中国农业科学 ›› 2022, Vol. 55 ›› Issue (15): 2883-2898.doi: 10.3864/j.issn.0578-1752.2022.15.002
郭淑青1(),宋慧2(),柴少华1,郭岩1,石兴1,杜丽红2,邢璐2,解慧芳2,张扬2,李龙2,冯佰利1,刘金荣2(),杨璞1,*()
收稿日期:
2022-01-30
接受日期:
2022-03-09
出版日期:
2022-08-01
发布日期:
2022-08-02
通讯作者:
刘金荣,杨璞
作者简介:
郭淑青,E-mail: 基金资助:
GUO ShuQing1(),SONG Hui2(),CHAI ShaoHua1,GUO Yan1,SHI Xing1,DU LiHong2,XING Lu2,XIE HuiFang2,ZHANG Yang2,LI Long2,FENG BaiLi1,LIU JinRong2(),YANG Pu1,*()
Received:
2022-01-30
Accepted:
2022-03-09
Online:
2022-08-01
Published:
2022-08-02
Contact:
JinRong LIU,Pu YANG
摘要:
【目的】谷子生育期及穗部性状是影响谷子品种适应性及产量的关键因素。通过对相关性状进行QTL定位分析,为探明谷子复杂产量性状的分子遗传机制奠定基础。【方法】以优良品种豫谷18和冀谷19为亲本构建的包含400个家系的RIL群体为试验材料,于2018—2019年分别在4个不同环境下调查谷子抽穗期、抽穗-成熟天数、全生育期及穗长、穗粗和单穗重等穗相关性状的表型值。同时,利用已构建的由1 304个bin标记组成的全长为2 196 cM,标记间平均距离为1.68 cM的高密度遗传连锁图谱。采用复合区间作图法(composite interval mapping,CIM)对生育期及穗部性状进行QTL定位分析,并对所获得的QTL置信区间进行候选基因的预测。【结果】重组自交系群体生育期及穗部性状在4个环境中均表现为连续分布且存在双向超亲分离现象,符合数量性状的遗传特征,适宜进行QTL分析。相关分析表明,谷子抽穗期与全生育期呈极显著正相关,与抽穗-成熟天数呈显著负相关,穗长与穗粗呈显著正相关。共检测到88个与谷子生育期及穗部性状相关的QTL,分布在第1、3、5、6、8和9染色体上。其中45个QTL与抽穗期相关,单个QTL能够解释表型变异的1.61%—27.60%;7个QTL与抽穗-成熟天数相关,单个QTL能够解释表型变异的2.65%—12.14%;20个QTL与全生育期相关,单个QTL能够解释表型变异的1.98%—16.97%;9个QTL与穗长相关,单个QTL能够解释表型变异的3.51%—11.65%;5个QTL与穗粗相关,单个QTL能够解释表型变异的3.74%—8.34%;2个QTL与单穗重相关,单个QTL能够解释表型变异的5.16%—5.20%。本研究共检测到12个主效QTL,其中,qEHD-9-1、qEHD-9-2、qHMD-9-2、qGRP-9-2和qPL-5-1在至少2个环境和BLUP值中被重复检测到。控制生育期的主效QTL(qEHD-9-1、qHMD-9-1、qGRP-9-1)与控制穗长的主效QTL(qPL-9-1)在第9染色体重叠;qEHD-9-2、qHMD-9-3、qGRP-9-2和qPL-9-3也在第9染色体重叠;控制穗长的主效QTL(qPL-5-1)和控制穗粗的QTL(qPD-5-1)在第5染色体重叠。对3个QTL簇的置信区间进行基因注释,筛选出5个与生育期及穗部性状相关的候选基因,其中,2个候选基因在谷子生育期调控和穗部性状发育中均发挥重要作用。【结论】共检测到88个与谷子生育期及穗部性状相关的QTL,12个为主效QTL,其中5个主效QTL在多个环境被重复检测到,且成簇分布。基于基因注释,共筛选了5个与谷子生育期和穗部性状相关的候选基因。
郭淑青,宋慧,柴少华,郭岩,石兴,杜丽红,邢璐,解慧芳,张扬,李龙,冯佰利,刘金荣,杨璞. 谷子生育期及穗相关性状的QTL定位[J]. 中国农业科学, 2022, 55(15): 2883-2898.
GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet[J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
表1
亲本和群体生育期及穗部性状表型数据统计分析"
性状 Traits | 环境 Environments | 亲本 Parents | RIL群体 RIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
豫谷18 Yugu 18 | 冀谷19 Jigu 19 | 平均值±标准差 Mean±SD | 变异系数 Variable coefficient (%) | 最小值 Min value | 最大值 Max value | 偏度 Skewness | 峰度 Kurtosis | ||
抽穗期 EHD (d) | 2018AY | 44.00 | 52.00 | 45.55±2.42 | 5.30 | 40.00 | 54.00 | 0.38 | 0.38 |
2018CD | 56.00 | 62.00 | 61.89±4.10 | 6.62 | 50.00 | 71.00 | 0.20 | -0.55 | |
2019BZW | 43.00 | 48.00 | 44.47±2.11 | 4.75 | 38.00 | 50.00 | -0.02 | -0.14 | |
2019BZZ | 53.00 | 61.00 | 53.97±3.58 | 6.63 | 44.00 | 66.00 | 0.01 | 0.32 | |
抽穗-成熟天数HMD (d) | 2018AY | 40.00 | 41.00 | 38.04±2.47 | 6.51 | 30.00 | 46.00 | -0.04 | -0.13 |
2018CD | 28.00 | 31.00 | 32.39±3.58 | 11.04 | 19.00 | 55.00 | 0.65 | 4.43 | |
2019BZW | 40.00 | 34.00 | 39.23±2.36 | 6.01 | 33.00 | 48.00 | 0.37 | 0.29 | |
2019BZZ | 39.00 | 33.00 | 36.54±2.44 | 6.69 | 29.00 | 43.00 | -0.01 | 0.01 | |
全生育期 GRP (d) | 2018AY | 84.00 | 83.00 | 83.59±1.52 | 1.82 | 82.00 | 91.00 | 0.99 | 1.62 |
2018CD | 94.00 | 93.00 | 94.29±2.85 | 3.02 | 88.00 | 105.00 | 0.64 | -0.18 | |
2019BZW | 83.00 | 82.00 | 83.70±3.33 | 3.98 | 77.00 | 91.00 | 0.28 | -0.65 | |
2019BZZ | 92.00 | 94.00 | 90.50±3.05 | 3.37 | 83.00 | 104.00 | 0.20 | 0.76 | |
穗长 PL cm) | 2018AY | 19.87 | 22.23 | 20.52±1.87 | 9.12 | 14.50 | 25.33 | 0.002 | -0.12 |
2018CD | 25.43 | 28.37 | 26.65±2.95 | 11.06 | 11.25 | 38.66 | 0.06 | 1.80 | |
2019BZW | 18.00 | 22.00 | 21.00±1.93 | 9.19 | 16.33 | 26.33 | 0.02 | -0.21 | |
2019BZZ | 19.33 | 20.83 | 22.24±2.25 | 10.13 | 16.50 | 30.33 | 0.27 | -0.10 | |
穗粗 PD (cm) | 2018AY | 2.50 | 3.23 | 2.55±0.31 | 11.98 | 0.33 | 4.67 | 0.10 | 11.70 |
2018CD | 2.80 | 3.23 | 2.86±0.74 | 25.92 | 1.10 | 5.10 | -0.30 | -0.14 | |
2019BZW | 2.50 | 2.67 | 2.49±0.26 | 10.37 | 2.00 | 3.67 | 0.39 | 0.56 | |
2019BZZ | 2.67 | 2.83 | 2.56±0.27 | 10.60 | 2.00 | 4.00 | 1.11 | 3.58 | |
单穗重 SPW (g) | 2018AY | 26.33 | 24.95 | 25.07±5.86 | 23.36 | 10.92 | 60.53 | 1.72 | 5.68 |
2018CD | 29.98 | 27.83 | 30.96±5.67 | 18.32 | 15.30 | 48.02 | 0.26 | -0.09 | |
2019BZW | 12.81 | 14.13 | 14.35±2.32 | 16.16 | 6.64 | 21.28 | 0.04 | 0.22 | |
2019BZZ | 18.38 | 11.32 | 16.72±3.57 | 21.34 | 8.97 | 35.00 | 1.37 | 4.72 |
表2
谷子生育期的QTL定位结果"
性状 Traits | 数量性 状位点 QTL | 染色体 Chromosome | 环境 Environments | 标记区间 Marker interval | 遗传位置 Genetic position (cM) | 物理区间 Physical interval (bp) | 阈值 LOD | 加性效应 Additive effect | 贡献率 R2 (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
抽穗期EHD (d) | qEHD-1-1 | 1 | BLUP | Chr.1-bin22—Chr.1-bin24 | 33.159—34.970 | 7383232—7618736 | 4.90 | 0.24 | 2.73 | ||||||||
qEHD-1-2 | 1 | BLUP | Chr.1-bin26—Chr.1-bin27 | 39.370—42.472 | 7826425—8072796 | 4.52 | 0.24 | 2.59 | |||||||||
qEHD-1-3 | 1 | BLUP (2019BZZ) | Chr.1-bin27—Chr.1-bin28 | 42.472—44.998 | 7857646—8213561 | 4.59 | 0.24 | 2.60 | |||||||||
qEHD-3-1 | 3 | BLUP | Chr.3-bin55—Chr.3-bin56 | 72.136—73.672 | 8372841—8432775 | 4.62 | -0.24 | 2.42 | |||||||||
qEHD-3-2 | 3 | BLUP (2019BZZ) | Chr.3-bin61—Chr.3-bin62 | 83.766—88.344 | 11405077—11814796 | 3.72 | -0.24 | 2.04 | |||||||||
qEHD-3-3 | 3 | BLUP | Chr.3-bin64—Chr.3-bin65 | 91.860—93.092 | 11841659—12225276 | 4.75 | -0.27 | 2.49 | |||||||||
qEHD-3-4 | 3 | BLUP (2019BZZ) | Chr.3-bin71—Chr.3-bin72 | 100.512—101.845 | 12837291—12961507 | 5.87 | -0.31 | 3.06 | |||||||||
qEHD-3-5 | 3 | BLUP (2019BZZ) | Chr.3.bin75—Chr.3.bin76 | 105.389—106.721 | 13029966—13628423 | 6.08 | -0.32 | 3.16 | |||||||||
qEHD-3-6 | 3 | BLUP (2019BZW \2019BZZ) | Chr.3-bin77—Chr.3-bin78 | 107.902—109.058 | 13628424—13713052 | 6.87 | -0.34 | 3.55 | |||||||||
qEHD-3-7 | 3 | BLUP (2018CD/ 2019BZZ) | Chr.3-bin79—Chr.3-bin80 | 110.365—111.646 | 13713053—13756530 | 6.80 | -0.34 | 3.52 | |||||||||
