中国农业科学 ›› 2020, Vol. 53 ›› Issue (19): 3954-3963.doi: 10.3864/j.issn.0578-1752.2020.19.009
高英波1(),张慧1,单晶1,薛艳芳1,钱欣1,代红翠2,刘开昌2(
),李宗新1(
)
收稿日期:
2020-05-12
接受日期:
2020-08-24
出版日期:
2020-10-01
发布日期:
2020-10-19
通讯作者:
刘开昌,李宗新
作者简介:
高英波,E-mail: 基金资助:
GAO YingBo1(),ZHANG Hui1,SHAN Jing1,XUE YanFang1,QIAN Xin1,DAI HongCui2,LIU KaiChang2(
),LI ZongXin1(
)
Received:
2020-05-12
Accepted:
2020-08-24
Online:
2020-10-01
Published:
2020-10-19
Contact:
KaiChang LIU,ZongXin LI
摘要:
【目的】吐丝前高温是影响玉米雌雄穗发育的重要因素之一,对玉米产量形成至关重要。探明吐丝前高温胁迫对玉米产量及雌雄穗发育进程的影响,为玉米稳产高产提供保障。【方法】以花粒期耐热型玉米品种郑单958和热敏感型玉米品种联创808为供试材料,采用盆栽试验,在第9片叶展开期至吐丝期,移入人工智能温室进行高温胁迫(最高温度/最低温度为40/30℃),对照的最高温度/最低温度为35/25℃,研究高温胁迫对不同耐热型玉米产量、雌雄穗生长发育及外观形态结构、花粉花丝微观结构和光合特性的影响。【结果】第9片叶展开期至吐丝期高温胁迫显著降低了夏玉米穗长、行粒数、穗粒数和粒重,进而导致产量显著下降。与对照相比,高温胁迫下郑单958和联创808行粒数分别降低22.21%和24.59%,穗粒数分别降低29.85%和27.80%,千粒重分别降低24.04%和17.47%,导致籽粒产量分别降低44.98%和40.88%,差异均达显著水平。高温胁迫抑制了2个玉米品种雌雄穗发育,雌、雄穗干重和雌穗长度显著降低,光合性能显著降低,开花吐丝间隔期(ASI)拉长。高温胁迫后,郑单958和联创808吐丝期雄穗干重分别降低39.42%和15.60%,雌穗干重分别降低22.50%和15.56%,穗位叶净光合速率分别降低48.70%和56.48%,开花吐丝间隔期(ASI)分别达7 d和6 d,雌穗吐丝时间推迟是ASI拉长的主要原因。高温胁迫对玉米花粉及花丝表面超微结构均产生了明显影响,2个玉米品种花粉粒表面均出现干缩褶皱,外壳出现网状纹突起,萌发孔内陷;玉米花丝表面褶皱,花丝毛数明显降低,且存在的花丝毛几乎全部倒伏于花丝表面上,造成花丝接受花粉面积减少,且郑单958花粉花丝受损程度明显重于联创808。【结论】第9片叶展开期至吐丝期高温胁迫,对耐热型品种郑单958的产量形成、光合特性和雌雄穗发育的影响均高于热敏感型品种联创808。第9片叶展开期至吐丝期高温胁迫导致粉花丝微观形态受损,抑制雌雄穗发育,显著降低玉米光合能力,使得穗粒数和粒重减少,籽粒产量显著降低。因此,生产中适宜玉米品种的选用需参考不同区域高温逆境易发生阶段来确定。
高英波,张慧,单晶,薛艳芳,钱欣,代红翠,刘开昌,李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响[J]. 中国农业科学, 2020, 53(19): 3954-3963.
GAO YingBo,ZHANG Hui,SHAN Jing,XUE YanFang,QIAN Xin,DAI HongCui,LIU KaiChang,LI ZongXin. Effects of Pre-Silking High Temperature Stress on Yield and Ear Development Characteristics of Different Heat-Resistant Summer Maize Cultivars[J]. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963.
