中国农业科学 ›› 2021, Vol. 54 ›› Issue (20): 4255-4264.doi: 10.3864/j.issn.0578-1752.2021.20.001
收稿日期:
2021-02-03
接受日期:
2021-04-06
出版日期:
2021-10-16
发布日期:
2021-10-25
通讯作者:
蒲宗君
作者简介:
罗江陶,E-mail: 基金资助:
LUO JiangTao(),ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun(
)
Received:
2021-02-03
Accepted:
2021-04-06
Online:
2021-10-16
Published:
2021-10-25
Contact:
ZongJun PU
摘要:
【目的】小麦品种川麦44不仅本身具有高产、稳产、广适等特性,而且以其为亲本已选育审定新品种11个,是小麦育种的一个重要亲本。明确川麦44的遗传特性,鉴定其含有的重要基因或QTL位点,为更好地利用川麦44选育新品种提供理论支撑。【方法】利用荧光原位杂交明确小麦-外源易位对川麦44及其衍生品种的影响以及川麦44及其衍生品种在染色体层面的遗传规律。利用660K SNP芯片数据分析川麦44对其衍生品种的遗传贡献,明确衍生品种中来源于川麦44的高传递率区段。利用已知的小麦基因功能标记及QTL连锁标记,对川麦44中有利于育种的重要基因位点进行鉴定。【结果】细胞学鉴定表明川麦44不含四川小麦品种中常见的2条易位染色体6VS/6AL和1RS/1BL。其衍生品种中,仅昌麦32和昌麦34含1对1RS/1BL易位染色体,其余品种不含有小麦-外源易位染色体。系谱分析表明,昌麦32和昌麦34的易位染色体遗传自另外一个杂交亲本——昌麦19。1RS/1BL易位的导入可能是昌麦32和昌麦34表现为弱筋的原因之一。除了小麦-外源易位染色体,多个染色体的核型在川麦44及其10个衍生品种中表现出多态性。其中,4A染色体有2种类型,80%的衍生品种与川麦44相同核型相同;5A染色体有4种类型,与川麦44相同的频率为40%;6B染色体有2种类型,与川麦44相同的频率为40%,7B染色体有2种类型,与川麦44相同的频率为40%。660K SNP芯片分析共鉴定到1 106个分布于川麦44所有染色体上的高遗传率区段,平均长度为1.57 Mb。从基因组层面来看,B基因组的区段总长度和总数均最大。从不同染色体来看,区段最长的3条为别为4A、2B和5B,区段数最多的3条染色体分别为4A、2B和3B。利用61个已知的小麦基因功能标记及13个产量相关QTL连锁SNP标记分析川麦44及其衍生品种,再与之前获得的川麦44高传递率区段对比,发现有9个基因的标记和3个QTL位点标记锚定在川麦44高传递率区段内,这些基因被认为是潜在的川麦44高被选择基因。依据功能标记或连锁标记的等位类型推断,其中2个功能基因TaSdr、NAM-A1和3个QTL位点QTKW.sicau-2AS.1、QTKW.Sicau-4AL、QSL.sicau-5AL.2可能是川麦44携带的重要优势等位基因或位点,在培育衍生品种过程中被优先选择保留。5个基因或QTL位点分别对穗发芽、有效分蘖数、千粒重和穗长4个性状具有正向效应。【结论】重要育种亲本川麦44基因组片段在衍生品种中的长度短,具有较高的遗传配合力,易于与不同的同源染色体重组,不易导致连锁累赘问题。TaSd、NAM-A1、QTKW.sicau-2AS.1、QTKW.Sicau-4AL和QSL.sicau-5AL.2是利用川麦44育种的5个重要靶基因位点,可加强对其在分子标记辅助育种中应用。
罗江陶,郑建敏,邓清燕,刘培勋,蒲宗君. 重要育种亲本川麦44对衍生品种的遗传贡献[J]. 中国农业科学, 2021, 54(20): 4255-4264.
LUO JiangTao,ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun. The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives[J]. Scientia Agricultura Sinica, 2021, 54(20): 4255-4264.