qEHD-3-8 | 3 | BLUP (2019BZZ) | Chr.3-bin82—Chr.3-bin85 | 114.260—115.895 | 13793248—14081551 | 6.51 | -0.34 | 3.38 | |||||||||
qEHD-3-9 | 3 | BLUP (2018CD/ 2019BZZ) | Chr.3-bin86—Chr.3-bin87 | 120.269—121.426 | 14081552—14212812 | 6.41 | -0.33 | 3.33 | |||||||||
qEHD-3-10 | 3 | BLUP (2018CD) | Chr.3-bin90—Chr.3-bin91 | 124.367—125.448 | 14260453—14335548 | 5.48 | -0.31 | 2.86 | |||||||||
qEHD-3-11 | 3 | BLUP | Chr.3-bin93—Chr.3-bin94 | 129.172—130.127 | 14401525—14566486 | 5.22 | -0.32 | 2.73 | |||||||||
qEHD-3-12 | 3 | BLUP (2019BZZ) | Chr.3-bin98—Chr.3-bin99 | 135.938—137.296 | 14637541—14778894 | 3.35 | -0.25 | 1.77 | |||||||||
qEHD-3-13 | 3 | BLUP (2018AY/ 2018AY) | Chr.3-bin131—Chr.3-bin132 | 175.610—176.465 | 17715556—18022340 | 3.39 | -0.27 | 1.79 | |||||||||
qEHD-3-14 | 3 | BLUP | Chr.3-bin140—Chr.3-bin141 | 183.103—184.339 | 18750824—18860666 | 3.65 | -0.28 | 1.93 | |||||||||
qEHD-3-15 | 3 | BLUP (2019BZZ) | Chr.3-bin146—Chr.3-bin147 | 188.538—189.544 | 19257021—20089242 | 3.10 | -0.27 | 1.64 | |||||||||
qEHD-3-16 | 3 | BLUP (2019BZZ) | Chr.3-bin155—Chr.3-bin156 | 196.458—197.262 | 20677208—20864551 | 3.17 | -0.28 | 1.68 | |||||||||
qEHD-3-17 | 3 | BLUP | Chr.3-bin194—Chr.3-bin195 | 243.337—244.468 | 26706784—27289107 | 15.87 | -0.49 | 9.82 | |||||||||
qEHD-3-18 | 3 | BLUP (2019BZZ) | Chr.3-bin198—Chr.3-bin199 | 248.188—249.545 | 30727891—37792728 | 16.77 | -0.51 | 10.33 | |||||||||
qEHD-3-19 | 3 | BLUP (2019BZZ) | Chr.3-bin202—Chr.3-bin203 | 253.919—256.168 | 38165509—38853342 | 16.85 | -0.51 | 10.37 | |||||||||
qEHD-3-20 | 3 | BLUP (2019BZZ) | Chr.3_bin204—Chr.3_bin205 | 257.853—259.538 | 38853343—39335961 | 16.80 | -0.51 | 10.34 | |||||||||
qEHD-3-21 | 3 | BLUP | Chr.3-bin207—Chr.3-bin208 | 262.605—264.038 | 39570932—40234675 | 16.59 | -0.50 | 10.23 | |||||||||
qEHD-3-22 | 3 | BLUP (2018AY/ 2019BZW/ 2019BZZ) | Chr.3-bin245—Chr.3-bin246 | 319.052—320.434 | 44710972—44885104 | 4.76 | -0.3 | 2.49 | |||||||||
qEHD-3-23 | 3 | BLUP | Chr.3-bin251—Chr.3-bin252 | 328.392—331.223 | 45689213—45877762 | 4.72 | -0.28 | 2.47 | |||||||||
qEHD-3-24 | 3 | BLUP | Chr.3-bin255—Chr.3-bin256 | 335.295—339.407 | 46042065—46582016 | 3.87 | -0.25 | 2.24 | |||||||||
qEHD-3-25 | 3 | BLUP | Chr.3-bin256—Chr.3-bin257 | 339.407—340.815 | 46483582—46618927 | 3.81 | -0.24 | 2.01 | |||||||||
qEHD-3-26 | 3 | BLUP | Chr.3-bin260—Chr.3-bin261 | 344.988—346.421 | 46728763—46855047 | 3.97 | -0.24 | 2.09 | |||||||||
qEHD-3-27 | 3 | BLUP (2019BZZ) | Chr.3-bin271—Chr.3-bin272 | 360.630—362.213 | 47273755—47391186 | 5.2 | -0.27 | 2.72 | |||||||||
qEHD-3-28 | 3 | BLUP | Chr.3-bin273—Chr.3-bin274 | 363.978—365.360 | 47391187—47593066 | 4.83 | -0.26 | 2.53 | |||||||||
qEHD-5-1 | 5 | BLUP | Chr.5-bin80—Chr.5-bin81 | 164.573—165.654 | 34202091—34304938 | 3.18 | -0.19 | 1.68 | |||||||||
qEHD-5-2 | 5 | BLUP | Chr.5-bin85—Chr.5-bin86 | 171.164—172.371 | 34517958—34583021 | 3.07 | -0.19 | 1.62 | |||||||||
qEHD-6-1 | 6 | BLUP | Chr.6-bin75—Chr.6-bin76 | 123.248—124.732 | 21173085—22142445 | 3.13 | -0.19 | 1.66 | |||||||||
qEHD-8-1 | 8 | BLUP | Chr.8-bin142—Chr.8-bin143 | 148.642—149.398 | 12625705—12853225 | 5.05 | 0.25 | 2.84 | |||||||||
qEHD-8-2 | 8 | BLUP | Chr.8-bin156—Chr.8-bin157 | 158.546—159.175 | 13626368—13846690 | 5.42 | 0.26 | 3.04 | |||||||||
qEHD-8-3 | 8 | BLUP (2018AY) | Chr.8-bin162—Chr.8-bin173 | 160.909—161.336 | 14415972—22135047 | 5.41 | 0.26 | 3.03 | |||||||||
qEHD-8-4 | 8 | BLUP (2019BZW) | Chr.8-bin169—Chr.8-bin171 | 162.467—163.020 | 21496234—21959783 | 5.26 | 0.25 | 2.95 | |||||||||
qEHD-8-5 | 8 | BLUP (2019BZW) | Chr.8-bin168—Chr.8-bin170 | 163.598—164.075 | 21456415—21848090 | 5.53 | 0.26 | 3.09 | |||||||||
qEHD-8-6 | 8 | BLUP (2019BZW) | Chr.8-bin186—Chr.8-bin167 | 164.603—164.954 | 18319627—23218474 | 5.83 | 0.27 | 3.26 | |||||||||