表1
吐丝前高温胁迫对夏玉米产量、产量构成及穗部性状的影响"
品种 Variety | 处理 Treatment | 籽粒产量 Grain yield (g/plant) | 千粒重 1000-kernel weight (g) | 穗粒数 Grains per ear | 穗长 Ear length (cm) | 秃顶长 Barren tip length (cm) | 穗行数 Rows of ear | 行粒数 Grains per row |
---|---|---|---|---|---|---|---|---|
LC808 | 35/25℃ | 80.53a | 245.18a | 319.33a | 16.00a | 1.83b | 13.33a | 24.00a |
40/30℃ | 47.61b | 202.34b | 224.00b | 13.50b | 3.07a | 12.00a | 18.67b | |
ZD958 | 35/25℃ | 71.72a | 231.21a | 297.33a | 14.00a | 1.00b | 14.67a | 20.33a |
40/30℃ | 39.46b | 175.62b | 214.67b | 10.37b | 1.93a | 14.00a | 15.33b | |
品种 Variety (V) | ** | ** | ns | *** | ** | ** | *** | |
高温High temperature (T) | *** | *** | *** | *** | ** | ns | *** | |
品种×高温V×T | ns | ns | ns | ns | ns | ns | ns |
图3
高温胁迫对夏玉米花粉花丝微观形态结构的影响 花期35/25℃和40/30℃处理的花粉、花丝的电子显微镜扫描图像。a、c分别表示35/25℃处理下ZD958和LC808单个花粉粒扫描图像,e、g分别表示40/30℃处理下ZD958和LC808单个花粉粒扫描图像,标尺=50 μm;b、d分别表示35/25℃处理下ZD958和LC808花粉萌发孔扫描图像,f、h分别表示40/30℃处理下ZD958和LC808花粉萌发孔扫描图像,标尺=10 μm;i、k分别表示35/25℃处理下ZD958和LC808花丝扫描图像,m、o分别表示40/30℃处理下ZD958和LC808花丝扫描图像,标尺=500 μm;j、l分别表示35/25℃处理下ZD958和LC808花丝表面扫描图像,n、p分别表示40/30℃处理下ZD958和LC808花丝表面扫描图像,标尺=100 μm"
[1] |
JHA U C, BOHRA A, SINGH N P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 2014, 133(6): 679-701.
doi: 10.1111/pbr.2014.133.issue-6 |
[2] |
HAWKINS E, FRICKER T E, CHALLINOR A J, FERRO C A T, HO C K, OSBORNE T M. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Global Change Biology, 2013, 19(3): 937-947.
doi: 10.1111/gcb.12069 pmid: 23504849 |
[3] |
ZHAO C, LIU B, PIAO S, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, DURAND J L, ELLIOTT J, EWERT F, JANSSENS I A, LI T, LIN E, LIU Q, MARTRE P MÜLLER C, PENG S S, PEÑUELAS J, RUANE A C, WALLACH D, WANG T, WU D H, LIU Z, ZHU Y, ZHU Z C, ASSENG S. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the USA, 2017, 114(35): 9326-9331.
doi: 10.1073/pnas.1701762114 pmid: 28811375 |
[4] |
JEFFERSON M. IPCC fifth assessment synthesis report: “Climate change 2014: Longer report”: Critical analysis. Technological Forecasting and Social Change, 2015, 92: 362-363.
doi: 10.1016/j.techfore.2014.12.002 |
[5] | 刘哲, 乔红兴, 赵祖亮, 李绍明, 陈彦清, 张晓东. 黄淮海夏播玉米花期高温热害空间分布规律研究. 农业机械学报, 2015, 46(7): 272-279. |
LIU Z, QIAO H X, ZHAO Z L, LI S M, CHEN Y Q, ZHANG X D. Spatial distribution of high temperature stress at corn flowering stage in Huang-Huai-Hai Plain of China. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 272-279. (in Chinese) | |
[6] | 丁帅涛, 孙琴, 罗红兵. 玉米雄穗分化发育研究进展. 作物研究, 2014, 28(1): 97-102. |
DING S T, SUN Q, LUO H B. Research progress on differentiation and development of tassel in maize. Crop Research, 2014, 28(1): 97-102. (in Chinese) | |
[7] | 于康珂, 孙宁宁, 詹静, 顾海靖, 刘刚, 潘利文, 刘天学. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响. 玉米科学, 2017, 25(4): 84-91. |
YU K K, SUN N N, ZHAN J, GU H J, LIU G, PAN L W, LIU T X. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties. Journal of Maize Sciences, 2017, 25(4): 84-91. (in Chinese) | |
[8] |
HATFIELD J L, PRUEGER J H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 2015, 10: 4-10.