表1
川麦44传递频率大于50%的染色体区段统计情况"
染色体 Chromosome | 区段总长度 Total length (MB) | 区段总数(个) Total number | 染色体 Chromosome | 区段总长度 Total length (MB) | 区段总数(个) Total number | 染色体 Chromosome | 区段总长度 Total length (MB) | 区段总数(个) Total number | ||
---|---|---|---|---|---|---|---|---|---|---|
1A | 55 | 41 | 1B | 85 | 51 | 1D | 48 | 37 | ||
2A | 81 | 63 | 2B | 161 | 78 | 2D | 97 | 71 | ||
3A | 60 | 33 | 3B | 103 | 72 | 3D | 48 | 36 | ||
4A | 165 | 100 | 4B | 38 | 30 | 4D | 33 | 31 | ||
5A | 105 | 53 | 5B | 125 | 62 | 5D | 70 | 48 | ||
6A | 98 | 55 | 6B | 101 | 62 | 6D | 53 | 37 | ||
7A | 58 | 37 | 7B | 62 | 47 | 7D | 88 | 61 | ||
A基因组 A genome | 622 | 382 | B基因组 B genome | 675 | 402 | D基因组 D genome | 437 | 321 |
表2
川麦44高传递率基因"
基因 Gene | 功能标记 Function marker | 染色体 Chromosome | 物理位置 Physical location (Mb) | 性状类型 Trait type | 川麦44分型对应性状 Corresponding traits of Chuanmai 44 | 衍生品种与川麦44分型 相同的频率 The frequency of derivatives has the same type as Chuanmai 44 (%) |
---|---|---|---|---|---|---|
Glu-B3 | Glu-B3e_SNP | 1B | 6.44 | 品质相关 Quality related | 含Glu-B3e Have Glu-B3e | 100.00 |
Glu-B3g_SNP | 含Glu-B3g Have Glu-B3g | 70.00 | ||||
TaCwi | TaCwi | 2A | 508.03 | 产量相关 Production related | 低千粒重 Low thousand grain weight | 90.00 |
GS5 | GS5-2334-SNP | 2A | 729.29 | 产量相关 Production related | 低千粒重 Low thousand grain weight | 90.00 |
TaSdr | TaSdr-B1 | 2B | 200.57 | 穗发芽相关 pre-harvest sprouting related | 低穗发芽 Low pre-harvest sprouting | 60.00 |
TaMFT | TaMFT_1617R | 3A | 7.29 | 穗发芽相关 pre-harvest sprouting related | 穗发芽敏感 Pre-harvest sprouting sensitivity | 100.00 |
Fhb1 | Fhb1-1138 | 3B | 8.54 | 抗病相关 Disease resistance related | 不抗赤霉病 No fusarium head blight resistance | 100.00 |
Fhb1-1432 | ||||||
NAM-A1 | NAM-6A-SNP1 | 6A | 77.10 | 品质相关 Quality related | 有利等位型(A1d) Favorable allele (A1d) | 90.00 |
NAM-6A-SNP2 | ||||||
GCP_DUP | GCP_DUP | 6B | 134.66 | 品质相关 Quality related | 普通蛋白质含量 Normal protein content | 100.00 |
Sus1-7B | Sus1-7B-2932IND | 7B | 68.34 | 产量相关 Production related | 低千粒重 Low thousand grain weight | 100.00 |
表3
衍生品种与川麦44位点相同且频率≥50%产量相关QTL"
QTL名称 QTL name | SNP标记 SNP marker | 染色体 Chromosome | 物理位置 Physical location (Mb) | 性状 Trait | 川麦44有利位点 Favorable alleles of Chuanmai 44 | 8个衍生品种有利位点比例 Proportion of favorable sites for 8 derivative varieties (%) |
---|---|---|---|---|---|---|
QSL.sicau-1AL | AX_110408975 | 1A | 590.99 | 穗长 Spike length | T | 75.00 |
QTKW.sicau-1BL.1 | AX_109849833 AX_111525685 | 1B | 670.68 670.78 | 粒重 Kernel weight | T G | 50.00 50.00 |
QTKW.sicau-1BL.2 | AX_111471952 | 1B | 681.68 | 粒重 Kernel weight | G | 87.50 |
QTKW.sicau-2AS.1 | AX_108781797 AX_111079592 | 2A | 2.80 3.54 | 粒重 Kernel weight | G G | 100.00 50.00 |