qEHD-8-7 | 8 | BLUP | Chr.8-bin166—Chr.8-bin164 | 166.236—166.713 | 14609487—18319626 | 5.46 | 0.26 | 3.06 | |||||||||
qEHD-8-8 | 8 | BLUP | Chr.8-bin184—Chr.8-bin175 | 167.743—168.296 | 22298819—23143912 | 5.51 | 0.26 | 3.09 | |||||||||
qEHD-9-1 | 9 | BLUP (2018AY/ 2018CD/2019BAW /2019BZZ) | Chr.9-bin3—Chr.9-bin4 | 12.761—13.968 | 1020636—1081249 | 38.44 | 0.78 | 27.60 | |||||||||
qEHD-9-2 | 9 | BLUP (2018AY/ 2018CD) | Chr.9-bin7—Chr.9-bin8 | 17.693—19.002 | 1165237—1323365 | 33.79 | 0.73 | 24.85 | |||||||||
qEHD-9-3 | 9 | BLUP | Chr.9-bin51—Chr.9-bin52 | 109.941—111.025 | 17224206—17818411 | 3.05 | 0.19 | 1.61 | |||||||||
抽穗-成熟 天数HMD (d) | qHMD-1-1 | 1 | BLUP (2019BZW) | Chr.1-bin11—Chr.1-bin12 | 11.748—13.937 | 5989491—6043795 | 5.79 | -0.13 | 5.08 | ||||||||
qHMD-1-2 | 1 | BLUP (2018AY) | Chr.1-bin13—Chr.1-bin14 | 15.863—17.275 | 6043796—6136316 | 6.06 | -0.14 | 5.27 | |||||||||
qHMD-3-1 | 3 | BLUP | Chr.3-bin269—Chr.3-bin270 | 356.978—358.944 | 47109073—47273754 | 3.12 | 0.10 | 2.65 | |||||||||
qHMD-3-2 | 3 | BLUP | Chr.3-bin275—Chr.3-bin276 | 366.949—392.747 | 47593067—50652576 | 3.64 | 0.12 | 4.42 | |||||||||
qHMD-9-1 | 9 | BLUP (2018CD) | Chr.9-bin3—Chr.9-bin4 | 12.761—13.968 | 1020636—1081249 | 13.24 | -0.20 | 12.14 | |||||||||
qHMD-9-2 | 9 | BLUP (2018AY\ 2019BZZ) | Chr.9-bin5—Chr.9-bin6 | 15.300—16.813 | 1081250—1165236 | 13.12 | -0.21 | 12.04 | |||||||||
qHMD-9-3 | 9 | BLUP | Chr.9-bin8—Chr.9-bin9 | 19.002—20.591 | 1296358—1344786 | 11.97 | -0.19 | 11.05 | |||||||||
全生 育期GRP (d) | qGRP-3-1 | 3 | BLUP | Chr.3-bin82—Chr.3-bin85 | 114.260—115.895 | 13793248—14081551 | 5.97 | -0.21 | 3.8 | ||||||||
qGRP-3-2 | 3 | BLUP | Chr.3-bin83—Chr.3-bin86 | 118.660—120.269 | 13892365—14106973 | 5.20 | -0.20 | 3.33 | |||||||||
qGRP-3-3 | 3 | BLUP | Chr.3-bin87—Chr.3-bin88 | 121.426—122.382 | 14106974—14234898 | 5.75 | -0.21 | 3.66 | |||||||||
qGRP-3-4 | 3 | BLUP(2019BZZ) | Chr.3-bin91—Chr.3-bin92 | 125.448—127.505 | 14303367—14401524 | 5.88 | -0.21 | 3.75 | |||||||||
qGRP-3-5 | 3 | BLUP | Chr.3-bin95—Chr.3-bin96 | 131.258—132.817 | 14566487—14610137 | 5.35 | -0.2 | 3.41 | |||||||||
qGRP-3-6 | 3 | BLUP | Chr.3-bin236—Chr.3-bin237 | 306.882—308.216 | 43369331—43507343 | 8.38 | -0.25 | 5.65 | |||||||||
qGRP-3-7 | 3 | BLUP (2018AY/ 2019BZW/ 2019BZZ) | Chr.3-bin244—Chr.3-bin245 | 316.945—319.052 | 44280815—44754403 | 11.37 | -0.28 | 7.55 | |||||||||
qGRP-3-8 | 3 | BLUP (2018AY/ 2019BZW/ 2019BZZ) | Chr.3-bin248—Chr.3-bin249 | 322.822—325.795 | 45168414—45466528 | 11.17 | -0.28 | 7.43 | |||||||||
qGRP-8-1 | 8 | BLUP (2019BZW) | Chr.8-bin91—Chr.8-bin92 | 112.889—113.844 | 6404083—6582741 | 6.05 | 0.18 | 3.88 | |||||||||
qGRP-8-2 | 8 | BLUP | Chr.8-bin94—Chr.8-bin95 | 116.158—116.962 | 6658786—6888868 | 6.20 | 0.19 | 3.98 | |||||||||
qGRP-8-3 | 8 | BLUP (2019BZW) | Chr.8-bin99—Chr.8-bin100 | 119.928—120.732 | 7369110—7779259 | 6.23 | 0.19 | 4.00 | |||||||||
qGRP-8-4 | 8 | BLUP | Chr.8-bin103—Chr.8-bin104 | 123.052—123.630 | 8148192—8250376 | 6.99 | 0.2 | 4.46 | |||||||||
qGRP-8-5 | 8 | BLUP | Chr.8-bin105—Chr.8-bin106 | 124.007—124.334 | 8250377—8415850 | 6.71 | 0.19 | 4.29 | |||||||||
qGRP-8-6 | 8 | BLUP (2019BZW) | Chr.8-bin111—Chr.8-bin112 | 127.806—128.763 | 8570149—8953918 | 6.55 | 0.19 | 4.19 | |||||||||
qGRP-8-7 | 8 | BLUP | Chr.8-bin118—Chr.8-bin119 | 132.885—133.463 | 9374426—9577974 | 6.16 | 0.19 | 3.95 | |||||||||
qGRP-9-1 | 9 | BLUP (2018CD) | Chr.9-bin4—Chr.9-bin5 | 13.968—15.300 | 1051492—1134471 | 23.38 | 0.38 | 16.97 | |||||||||
qGRP-9-2 | 9 | BLUP (2018CD\ 2019BZW) | Chr.9-bin7—Chr.9-bin8 | 17.693—19.002 | 1165237—1323365 | 20.46 | 0.36 | 15.10 | |||||||||
qGRP-9-3 | 9 | BLUP | Chr.9-bin41—Chr.9-bin42 | 98.942—100.225 | 16720473—16794977 | 3.39 | 0.13 | 2.12 | |||||||||