doi: 10.1016/j.wace.2015.08.001 |
[9] |
LIZASO J I, RUIZ-RAMOS M, RODRIGUEZ L, GABALDON- LEAL C, OLIVEIRA J A, LORITE I J, SÁNCHEZ D, GARCÍA D, RODRÍGUEZ A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 2018, 216: 129-140.
doi: 10.1016/j.fcr.2017.11.013 |
[10] |
MITCHELL J C, PETOLINO J F. Heat stress effects on isolated reproductive organs of maize. Journal of Plant Physiology, 1988, 133(5): 625-628.
doi: 10.1016/S0176-1617(88)80019-1 |
[11] |
PRASAD P V V, BHEEMANAHALLI R, JAGADISH S V K. Field crops and the fear of heat stress-opportunities, challenges and future directions. Field Crops Research, 2017, 200: 114-121.
doi: 10.1016/j.fcr.2016.09.024 |
[12] |
PORCH T G, JAHN M. Effects of high‐temperature stress on microsporogenesis in heat‐sensitive and heat‐tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 2001, 24(7): 723-731.
doi: 10.1046/j.1365-3040.2001.00716.x |
[13] |
RANG Z W, JAGADISH S V K, ZHOU Q M, CRAUFURD P Q, HEUER S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 2011, 70(1): 58-65.
doi: 10.1016/j.envexpbot.2010.08.009 |
[14] |
WANG Y Y, TAO H B, TIAN B J, SHENG D C, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.
doi: 10.1016/j.envexpbot.2018.11.007 |
[15] | WILHELM E P, MULLEN R E, KEELING P L, SINGLETARY G W. Heat stress during grain filling in maize: Effects on kernel growth and metabolism. Crop Science, 1999, 6(6): 1733-1740. |
[16] |
EDREIRA J I R, MAYER L I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling. Field Crops Research, 2014, 166: 162-172.
doi: 10.1016/j.fcr.2014.06.018 |
[17] |
赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45(23): 4947-4958.
doi: 10.3864/j.issn.0578-1752.2012.23.023 |
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize. Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.23.023 |
|
[18] | 付景, 孙宁宁, 刘天学, 杨豫龙, 赵霞, 李潮海. 高温胁迫对玉米形态、叶片结构及其产量的影响. 玉米科学, 2019, 27(1): 46-53. |
FU J, SUN N N, LIU T X, YANG Y L, ZHAO X, LI C H. Effect of high temperature stress on morphology, leaf structure and grain yield of maize. Journal of Maize Sciences, 2019, 27(1): 46-53. (in Chinese) | |
[19] |
WEBBER H, MARTRE P, ASSENG S, KIMBALL B, WHITE J, OTTMAN M, WALL G W, SANCTIS G D, DOLTRA J, GRANT R, KASSIE B, MAIORANO A, OLESEN J E, RIPOCHE D, REZAEI E E, SEMENOV M A, STRATONOVITCH P, EWERT F. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202: 21-35.
doi: 10.1016/j.fcr.2015.10.009 |
[20] |
TAO Z Q, CHEN Y Q, LI C, ZOU J X, YAN P, YUAN S F, WU X. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain-A review. Journal of Integrative Agriculture, 2016, 15(12): 2677-2687.
doi: 10.1016/S2095-3119(16)61409-0 |
[21] |
EDREIRA J I R, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research, 2013, 142: 58-67.