QSL.sicau-2AL | AX_110079477 | 2A | 432.59 | 穗长 Spike length | T | 100.00 |
QSL.sicau-4AS | AX_109296730 | 4A | 68.16 | 穗长 Spike length | C | 75.00 |
QTKW.sicau-4AL | AX_109993853 | 4A | 538.15 | 粒重 Kernel weight | T | 62.50 |
QSL.sicau-5AL.1 | AX_109624254 AX_110717909 | 5A | 595.71 595.95 | 穗长 Spike length | G C | 100.00 100.00 |
QSL.sicau-5AL.2 | AX_110521338 | 5A | 621.94 | 穗长 Spike length | T | 100.00 |
[1] | 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 6. |
ZHUANG Q S. Chinese Wheat Variety Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003: 6. (in Chinese) | |
[2] | 唐建卫, 殷贵鸿, 高艳, 王丽娜, 韩玉林, 黄峰, 于海飞, 杨光宇, 李新平, 肖永贵, 张艳, 阎俊. 小麦骨干亲本周8435B及其衍生品种(系)的农艺性状和加工品种综合分析. 麦类作物学报, 2015, 35(6):777-784. |
TANG J W, YIN G H, GAO Y, WANG L N, HAN Y L, HUANG F, YU H F, YANG G Y, LI X P, XIAO Y G, ZHANG Y, YAN J. Comprehensive analysis on agronomic traits and processing quality of core parent Zhou 8425B and derivatives. Journal Tririceae Crops, 2015, 35(6):777-784. (in Chinese) | |
[3] | 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦贵干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013, 39(5):827-836. |
CHEN G Y, LIU W, HE Y J, GOU L L, YU M, CHEN S S, WEI Y M, ZHENG Y L. Specific loci for adult-plant resistance to stripe rust in wheat founder parent fan 6 and their genetic dissection in its derivatives. Acta Agronomica Sinica, 2013, 39(5):827-836. (in Chinese) | |
[4] | 张德强, 宋晓朋, 冯洁, 连俊芳, 孙道杰. 小麦周8425B及其衍生品种与黄淮麦区主栽品种的遗传解析. 麦类作物学报, 2016, 36(10):1328-1334. |
ZHANG D Q, SONG X P, FENG J, LIAN J F, SUN D J. Genetic dissection on the derived lines from wheat cultivar Zhou 8425B and widely grown cultivars in Huang-huai region. Journal Tririceae Crops, 2016, 36(10):1328-1334. (in Chinese) | |
[5] | 高艳, 唐建卫, 邹少奎, 胡润雨, 张根源, 孙玉霞, 王磊, 殷贵鸿. 小麦周麦22及其衍生品种的遗传多样性分析. 植物遗传资源学报, 2021, 22(1):38-49. |
GAO Y, TANG J W, ZOU S K, HU R Y, ZHANG G Y, SUN Y X, WANG L, YIN G H. Genetic diversity analysis of wheat cultivars/lines derived from wheat cultivar Zhoumai 22. Journal of Plant Genetic Resources, 2020, 22(1):38-49. (in Chinese) | |
[6] | 孙子明, 宋晓朋. 小麦品种周麦16的遗传构成分析. 种子, 2020, 39(9):117-119. |
SUN Z M, SONG X P. Genetic composition analysis of wheat variety Zhoumai 16. Seed, 2020, 39(9):117-119. (in Chinese) | |
[7] |
ELLIS M, SPIELMEYER W, GALE K, REBETZKE G, RICHARDS R. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105:1038-1042.
doi: 10.1007/s00122-002-1048-4 |
[8] |
JIANG Y M, JIANG Q Y, HAO C Y, HOU J, WANG L F, ZHANG H N, ZHANG S N, CHEN X H, ZHANG X Y. A yield-associated gene TaCWI, in wheat: Its function, selection and evolution in global breeding revealed by haplotype analysis. Theoretical and Applied Genetics, 2015, 128:131-143.