qGRP-9-4 | 9 | BLUP | Chr.9-bin50—Chr.9-bin51 | 109.137—109.941 | 17185562—17265906 | 3.90 | 0.14 | 2.43 | |||||||||
qGRP-9-5 | 9 | BLUP | Chr.9-bin55—Chr.9-bin56 | 113.588—114.543 | 17993917—18066318 | 3.17 | 0.13 | 1.98 |
表3
谷子穗部相关性状QTL定位结果"
性状 Traits | 数量性 状位点 QTL | 染色体 Chromosome | 环境 Environment | 标记区间 Marker interval | 遗传位置 Genetic position (cM) | 物理区间 Physical interval (bp) | 阈值 LOD | 加性效应 Additive effect | 贡献率 R2 (%) | |||||||||
穗长 PL (cm) | qPL-3-1 | 3 | BLUP (2018AY/ 2018CD) | Chr.3-bin63—Chr.3-bin64 | 90.527—91.860 | 11814797—11910395 | 4.20 | 0.15 | 3.51 | |||||||||
qPL-3-2 | 3 | BLUP (2018AY/ 2018CD) | Chr.3-bin67—Chr.3-bin68 | 95.658—96.815 | 12330455—12432361 | 5.36 | 0.17 | 4.45 | ||||||||||
qPL-5-1 | 5 | BLUP (2018AY/ 2019BZW) | Chr.5-bin126—Chr.5-bin127 | 250.396—257.529 | 41261506—43386429 | 12.64 | -0.27 | 11.65 | ||||||||||
qPL-6-1 | 6 | BLUP (2018AY/ 2019BZW) | Chr.6-bin59—Chr.6-bin60 | 102.475—103.505 | 7444554—7513668 | 6.31 | -0.18 | 5.21 | ||||||||||
qPL-6-2 | 6 | BLUP (2018CD/ 2019BZW) | Chr.6-bin120—Chr.6-bin121 | 193.650—201.019 | 29947335—31729605 | 10.62 | -0.24 | 9.60 | ||||||||||
qPL-6-3 | 6 | BLUP (2018CD/ 2019BZW) | Chr.6-bin122—Chr.6-bin123 | 202.981—207.158 | 31729606—32246096 | 9.09 | -0.21 | 7.39 | ||||||||||
qPL-9-1 | 9 | BLUP (2018CD/ 2019BZW) | Chr.9-bin3—Chr.9-bin4 | 12.761—13.968 | 1020636—1081249 | 6.05 | 0.18 | 5.44 | ||||||||||
qPL-9-2 | 9 | BLUP (2018AY/ 2019BZW) | Chr.9-bin90—Chr.9-bin91 | 156.760—157.966 | 22194797—22455064 | 8.10 | 0.21 | 7.36 | ||||||||||
qPL-9-3 | 9 | BLUP | Chr.9-bin7—Chr.9-bin8 | 17.693—19.002 | 1165237—1323365 | 5.03 | 0.17 | 4.55 | ||||||||||
穗粗 PD (cm) | qPD-5-1 | 5 | BLUP | Chr.5-bin127—Chr.5-bin128 | 257.529—259.771 | 43359466—43412659 | 3.80 | 0.01 | 3.74 | |||||||||
qPD-5-2 | 5 | BLUP | Chr.5-bin129—Chr.5-bin130 | 261.682—268.328 | 43412660—45336734 | 3.69 | 0.01 | 4.16 | ||||||||||
qPD-9-1 | 9 | BLUP | Chr.9-bin128—Chr.9-bin129 | 212.208—213.994 | 36259049—36379621 | 5.97 | 0.01 | 6.19 | ||||||||||
qPD-9-2 | 9 | BLUP | Chr.9-bin133—Chr.9-bin134 | 221.828—223.286 | 37257348—38464278 | 8.16 | 0.02 | 8.34 | ||||||||||
qPD-9-3 | 9 | BLUP | Chr.9-bin139—Chr.9-bin140 | 230.680—232.566 | 40138779—40323908 | 7.80 | 0.01 | 7.99 | ||||||||||
单穗重SPW (g) | qSPW-9-1 | 9 | BLUP | Chr.9-bin150—Chr.9-bin151 | 252.257—254.167 | 42275808—42540717 | 5.07 | 0.01 | 5.20 | |||||||||
qSPW-9-2 | 9 | BLUP | Chr.9-bin155—Chr.9-bin156 | 260.934—268.406 | 42685851—43436931 | 4.48 | 0.01 | 5.16 |
表4
基因注释候选基因"
性状 Traits | 数量性 状位点QTL | 染色体Chromosome | 候选基因 Candidate genes | KO注释 KO annotation | GO注释 GO annotation | 拟南芥同源基因 Homologous genes in Arabidopsis | 功能注释 Functional annotation |
---|---|---|---|---|---|---|---|
抽穗期 EHD (d) | qEHD-9-1 | Chr.9 | Seita.9G020100.1 | GO:0005515 | AT5G15850 | CONSTANS-like 1 | |
Chr.9 | Seita.9G019800.1 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
Chr.9 | Seita.9G019800.3 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
Chr.9 | Seita.9G019800.2 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
qEHD-9-2 | Chr.9 | Seita.9G023100.1 | K09534 | AT5G49580 | 分子伴侣DnaJ结构域超家族蛋白 Chaperone DnaJ-domain superfamily protein | ||
Chr.9 | Seita.9G023600.1 | AT3G06610 | DNA结合增强子相关蛋白 DNA-binding enhancer protein-related | ||||
抽穗-成熟天数 HMD (d) | qEHD-9-1 | Chr.9 | Seita.9G019800.1 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |
Chr.9 | Seita.9G019800.3 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
Chr.9 | Seita.9G019800.2 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
Chr.9 | Seita.9G020100.1 | GO:0005515 | AT5G15850 | CONSTANS-like 1 | |||
全生育期 GRP (d) | qGRP-9-1 | Chr.9 | Seita.9G020100.1 | GO:0005515 | AT5G15850 | CONSTANS-like 1 | |
Chr.9 | Seita.9G020800.1 | GO:0016787, GO:0008152 | AT3G02875 | 肽酶M20/M25/M40家族蛋白 Peptidase M20/M25/M40 family protein | |||
