中国农业科学 ›› 2021, Vol. 54 ›› Issue (20): 4255-4264.doi: 10.3864/j.issn.0578-1752.2021.20.001

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

重要育种亲本川麦44对衍生品种的遗传贡献

罗江陶(),郑建敏,邓清燕,刘培勋,蒲宗君()   

  1. 四川省农业科学院作物研究所/农业农村部西南地区小麦生物学与遗传育种重点实验室,成都 610066
  • 收稿日期:2021-02-03 接受日期:2021-04-06 出版日期:2021-10-16 发布日期:2021-10-25
  • 通讯作者: 蒲宗君
  • 作者简介:罗江陶,E-mail: jtluohao@163.com
  • 基金资助:
    国家重点研发计划(2016YFD0101600);国家重点研发计划(2017YFD0100905);四川省科技计划(2018JY0627);四川省财政创新能力提升工程项目(2016ZYPZ-015);四川省育种攻关项目(2021YFYZ0002)

The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives

LUO JiangTao(),ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun()   

  1. Crop Research Institute of Sichuan Academic of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066
  • Received:2021-02-03 Accepted:2021-04-06 Online:2021-10-16 Published:2021-10-25
  • Contact: ZongJun PU

摘要:

【目的】小麦品种川麦44不仅本身具有高产、稳产、广适等特性,而且以其为亲本已选育审定新品种11个,是小麦育种的一个重要亲本。明确川麦44的遗传特性,鉴定其含有的重要基因或QTL位点,为更好地利用川麦44选育新品种提供理论支撑。【方法】利用荧光原位杂交明确小麦-外源易位对川麦44及其衍生品种的影响以及川麦44及其衍生品种在染色体层面的遗传规律。利用660K SNP芯片数据分析川麦44对其衍生品种的遗传贡献,明确衍生品种中来源于川麦44的高传递率区段。利用已知的小麦基因功能标记及QTL连锁标记,对川麦44中有利于育种的重要基因位点进行鉴定。【结果】细胞学鉴定表明川麦44不含四川小麦品种中常见的2条易位染色体6VS/6AL和1RS/1BL。其衍生品种中,仅昌麦32和昌麦34含1对1RS/1BL易位染色体,其余品种不含有小麦-外源易位染色体。系谱分析表明,昌麦32和昌麦34的易位染色体遗传自另外一个杂交亲本——昌麦19。1RS/1BL易位的导入可能是昌麦32和昌麦34表现为弱筋的原因之一。除了小麦-外源易位染色体,多个染色体的核型在川麦44及其10个衍生品种中表现出多态性。其中,4A染色体有2种类型,80%的衍生品种与川麦44相同核型相同;5A染色体有4种类型,与川麦44相同的频率为40%;6B染色体有2种类型,与川麦44相同的频率为40%,7B染色体有2种类型,与川麦44相同的频率为40%。660K SNP芯片分析共鉴定到1 106个分布于川麦44所有染色体上的高遗传率区段,平均长度为1.57 Mb。从基因组层面来看,B基因组的区段总长度和总数均最大。从不同染色体来看,区段最长的3条为别为4A、2B和5B,区段数最多的3条染色体分别为4A、2B和3B。利用61个已知的小麦基因功能标记及13个产量相关QTL连锁SNP标记分析川麦44及其衍生品种,再与之前获得的川麦44高传递率区段对比,发现有9个基因的标记和3个QTL位点标记锚定在川麦44高传递率区段内,这些基因被认为是潜在的川麦44高被选择基因。依据功能标记或连锁标记的等位类型推断,其中2个功能基因TaSdrNAM-A1和3个QTL位点QTKW.sicau-2AS.1QTKW.Sicau-4ALQSL.sicau-5AL.2可能是川麦44携带的重要优势等位基因或位点,在培育衍生品种过程中被优先选择保留。5个基因或QTL位点分别对穗发芽、有效分蘖数、千粒重和穗长4个性状具有正向效应。【结论】重要育种亲本川麦44基因组片段在衍生品种中的长度短,具有较高的遗传配合力,易于与不同的同源染色体重组,不易导致连锁累赘问题。TaSdNAM-A1QTKW.sicau-2AS.1QTKW.Sicau-4ALQSL.sicau-5AL.2是利用川麦44育种的5个重要靶基因位点,可加强对其在分子标记辅助育种中应用。