doi: 10.1007/s00122-014-2417-5 |
[9] |
LI X P, ZHAO X Q, HE X, ZHAO G Y, LI B, LIU D C, ZHANG A M, ZHANG X Y, TONG Y P, LI Z S. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use-and yield-related traits in bread wheat. New Phytologist, 2011, 189:449-458.
doi: 10.1111/nph.2010.189.issue-2 |
[10] |
ZHANG Y, LI D, ZHANG D B, ZHAO X G, GAO X M, DONG L L, LIU J X, CHEN K L, ZHANG H W, GAO C X, WANG D W. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. The Plant Journal, 2018, 94:857-866.
doi: 10.1111/tpj.2018.94.issue-5 |
[11] |
HOU J, JIANG Q Y, HAO C Y, WANG Y Q, ZHANG H N, ZHANG X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology, 2014, 164:1918-1929.
doi: 10.1104/pp.113.232454 |
[12] | JIANG Q Y, HOU J, HAO C Y, WANG L F, GE H M, DONG Y S, ZHANG X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional & Integrative Genomics, 2011, 11:49-61. |
[13] |
MA D Y, YAN J, HE Z H, WU L, XIA X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2012, 29:43-52.
doi: 10.1007/s11032-010-9524-z |
[14] |
ZHANG Y J, LIU J D, XIA X C, HE Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014, 34:1097-1107.
doi: 10.1007/s11032-014-0102-7 |
[15] |
ZHANG B, LIU X, XU W N, CHANG J Z, LI A, MAO X G, ZHANG X Y, JING R L. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Scientific Reports, 2015, 5:12211.
doi: 10.1038/srep12211 |
[16] |
HANIF M, GAO F M, LIU J D, WEN W E, ZHANG Y J, RASHEED A, XIA X C, HE Z H, CAO S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Molecular Breeding, 2016, 36:1.
doi: 10.1007/s11032-015-0425-z |
[17] | HU M J, ZHANG H P, LIU K, CAO J J, WANG S X, JIANG H, WU Z Y, LU J, ZHU X F, XIA X C, SUN G L, MA C X, CHANG C. Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Frontiers in Plant Science, 2016, 7:1902. |
[18] |
MILEC Z, TOMKOVA L, SUMIKOVA T, PANKOVA K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Molecular Breeding, 2012, 30:317-323.
doi: 10.1007/s11032-011-9621-7 |
[19] |
DIAZ A, ZIKHALI M, TURNER A S, ISAAC P, LAURIE D A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE, 2012, 7(3):e33234.
doi: 10.1371/journal.pone.0033234 |
[20] |
YAN L, HELGUERA M, KATO K, FUKUYAMA S, SHERMAN J, DUBCOVSKY J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theoretical and Applied Genetics, 2004, 109:1677-1686.
doi: 10.1007/s00122-004-1796-4 |
[21] |
FU D L, SZUCS P, YAN L, HELGUERA M, SKINNER J S, ZITZEWITZ J V, HAYES P M, DUBCOVSKY P M. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics, 2005, 274:442-443.
doi: 10.1007/s00438-005-0045-0 |
[22] |
BEALES J, TURNER A, GRIFFITHS S, SNAPE J W, LAURIE D A. A pseudo-response regulator is mis expressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 115:721-733.
doi: 10.1007/s00122-007-0603-4 |
[23] |
WILHELM E P, TURNER A S, LAURIE D A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 2009, 118:285-294.
doi: 10.1007/s00122-008-0898-9 |
[24] |
NISHIDA H, YOSHIDA T, KAWAKAMI K, FUJITA M, BO L, AKASHI Y, LAURIE D A, KATO K. Structural variation in the 5’ upstream region of photoperiod-insensitive alleles ppd-A1a and ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Molecular Breeding, 2013, 31(1):27-37.
doi: 10.1007/s11032-012-9765-0 |
[25] |
LAGUDAH E S, KRATTINGER S G, HERRERA-FOESSEL S, SINGH R P, HUERTA-ESPINO J, SPIELMEYER W, BROWN- GUEDURA G, SELTER L L, KELLER B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119:889-898.