Chr.9 | Seita.9G020900.1 | K14664 | GO:0016787, GO:0008152 | AT3G02875 | 肽酶M20/M25/M40家族蛋白 Peptidase M20/M25/M40 family protein | ||
qGRP-9-2 | Chr.9 | Seita.9G023600.1 | AT3G06610 | DNA结合增强子相关蛋白 DNA-binding enhancer protein-related | |||
Chr.9 | Seita.9G023100.1 | K09534 | AT5G49580 | 伴侣DNAJ结构域超家族蛋白 Chaperone DnaJ-domain superfamily protein | |||
穗长 PL (cm) | qPL-9-1 | Chr.9 | Seita.9G020100.1 | GO:0005515 | AT5G15850 | CONSTANS-like 1 | |
Chr.9 | Seita.9G019800.1 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
Chr.9 | Seita.9G019800.3 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
Chr.9 | Seita.9G019800.2 | GO:0003676 | AT2G27040 | AGO家族蛋白 Argonaute family protein | |||
qPL-9-3 | Chr.9 | Seita.9G023600.1 | AT3G06610 | DNA结合增强子相关蛋白 DNA-binding enhancer protein-related | |||
Chr.9 | Seita.9G023100.1 | K09534 | AT5G49580 | 伴侣DNAJ结构域超家族蛋白 Chaperone DnaJ-domain superfamily protein |
[1] | 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 459-470. |
LI S G, LIU F, LIU M, CHENG R H, XIA E J, DIAO X M. Current status and future prospective of foxtail millet production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 459-470. (in Chinese) | |
[2] | GUPTA N, SRIVASTAVA A K, PANDEY V N. Biodiversity and nutraceutical quality of some Indian millets. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2012, 82(2): 265-273. |
[3] | 韩飞, 诸葛玉平, 娄燕宏, 王会, 张乃丹, 何伟, 晁赢. 63份谷子种质的耐盐综合评价及耐盐品种筛选. 植物遗传资源学报, 2018, 19(4): 685-693. |
HAN F, ZHUGE Y P, LOU Y H, WANG H, ZHANG N D, HE W, CHAO Y. Evaluation of salt tolerance and screening for salt tolerant accessions of 63 foxtail millet germplasm. Journal of Plant Genetic Resources, 2018, 19(4): 685-693. (in Chinese) | |
[4] |
DOUST A N, DEVOS K M, GADBERRY M D, GALE M D, KELLOGG E A. The genetic basis for inflorescence variation between foxtail and green millet (poaceae). Genetics, 2005, 169: 1659-1672.
doi: 10.1534/genetics.104.035543 |
[5] |
TIAN B H, ZHANG L X, LIU Y L, WU P P, WANG W, ZHANG Y, LI H J. Identification of QTL for resistance to leaf blast in foxtail millet by genome re-sequencing analysis. Theoretical and Applied Genetics, 2021, 134(Suppl): 1-12.
doi: 10.1007/s00122-020-03709-7 |
[6] |
CHARU L, MANOJ P. Association of an allele-specific marker with dehydration stress tolerance in foxtail millet suggests SiDREB2 to be an important QTL. Journal of Plant Biochemistry and Biotechnology, 2014, 23(1): 119-122.
doi: 10.1007/s13562-013-0193-y |
[7] | 贾小平, 张博, 董志平, 全建章, 王永芳, 张小梅, 袁玺垒, 李剑峰, 戴凌峰. 海南短日照条件下谷子穗部性状的全基因组关联分析. 河南农业科学, 2018, 47(9): 33-40. |
JIA X P, ZHANG B, DONG Z P, QUAN J Z, WANG Y F, ZHANG X M, YUAN X L, LI J F, DAI L F. Genome-wide association analysis of panicle traits of foxtail millet under Hainan short-day condition. Journal of Henan Agricultural Sciences, 2018, 47(9): 33-40. (in Chinese) | |
[8] | 张艾英, 郭二虎, 刁现民, 范惠萍, 李瑜辉, 王丽霞, 郭红亮, 程丽萍, 吴引生. 2005-2015年西北春谷中晚熟区谷子育成品种评. 中国农业科学, 2017, 50(23): 4486-4505. |
ZHANG A Y, GUO E H, DIAO X M, FAN H P, LI Y H, WANG L X, GUO H L, CHENG L P, WU Y S. Evaluation of foxtail millet cultivars developed in the middle and late-maturing spring-sowing region in Northwest China in 2005-2015. Scientia Agricultura Sinica, 2017, 50(23): 4486-4505. (in Chinese) | |
[9] | WANG J, WANG Z L, DU X F, YANG H Q, HAN F, HAN Y H, YUAN F, ZHANG L Y, PENG S Z, GUO E H. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE, 2017, 12(6): 0179717. |
[10] |
ZHI H, HE Q, TANG S, YANG J J, ZHANG W, LIU H F, JIA Y C, JIA G Q, ZHANG A Y, LI Y H, GUO E H, GAO M, LI S J, LI J X, QIN N, ZHU C C, MA C Y, ZHANG H J, CHEN G Q, ZHANG W F, WANG H G, QIAO Z J, LI S G, CHENG R H, XING L, WANG S Y, LIU J R, LIU J, DIAO X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theoretical and Applied Genetics, 2021, 134(9): 3023-3036.