关键词: 川麦44, 遗传贡献, 有益基因, QTL, 高传递率

Abstract:

【Objective】Common wheat variety Chuanmai 44 has the characteristics of high yield, stable yield and wide adaptability. Ten new varieties have been selected and approved in breeding program using Chuanmai 44 as parent. It indicates Chuanmai 44 is an important breeding parent. To clarify the genetic base of Chuanmai 44 as a vital parent in breeding exercise and identify important genes or QTL within it will be helpful in breeding new elite varieties using Chuanmai 44. 【Method】Fluorescence in situ hybridization was applied to Chuanmai 44 and its ten derived varieties to identify whether there were wheat-alien translocations, and to analyze the chromosome diversity among them. The 660K SNP array data of Chuanmai 44 and its derived varieties were used to calculate the genetic contribution of Chuanmai 44 to its derived varieties and clarify the high transmission genomic segments. Functional molecular markers within cloned genes and linked molecular markers for yield-related traits were used to identify important genes or QTL in Chuanmai 44 for breeding. 【Result】 Chuanmai 44 did not harbor the 6VS/6AL and 1RS/1BL translocation chromosomes which both frequently existed in wheat varieties in Sichuan. Only two out of its ten derivatives, Changmai 32 and Changmai 34, contained 1RS/1BL translocation, which is inherited from another parent Changmai 19. The existence of 1RS/1BL translocation in the two varieties may explain their weak gluten phenotype. Except wheat-relative translocation, the karyotypes of Chuanmai 44 and its 10 derivative varieties also showed polymorphisms on some chromosomes. For instance, there were two types of chromosome 4A among derivatives, and 80% of them showed the same as Chuanmai 44. Chromosomes 5A, 6B and 7B had 4, 2 and 2 karyotypes, respectively. These three chromosomes in the derivative population of Chuanmai 44 showed the same karyotype with Chuanmai 44 in a frequency of 40%. 660K SNP chip analysis identified 1127 genomic segments with high transmission frequency (>50%) within its derived varieties. These genomic segments located on all 21 chromosomes and their mean length was 1.57 Mb. B genome owned the most number and the largest length of the high transmission frequency segments. Chromosomes 4A, 2B and 5B were the three chromosomes with the longest high transmission frequency segments. Chromosomes 4A, 2B and 3B were the three chromosomes with the most number of high transmission frequency segments. Combing the genotype data of 61 functional markers of cloned wheat gene and 13 SNP markers linked with yield-related QTL and the distribution of Chuanmai 44 high transmission genomic regions, we discovered that there are 9 genes markers and 3 QTL markers are anchored in the high transmission rate section of Chuanmai 44. The twelve markers responding to two favorable alleles and three QTL, including TaSdr, NAM-A1, QTKW.sicau-2AS.1, QTKW.Sicau-4AL, QSL.sicau-5AL.2, which exhibited positive effect on preharvest sprouting resistance, effective tiller number, thousand grain weight and spike length, respectively. 【Conclusion】The length of genomic segments retained within its derived varieties was short. It suggested that Chuanmai 44 as a breeding parent had high genetic combining ability, and its chromosomes were easy to recombine with different homologous chromosomes in resulting hybrids, which is beneficial to reduce linkage drag. Therefore, it plays an important role as a skeleton parent in breeding excercise. TaSdr, NAM-A1, QTKW.sicau-2AS.1, QTKW.Sicau-4AL and QSL.sicau-5AL.2 were the important loci in Chuanmai 44, which should be widely used in further breeding program under molecular marker assisted selecting.

Key words: Chuanmai 44, genetic contribution, beneficial gene, QTL, high transmission rate