doi: 10.1007/s00122-009-1097-z |
[26] |
KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, SINGH R P, HUERTA-ESPINO J, MCFADDEN H, BOSSOLINI E, SELTER L L, KELLER B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323(5919):1360-1363.
doi: 10.1126/science.1166453 |
[27] |
PURNHAUSER L, BONA L, LANG L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica, 2011, 179:287-295.
doi: 10.1007/s10681-010-0312-y |
[28] |
LI G Q, ZHOU J Y, JIA H Y, GAO Z X, FAN M, LUO Y J, ZHAO P T, XUE S L, LI N, YUAN Y, MA S W, KONG Z X, JIA L, AN X, JIANG G, LIU W X, CAO W J, ZHANG R R, FAN J C, XU X W, LIU Y F, KONG Q Q, ZHENG S H, WANG Y, QIN B, CAO S Y, DING Y X, SHI J X, YAN H S, WANG X, RAN C F, MA Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019, 51:1106-1112.
doi: 10.1038/s41588-019-0426-7 |
[29] |
XUE S L, XU F, TANG M Z, ZHOU Y, LI G Q, AN X, LIN F, XU H B, JIA H Y, ZHANG L X, KONG Z X, MA Z Q. Precise mapping Fhb5, a major QTL conditioning resistance to fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123:1055-1063.
doi: 10.1007/s00122-011-1647-z |
[30] | 付路平. 小麦茎秆木质素含量相关基因TaCOMT克隆、功能标记开发和关联分析[D]. 北京: 中国农业科学院, 2016. |
FU L P. Cloning, functional marker development and association analysis of TaCOMT, a gene related to lignin content in wheat stems[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[31] |
ZHANG J J, XU Y J, CHEN W, DELL B, VERGAUWEN R, BIDDULPH B, KHAN N, LUO H, APPELS R, DEN ENDE W V. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytologist, 2015, 205:293-305.
doi: 10.1111/nph.2014.205.issue-1 |
[32] |
WEI B, JING R L, WANG C S, CHEN J B, MAO X G, CHANG X P, JIA J Z. Dreb1 genes in wheat (Triticum aestivum L.): Development of functional markers and gene mapping based on SNPs. Molecular Breeding, 2009, 23:13-22.
doi: 10.1007/s11032-008-9209-z |
[33] |
NAKAMURA S, ABE F, KAWAHIGASHI H, NAKAZONOK K, TAGIRI A, MATSUMOTO T, UTSUGI S, OGAWA T, HANDA H, ISHIDA H, MORI M, KAWAURA K, OGIHARA Y, MIURA H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. The Plant Cell, 2011, 23:3215-3229.
doi: 10.1105/tpc.111.088492 |
[34] | MACKAY I J, BANSEPT-BASLER P, BARBER T, BENTLEY A R, COCKRAM J, GOSMAN N, GREENLAND A J, HORSNELLl R, HOWELLS R, OSULLIVAN D M, ROSE G A, HOWELL P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: Creation, properties, and validation. Genes Genomes Genetics, 2014, 4(9):1603-1610. |
[35] |
ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014, 127:855-866.
doi: 10.1007/s00122-014-2262-6 |
[36] |
YANG Y, MA Y Z, XU Z S, CHEN X M, HE Z H, YU Z, WILKINSON M, JINES H D, SHEWRY P R, XIA L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. Journal of Experimental Botany, 2007, 58(11):2863-2871.
doi: 10.1093/jxb/erm073 |
[37] |
RODRIGUEZ-SUAREZ C, ATIENZA S G. Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biology, 2012, 12:200.
doi: 10.1186/1471-2229-12-200 |
[38] |
CHEN X Y, CAO X Y, ZHANG Y J, ISLAM S, ZHANG J J, YANG R C, LIU J J, LI G Y, APPELS R, KEEBLE-GAGNERE G, JI W Q, HE Z H, MA W J. Genetic characterization of cysteine-rich type-b avenin-like protein coding genes in common wheat. Scientific Reports, 2016, 6:30692.
doi: 10.1038/srep30692 |
[39] |
UAUY C, DISTELFELD A, FAHIMA T, BLECHL A, DUBCOVSKY J. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314(5803):1298-1301.