doi: 10.1007/s00122-021-03875-2 |
[11] | 张艾英, 刁现民, 郭二虎, 范惠萍, 王丽霞, 李瑜辉, 程丽萍, 吴引生, 张莉. 西北春谷早熟区谷子品种十五年变化趋势及主要性状分析. 中国农业科学, 2017, 50(23): 4496-4511. |
ZHANG A Y, DIAO X M, GUO E H, FAN H P, WANG L X, LI Y H, CHENG L P, WU Y S, ZHANG L. Research progress and major traits of foxtail millet cultivars developed and and in the early-mature spring-sowing region in the past 15years. Scientia Agricultura Sinica, 2017, 50(23): 4496-4511. (in Chinese) | |
[12] | 相吉山, 张恒儒, 于佳东, 索良喜, 郭普丞, 李岩, 韩奕, 杜鹤恬, 马静泽, 陈佳宁. 495个不同产区谷子品种(系)在赤峰地区的农艺性状分析. 河南农业科学, 2020, 49(08):16-30. |
XIANG J S, ZHANG H R, YU J D, SUO L X, GUO P C, LI Y, HAN Y, DU H T, MA J Z, CHEN J N. Agronomic traits of 495 foxtail millet [Setaria italica(L.)P. Beauv.] varieties (lines) from different regions planted in Chifeng area. Journal of Henan Agricultural Sciences, 2020, 49(8): 16-30. (in Chinese) | |
[13] | 李志江, 刁现民. 谷子分子标记与功能基因组研究进展. 中国农业科技导报, 2009, 11(4): 16-22. |
LI Z J, DIAO X M. Research progress on molecular marker and functional genomic of foxtail millet, Setaria italica Beauv. Journal of Agricultural Science and Technology, 2009, 11(4): 16-22. (in Chinese) | |
[14] | NI X M, XIA Q J, ZHANG H B, CHENG S, LI H, FAN G Y, GUO T, HUANG P, XIANG H T, CHEN Q C, LI N, ZOU H F, CAI X M, LEI X J, WANG X M, ZHOU C S, ZHAO Z H, ZHANG G Y, DU G H, CAI W, QUAN Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience, 2017, 6(2): 1-8. |
[15] | WANG J, WANG Z L, DU X F, YANG H Q, HAN F, HAN Y H, YUAN F, ZHANG L Y, PENG S Z, GUO E H. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE, 2017, 12(6): e0179717. |
[16] |
JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L F, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E H, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B J, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45(8): 957-961.
doi: 10.1038/ng.2673 |
[17] | 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012. |
XIE L L. QTL map and analysis for the related traits of photoperiod sensitivity in Setaria italica[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese) | |
[18] |
JAISWAL V, GUPTA S, GAHLAUT V, MUTHAMILARASAN M, BANDYOPADHYAY T, RAMCHIARY N, PRASAD M. Genome- wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Scientific Reports, 2019, 9: 5020.
doi: 10.1038/s41598-019-41602-6 |
[19] | 占小登, 于萍, 林泽川, 陈代波, 沈希宏, 张迎信, 付君林, 程式华, 曹立勇. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL. 中国水稻科学, 2014, 28(6): 570-580. |
ZHAN X D, YU P, LIN Z C, CHEN D B, SHEN X H, ZHANG Y X, FU J L, CHENG S H, CAO L Y. QTL mapping of heading data yield-related traits in rice using a recombination inbred lines (RILs) population derived from BJ1×XLJ. Chinese Journal of Rice Science, 2014, 28(6): 570-580. (in Chinese) | |
[20] | 王晓宇, 刁现民, 王节之, 王春芳, 王根全, 郝晓芬, 梁增浩, 王雪梅, 赵芳芳. 谷子SSR分子图谱构建及主要农艺性状QTL定位. 植物遗传资源学报, 2013, 14(5):871-878. |
WANG X Y, DIAO X M, WANG J Z, WANG C F, WANG G Q, HAO X F, LIANG Z H, WANG X M, ZHAO F F, Construction of genetic map and QTL analysis of some main agronomic traits in millet. Journal of Plant Genetic Resources, 2013, 14(5):871-878. (in Chinese) | |
[21] | 李海权, 耿玲玲, 李振侠. 谷子重要农艺性状QTL初步定位//2015年学术年会论文摘要集, 北京: 中国作物学会, 2015. |
LI H Q, GENG L L, LI Z X. The preliminary location study on the main agronomic characters in foxtail millet//Abstracts of Papers of Annual Meeting in 2015, BeiJing: The Crop Science Society of China, 2015. (in Chinese) | |
[22] |
FANG X M, DONG K J, WANG X Q, LIU T P, HE J H, REN R Y, ZHANG L, LIU R, LIU X Y, LI M, HUANG M Z, ZHANG Z S, YANG T Y. A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv]. BMC Genomics, 2016, 17(1): 336.
doi: 10.1186/s12864-016-2628-z |
[23] | ZHANG K, FAN G, ZHANG X. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. Genes Genomes Genetics, 2017, 7(5): 1587-1594. |
[24] |
LIU T P, HE J H, DONG K J, WANNG X W, WANG W W, YANG P, REN R Y, ZHANG L, ZHANG Z S, YANG T Y. QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics, 2020, 21(1): 1-13.