doi: 10.1016/j.fcr.2012.11.009 |
[22] | 高英波, 张慧, 王竹, 薄丽秀, 武智民, 薛艳芳, 钱欣, 代红翠, 韩小伟, 李宗新. 夏玉米品种花期耐热性鉴定与评价. 山东农业科学, 2019, 51(6): 43-48. |
GAO Y B, ZHANG H, WANG Z, BO L X, WU Z M, XUE Y F, QIAN X, DAI H C, HAN X W, LI Z X. Identification and evaluation of heat tolerance of summer maize varieties during flowering stage. Shandong Agricultural Sciences, 2019, 51(6): 43-48. (in Chinese) | |
[23] |
IANNUCCI A, TERRIBILE M R, MARTINIELLO P. Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crops Research, 2008, 106(2): 156-162
doi: 10.1016/j.fcr.2007.11.005 |
[24] | 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71. |
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L LI C H, LIU T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2): 62-71. (in Chinese) | |
[25] |
杨欢, 沈鑫, 陆大雷, 陆卫平. 籽粒建成期高温胁迫持续时间对糯玉米籽粒产量和淀粉品质的影响. 中国农业科学, 2017, 50(11): 2071-2082.
doi: 10.3864/j.issn.0578-1752.2017.11.013 |
YANG H, SHEN X, LU D L, LU W P. Effects of heat stress durations at grain formation stage on grain yield and starch quality of waxy maize. Scientia Agricultura Sinica, 2017, 50(11): 2071-2082. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.013 |
|
[26] |
RIZWAN M, ALI S, ABBAS T, ADREES M, ZIA-UR-REHMAN M, IBRAHIM M, ABBAS F, QAYYUM M F, NAWAZ R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice ( Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 2018, 206: 676-683.
doi: 10.1016/j.jenvman.2017.10.035 pmid: 29149723 |
[27] | 赵花荣, 任三学, 齐月. 高湿和干旱对夏玉米灌浆期叶片光合特性的影响. 中国农学通报, 2017, 33(31): 15-21. |
ZHAO H R, REN S X, QI Y. High humidity and drought: Effects on photosynthetic characteristics of summer maize at grain filling stage. Chinese Agricultural Science Bulletin, 2017, 33(31): 15-21. (in Chinese) | |
[28] |
WANG B M, LI Z X, RAN Q J, LI P, PENG Z H, ZHANG J R. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Frontiers in Plant Science, 2018, 9: 709.
doi: 10.3389/fpls.2018.00709 pmid: 29896208 |
[29] | 刘京宝. 中国北方玉米栽培. 北京: 中国农业科学技术出版社, 2012, 35. |
LIU J B. Maize Cultivation in Northern China. Beijing: China Agricultural Science and Technology Press, 2012, 35. (in Chinese) | |
[30] |
JIANG P, CAI F, ZHAO Z Q, MENG Y, GAO L Y, ZHAO T H. Physiological and dry matter characteristics of spring maize in northeast China under drought Stress. Water, 2018, 10(11): 1561.
doi: 10.3390/w10111561 |
[31] | 贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40(3): 854-863. |
JIA S J, LI H W, JIANG Y P, ZHAO G Q, WANG H Z, YANG S J, YANG Q H, GUO J M, SHAO R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecologica Sinica, 2020, 40(3): 854-863. (in Chinese) | |
[32] |
GIORNO F, WOLTERS-ARTS M, MARIANI C, RIEU I. Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2013, 2(3): 489-506.
doi: 10.3390/plants2030489 pmid: 27137389 |
[33] |
PAGANO E, CELA S, MADDONNI G A, QTEGUI M E. Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of early-established plant hierarchies. Field Crops Research, 2007, 102(3): 198-209.
doi: 10.1016/j.fcr.2007.03.013 |
[34] |
EDREIRA J I R, CARPICI E B, SAMMARRO D, QTEGUI M E. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 2011, 123(2): 62-73.