doi: 10.1126/science.1133649 |
[40] | SI H Q, ZHAO M L, ZHANG X, YAO G L, SUN G L, MA C X. Cloning and characterization of low-molecular-weight glutenin subunit alleles from Chinese wheat landraces (Triticum aestivum L.). The Scientific World Journal, 2014, 2014:371045. |
[41] | WANG L, ZHAO X, HE Z, XIA X. Characterization of low- molecular-weight glutenin subunit genes at Glu-B3 and Glu-D3 loci and development of functional markers in common wheat//Proceedings of the 11th International Wheat Genetics Symposium. Sydney: Sydney University Press, 2008. |
[42] |
CORMIER F, THROUDE M, RAVEL C, GOUIS J C, LEVEUGLE M, LAFARGE S, EXBRAYAT F, DURANTON N, PRAUD S. Detection of NAM-A1 natural variants in bread wheat reveals differences in haplotype distribution between a worldwide core collection and European elite germplasm. Agronomy, 2015, 5:143-151.
doi: 10.3390/agronomy5020143 |
[43] |
HE X Y, HE Z H, ZHANG L P, SUN D J, MORRIS C F, FUERST E P, XIA X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007, 115:47-58.
doi: 10.1007/s00122-007-0539-8 |
[44] |
HE X Y, ZHANG Y L, HE Z H, WU Y P, XIA Y G, MA C X, XIA X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics, 2008, 116:213-221.
doi: 10.1007/s00122-007-0660-8 |
[45] |
HIMI E, NODA K. Red grain colour gene (R) of wheat is a MYB-type transcription factor. Euphytica, 2005, 143:239-242.
doi: 10.1007/s10681-005-7854-4 |
[46] |
HIMI E, MAEKAWA M, MIURA H, NODA K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theoretical and Applied Genetics, 2011, 122:1561-1576.
doi: 10.1007/s00122-011-1555-2 |
[47] |
ZIKHALI M, WINGEN L U, GRIFFITHS S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). Journal of Experimental Botany, 2016, 67(1):287-299.
doi: 10.1093/jxb/erv458 |
[48] | 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 杨恩年, 刘于斌, 蒲宗君. 川麦44及其9个衍生品种比较分析. 西南农业学报, 2018, 31(12):2472-2477. |
ZHENG J M, LUO J T, WAN H S, LI S Z, YANG M Y, LI J, YANG E N, LIU Y B, PU Z J. Chinese wheat variety improvement and pedigree analysis, Chuanmai 44 and its 9 derivative varieties comparative analysis. Southwest Agricultural Journal, 2018, 31(12):2472-2477. (in Chinese) | |
[49] | 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 刘于斌, 蒲宗君. 利用小麦660K SNP芯片分析川麦44在其衍生后代中的遗传贡献. 麦类作物学报, 2019, 39(11):1293-1300. |
ZHENG J M, LUO J T, WAN H S, LI S Z, YANG M Y, LI J, LIU Y B, PU Z J. Using wheat 660K SNP chip to analyze the genetic contribution of Chuanmai 44 in its derived progeny. Journal of Triticeae Crops, 2019, 39(11):1293-1300. (in Chinese) | |
[50] |
YE X L, LI J, CHENG Y K, YAO F J, LONG L, WANG Y Q, WU Y, LI J, WANG J R, JIANG Q T, KANG H Y, LI W, QI P F, LAN X J, MA JIAN, LIU Y X, JIANG Y F, WEI Y M, CHEN X M, LIU C J, ZHENG Y L, CHEN G Y. Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20:640.
doi: 10.1186/s12864-019-6005-6 |
[51] |
LUO J T, ZHAO L B, ZHENG J M, LI Y Z, ZANG L Q, LIU D C, PU Z J, HAO M. Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome, 2020, 63(7):329-336.
doi: 10.1139/gen-2019-0148 |
[52] |
HAO M, ZHANG L Q, ZHAO L B, DAI S F, LI A L, YANG W Y, XIE D, LI Q C, NING S Z, YAN Z H, WU B H, LAN X J, YUAN Z W, HUANG L, WANG J R, ZHENG K, CHENG W S, YU M, CHEN X J, CHEN M P, WEI Y M, ZHANG H G, KISHII M, HAWKESFORD M J, MAO L, ZHENG Y L, LIU D C. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132:2285-2294.
