学, 2023, 56(4): 754-765. |
[2] | 任国栋, 郝小燕, 张暄梓, 刘森, 张宏祥, 田光元, 张建新. 胍基乙酸和甜菜碱对羔羊生长性能、瘤胃发酵和血液代谢的影响[J]. 中国农业科学, 2023, 56(4): 766-778. |
[3] | 王秀娟, 高翰, 李海鹏, 高雪, 孙宝忠, 程强, 徐磊, 张亚朋, 雷元华, 魏萌, 李三禄, 胡俊伟, 张长庆, 高会江, 李俊雅, 张路培, 陈燕. 平凉红牛生长性能、胴体及肉质性状分析[J]. 中国农业科学, 2023, 56(3): 559-571. |
[4] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[5] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[6] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[7] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[8] | 车大璐,赵俐辰,程素彩,刘爱瑜,李晓宇,赵寿培,王健诚,王媛,高玉红,孙新胜. 垫料床对育肥羔羊生长性能和臭气排放的影响[J]. 中国农业科学, 2022, 55(24): 4943-4956. |
[9] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[10] | 王哲鹏,周雯馨,贺俊锡,虎巧燕,赵家悦. 胆囊收缩素A型受体基因序列变异和表达与略阳乌鸡饲料转化率的关联性研究[J]. 中国农业科学, 2022, 55(22): 4539-4549. |
[11] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[12] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[13] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[14] | 王梦琪,米娜,王靖,张玉书,纪瑞鹏,陈妮娜,刘霞霞,韩颖,李王轶朴,张佳莹. 干旱胁迫下春玉米冠层吐丝动态及籽粒数模拟研究[J]. 中国农业科学, 2022, 55(18): 3530-3542. |
[15] | 李依镁,王娇,王萍,师恺. 番茄糖转运蛋白SlSTP2在防御细菌性叶斑病中的功能[J]. 中国农业科学, 2022, 55(16): 3144-3154. |
|