doi: 10.1016/j.fcr.2011.04.015 |
[35] | 陶志强, 陈源泉, 隋鹏, 袁淑芬, 高旺盛. 华北春玉米高温胁迫影响机理及其技术应对探讨. 中国农业大学学报, 2013, 18(4): 20-27. |
TAO Z Q, CHEN Y Q, SUI P, YUAN S F, GAO W S. Effects of high temperature stress on spring maize and its technologic solutions in North China Plain. Journal of China Agricultural University, 2013, 18(4): 20-27. (in Chinese) | |
[36] | 岳玉兰, 朱敏, 于雷, 刘春光. 玉米雄穗对产量影响研究进展. 玉米科学, 2010, 18(4): 150-152. |
YUE Y L, ZHU M, YU L, LIU C G. Research progress on the impact of maize tassel on yield. Journal of Maize Sciences, 2010, 18(4): 150-152. (in Chinese) | |
[37] |
WANG B B, LIN Z C, LI X, ZHAO Y P, ZHAO B B, WU G X, MA X J, WANG H, XIE Y R, LI Q Q, SONG G S, KONG D X, ZHENG Z G, WEI H B, SHEN R X, WU H, CHEN C X, MENG Z D, WANG T Y, LI Y, LI X H, CHEN Y H, LAI J S, HUFFORD M B, ROSS-IBARRA J, HE H, WANG H Y. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52: 565-571.
doi: 10.1038/s41588-020-0616-3 pmid: 32341525 |
[38] | 侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16. |
HOU X F, WANG Y Y, HUANG S B, DONG X, TAO H B, WANG P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). Journal of China Agricultural University, 2020, 25(3): 10-16. (in Chinese) | |
[39] |
赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊, 潘旭. 玉米花期高温响应的基因型差异及其生理机制. 作物学报, 2012, 38(5): 857-864.
doi: 10.3724/SP.J.1006.2012.00857 |
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S, PAN X. Genotypic responses and physiological mechanisms of maize (Zea mays L.) to high temperature stress during flowering. Acta Agronomica Sinica, 2012, 38(5): 857-864. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00857 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 隋心意,赵小刚,陈鹏宇,李亚灵,温祥珍. 生菜LsPHYB可变剪接体的克隆与高温诱导表达模式[J]. 中国农业科学, 2022, 55(9): 1822-1830. |
[3] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[4] | 房孟颖,卢霖,王庆燕,董学瑞,闫鹏,董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808-4822. |
[5] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[6] | 耿文杰,李宾,任佰朝,赵斌,刘鹏,张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2): 307-319. |
[7] | 张川,刘栋,王洪章,任昊,赵斌,张吉旺,任佰朝,刘存辉,刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响[J]. 中国农业科学, 2022, 55(19): 3710-3722. |
[8] | 李小凡,邵靖宜,于维祯,刘鹏,赵斌,张吉旺,任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2022, 55(18): 3516-3529. |
[9] | 陈杨,徐孟泽,王玉红,白由路,卢艳丽,王磊. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987. |
[10] | 胡旦旦,李荣发,刘鹏,董树亭,赵斌,张吉旺,任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量[J]. 中国农业科学, 2021, 54(9): 1856-1868. |
[11] | 张明静,韩笑,胡雪,臧倩,许轲,蒋敏,庄恒扬,黄丽芬. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学, 2021, 54(7): 1537-1552. |
[12] | 徐田军,吕天放,赵久然,王荣焕,邢锦丰,张勇,蔡万涛,刘月娥,刘秀芝,陈传永,王元东,刘春阁. 黄淮海区主推夏播玉米品种籽粒脱水特性研究[J]. 中国农业科学, 2021, 54(4): 708-719. |
[13] | 李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. |
[14] | 陈杨,王磊,白由路,卢艳丽,倪露,王玉红,徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系[J]. 中国农业科学, 2021, 54(22): 4761-4777. |
[15] | 于维祯,张晓驰,胡娟,邵靖宜,刘鹏,赵斌,任佰朝. 弱光涝渍复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2021, 54(18): 3834-3846. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 944
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 567
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|