doi: 10.1007/s00122-019-03354-9 |
[53] | 蒲宗君, 饶世达, 杨武云, 张增艳, 蒲至恩. 优质高产小麦新品种川麦44的选育研究. 中国农学通报, 2006, 22(1):120-123. |
PU Z J, RAO S D, YANG W Y, ZHANG Z Y, PU Z E. Breeding of a new wheat variety Chuanmai 44 with high quality and high yield. Chinese Agricultural Science Bulletin, 2006, 22(1):120-123. (in Chinese) | |
[54] |
ALHABBAR Z, YANG R, JUHASZ A, XIN H, SHE M, ANWAR M, SULTANA N, DIEPEVEEN D, MA W, ISLAM S. NAM gene allelic composition and its relation to grain-filling duration and nitrogen utilisation efficiency of Australian wheat. PLoS ONE, 2018, 13(10):e0205448.
doi: 10.1371/journal.pone.0205448 |
[55] |
ORLOVSKAYA O A, VAKULA S I, KHOTYLEVA L V, KILCHEVSKY A V. Estimation of NAM-A1 haplotypes effect on the level of quantitative traits and grain protein content in wheat. Faktori Eksperimental Noi Evolucii Organizmiv, 2020, 26:114-119.
doi: 10.7124/FEEO.v26 |
[56] |
MOLDESTAD A, FERGESTAD E M, HOEL B, SKJELVAG A O, UHLEN A K. Effect of temperature variation during grain filling on wheat gluten resistance. Journal of Cereal Science, 2011, 53(3):347-354.
doi: 10.1016/j.jcs.2011.02.005 |
[57] | WIESER H, KIEFFER R, LELLEY T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. Journal of the Science of Food and Agricultural, 2000, 80:1646. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[3] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[4] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[5] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[6] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[7] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
[8] | 常立国,何坤辉,刘建超. 多环境下玉米保绿相关性状遗传位点的挖掘[J]. 中国农业科学, 2022, 55(16): 3071-3081. |
[9] | 郭淑青,宋慧,柴少华,郭岩,石兴,杜丽红,邢璐,解慧芳,张扬,李龙,冯佰利,刘金荣,杨璞. 谷子生育期及穗相关性状的QTL定位[J]. 中国农业科学, 2022, 55(15): 2883-2898. |
[10] | 郝静,李秀坤,崔顺立,邓洪涛,侯名语,刘盈茹,杨鑫雷,穆国俊,刘立峰. 花生每荚种子数相关性状QTL的定位[J]. 中国农业科学, 2022, 55(13): 2500-2508. |
[11] | 孟鑫浩,邓洪涛,李丽,崔顺立,Charles Y.Chen,侯名语,杨鑫雷,刘立峰. 栽培种花生株型相关性状的QTL定位[J]. 中国农业科学, 2021, 54(8): 1599-1612. |
[12] | 张亚东,梁文化,赫磊,赵春芳,朱镇,陈涛,赵庆勇,赵凌,姚姝,周丽慧,路凯,王才林. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位[J]. 中国农业科学, 2021, 54(24): 5163-5176. |
[13] | 王彦,范保杰,曹志敏,张志肖,苏秋竹,王珅,王学清,彭秀国,梅丽,武玉华,刘少兴,田胜民,徐俊杰,蒋春志,王伟娟,刘长友,田静. 基于新遗传连锁图谱的豇豆抗豆象QTL定位[J]. 中国农业科学, 2021, 54(22): 4740-4749. |
[14] | 王岭,才羿,王桂超,王迪,盛云燕. 甜瓜SLAF图谱构建及果实相关性状QTL分析[J]. 中国农业科学, 2021, 54(19): 4196-4206. |
[15] | 渠可心,韩露,谢建国,潘文婧,张泽鑫,辛大伟,刘春燕,陈庆山,齐照明. 基于RIL和CSSL群体定位大豆脂肪酸组分QTL[J]. 中国农业科学, 2021, 54(15): 3168-3182. |
|