doi: 10.1186/s12864-019-6419-1 |
[25] | WANG Z L, WANG J, PENG J X, DU X F, JIANG M S, LI Y F, HAN F, DU G H, YANG H Q, LIAN S C, YONG J P, CAI W, CUI J D, HAN K N, YUAN F, CHANG F, YUAN G B, ZHANG W N, ZHANG L Y, PENG S Z, ZOU H F, GUO E H. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P. Beauv). Molecular Breeding, 2019, 39(2): 1-13. |
[26] |
WANG J, YANG H Q, DU G H, WANG Z L, ZOU H F, DU X F, LI Y F, PENG J X, GUO E H, YONG J P, HAN F, CAI W, XIA Q J, YUAN G B, YUAN F, NI X M, ZHANG L X, PENG S Z. Mapping of Sihc1, which controls hull color, using a high-density genetic map based on restriction site-associated DNA sequencing in foxtail millet [Setaria italica (L.) P.Beauv.]. Molecular Breeding, 2017, 37(10): 1-10.
doi: 10.1007/s11032-016-0586-4 |
[27] | 闫宏山, 刘金荣, 王素英, 路志国, 刘海平, 蒋自可, 宋中强, 王淑君. 谷子新品种豫谷18的选育. 作物杂志, 2012(3): 147-148. |
YAN H S, LIU J R, WANG S Y, LU Z G, LIU H P, JIANG Z K, SONG Z Q, WANG S J. Breeding of new foxtail millet cultivar Yugu 18. Journal of Crops, 2012(3): 147-148. (in Chinese) | |
[28] | 程汝宏, 刘正理, 师志刚, 夏雪岩, 杨万桥. 水分高效利用型谷子新品种“冀谷19”选育研究. 河北农业科学, 2006(1): 80-81. |
CHENG R H, LIU Z L, SHI Z G, XIA X Y, YANG W Q, Breeding of foxtail millet cultivar Jigu19. Hebei Agricultural Sciences, 2006(1): 80-81. (in Chinese) | |
[29] | 陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. |
LU P. Descriptors and Data Standard for Foxtail Millet Germplasm Resources. Beijing: China Agriculture Press, 2006. (in Chinese) | |
[30] |
XIE H F, HOU J L, FU N, WEI M H, LI Y F, YU K, SONG H, LI S M, LIU J R. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics, 2021, 22(1): 1-13.
doi: 10.1186/s12864-020-07350-y |
[31] | MAURO-HERRERA M, WANG X W, BARBIER H, BRUTNELL T P, DEVOS K M, DOUST A N. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). Genes Genomes Genetics, 2013, 3(2): 283-295. |
[32] | 王海岗. 山西谷子种质资源遗传多样性与主要农艺性状的QTL关联分析[D]. 晋中: 山西农业大学, 2019. |
WANG H G. Genetic diversity and association analysis of major agronomic traits in foxtail millet [Setaria italica (L.) P.Beauv.] of Shanxi province[D]. Jinzhong: Shanxi Agricultural University, 2019. (in Chinese) | |
[33] | 刘丹青, 金玉环, 郭力, 李永光, 黄先忠. 四种十字花科植物CONSTANS-like基因家族的鉴定和进化分析. 植物生理学报, 2021, 57(6):1241-1260. |
LIU D Q, JIN Y H, GUO L, LI Y G, HUANG X Z. Identification and evolutionary analysis of CONSTANS-like gene family in four cruciferous plants. Plant Physiology Journal, 2021, 57(6): 1241-1260. (in Chinese) | |
[34] | 翟立红, 孙伟, 李知洪, 腾峰. 植物Argonaute基因研究进展. 生命科学, 2018, 30(11): 1210-1220. |
ZHAI L H, SUN W, LI Z H, TENG F. Argonaute family in plants. Chinese Bulletin of Life Sciences, 2018, 30(11): 1210-1220. (in Chinese) | |
[35] |
PACHAMUTHU K, SWETHA C, BASU D, DAS S, SINGH I, SUNDAR V H, SUIJTH T N, SHIVAPRASAD P. Rice-specific Argonaute 17 controls reproductive growth and yield-associated phenotypes. Plant Molecular Biology, 2020, 105(1): 99-104.
doi: 10.1007/s11103-020-01071-2 |
[36] | 薛红丽, 杨军军, 汤沙, 智慧, 王蕊, 贾冠清, 乔治军, 刁现民. 谷子穗顶端败育突变体sipaa1的表型分析和基因定位. 中国农业科学, 2018, 51(9): 1627-1640. |
XUE H L, YANG J J, TANG S, ZHI H, WANG R, JIA G Q, QIAO Z J, DIAO X M. Morphological characterization and gene mapping of panicle apical abortion mutant (sipaa1) in foxtail millet. Scientia Agricultura Sinica, 2018, 51(9): 1627-1640. (in Chinese) | |
[37] |
LEE H S, CHOI I, JEON Y, AHN H K, CHO H, KIM J, KIM J H, LEE J M, LEE S, BUNTING J, SEO D H, LEE T, LEE D H, LEE I, OH M H, KIM T W, BELKHADIR, PAI H S. Chaperone-like protein DAY plays critical roles in photomorphogenesis. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[3] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[4] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[5] | 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665. |
[6] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[7] | 胡朝月, 王凤涛, 郎晓威, 冯晶, 李俊凯, 蔺瑞明, 姚小波. 小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析[J]. 中国农业科学, 2022, 55(3): 491-502. |
[8] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[9] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[10] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
[11] | 常立国,何坤辉,刘建超. 多环境下玉米保绿相关性状遗传位点的挖掘[J]. 中国农业科学, 2022, 55(16): 3071-3081. |
[12] | 李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499. |
[13] | 郝静,李秀坤,崔顺立,邓洪涛,侯名语,刘盈茹,杨鑫雷,穆国俊,刘立峰. 花生每荚种子数相关性状QTL的定位[J]. 中国农业科学, 2022, 55(13): 2500-2508. |
[14] | 孟鑫浩,邓洪涛,李丽,崔顺立,Charles Y.Chen,侯名语,杨鑫雷,刘立峰. 栽培种花生株型相关性状的QTL定位[J]. 中国农业科学, 2021, 54(8): 1599-1612. |
[15] | 武翠卿,孙静鑫,郭平毅,王宏富,武新慧. 农艺措施对谷子产量及抗倒伏力学性能的影响[J]. 中国农业科学, 2021, 54(6): 1127-1142. |
|