中国农业科学 ›› 2021, Vol. 54 ›› Issue (7): 1537-1552.doi: 10.3864/j.issn.0578-1752.2021.07.017
收稿日期:
2020-07-23
接受日期:
2020-09-27
出版日期:
2021-04-01
发布日期:
2021-04-22
通讯作者:
黄丽芬
作者简介:
张明静,E-mail:基金资助:
ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen()
Received:
2020-07-23
Accepted:
2020-09-27
Online:
2021-04-01
Published:
2021-04-22
Contact:
LiFen HUANG
摘要: 【目的】气候变暖对水稻生产系统的影响备受关注,研究不同种植方式下,水稻产量及其形成对气候变化的响应规律,为水稻种植区划、栽培措施和品种调整提供依据。【方法】 2017—2018年以南粳9108和南粳46为供试品种,模拟机插秧移栽和机械化直播2种种植方式,以常温(NT)为对照,于始穗期进行中度升温(平均增加2℃,MT)和极端高温胁迫(平均增加5℃,HT),研究不同种植方式下温度升高对不同水稻品种的产量及其构成、同化物转运、光合生产特性的影响。【结果】在中度升温和极端高温胁迫下,南粳9108和南粳46产量降幅均为移栽<直播,长生育期品种南粳46产量降幅较小。穗干物重增长速率表现为NT>MT>HT,水稻茎叶向穗的干物质转运量、转运率均随着温度升高而递减,且南粳9108下降趋势大于南粳46。穗后21 d至成熟期,剑叶SPAD值总体随着温度的升高而增加,差异达极显著水平;剑叶净光合速率穗后14—21 d均以极端高温胁迫处理下最小,而到穗后35 d以极端高温胁迫处理下最大。剑叶气孔导度、蒸腾速率均呈NT>MT>HT趋势,生育后期差异更显著。通径分析表明,产量各构成因子对产量的影响程度为结实率>千粒重>穗数>每穗粒数,温度处理对产量各构成因子的影响都表现为负效应,且以结实率影响最大(-0.819)。相关分析表明,不同种植方式下受中度升温、极端高温胁迫后,成熟期干物质总重量、茎叶干物质转运量与产量构成因子(穗数除外),一、二次枝梗籽粒结实率都呈极显著正相关。【结论】始穗期2—5℃升温均显著降低粳稻结实率,从而导致水稻产量降低。从光合物质特性究其原因是由于温度升高降低了干物质向穗的转运率和穗干物质积累速率,从而导致生育后期水稻剑叶SPAD值增加,延长叶片持绿时间,抑制“源”向“库”转移。从气候变暖应对措施来看,选择采用移栽种植方式和长生育期品种易于表现出对极端高温胁迫逆境较好的抗性。
张明静,韩笑,胡雪,臧倩,许轲,蒋敏,庄恒扬,黄丽芬. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学, 2021, 54(7): 1537-1552.
ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns[J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
表1
人工气候室温度处理情况"
温度处理Temperature treatment | 日期 Date (M-D) | 2:00-5:00 | 5:00-8:00 | 8:00-11:00 | 11:00-14:00 | 14:00-17:00 | 17:00-20:00 | 20:00-23:00 | 23:00-2:00 | 平均温度Average temperature |
---|---|---|---|---|---|---|---|---|---|---|
常温 NT | 08-23—08-31 | 27.0 | 27.0 | 28.0 | 31.0 | 33.0 | 31.0 | 28.0 | 27.0 | 29.0 |
09-01—09-05 | 26.0 | 26.0 | 27.0 | 30.0 | 32.0 | 30.0 | 27.0 | 26.0 | 28.0 | |
09-06—09-10 | 24.0 | 24.0 | 25.0 | 28.0 | 30.0 | 28.0 | 25.0 | 24.0 | 27.0 | |
09-11—09-16 | 23.0 | 23.0 | 24.0 | 28.0 | 30.0 | 27.0 | 25.0 | 24.0 | 25.5 | |
09-17—09-20 | 23.0 | 23.0 | 24.0 | 28.0 | 29.0 | 26.0 | 25.0 | 24.0 | 25.3 | |
09-21—09-25 | 23.0 | 23.0 | 24.0 | 26.0 | 29.0 | 25.0 | 24.0 | 23.0 | 24.6 | |
中度升温 MT | 08-23—08-31 | 29.0 | 29.0 | 30.0 | 33.0 | 35.0 | 33.0 | 30.0 | 29.0 | 31.0 |
09-01—09-05 | 28.0 | 28.0 | 29.0 | 32.0 | 34.0 | 32.0 | 29.0 | 28.0 | 30.0 | |
09-06—09-10 | 26.0 | 26.0 | 27.0 | 30.0 | 32.0 | 30.0 | 27.0 | 26.0 | 29.0 | |
09-11—09-16 | 25.0 | 25.0 | 26.0 | 30.0 | 32.0 | 29.0 | 27.0 | 26.0 | 27.5 | |
09-17—09-20 | 25.0 | 25.0 | 26.0 | 30.0 | 31.0 | 28.0 | 27.0 | 26.0 | 27.3 | |
09-21—09-25 | 25.0 | 25.0 | 26.0 | 28.0 | 31.0 | 27.0 | 26.0 | 25.0 | 26.6 | |
极端高温 HT | 08-23—08-31 | 32.0 | 32.0 | 33.0 | 36.0 | 38.0 | 36.0 | 33.0 | 32.0 | 34.0 |
09-01—09-05 | 31.0 | 31.0 | 32.0 | 35.0 | 37.0 | 35.0 | 32.0 | 31.0 | 33.0 | |
09-06—09-10 | 29.0 | 29.0 | 30.0 | 33.0 | 35.0 | 33.0 | 30.0 | 29.0 | 32.0 | |
09-11—09-16 | 28.0 | 28.0 | 29.0 | 33.0 | 35.0 | 32.0 | 30.0 | 29.0 | 30.5 | |
09-17—09-20 | 28.0 | 28.0 | 29.0 | 32.0 | 34.0 | 32.0 | 30.0 | 29.0 | 30.3 | |
09-21—09-25 | 28.0 | 28.0 | 29.0 | 31.0 | 34.0 | 30.0 | 29.0 | 28.0 | 29.6 |
表2
不同种植方式下水稻始穗期进行温度处理日程表"
8月份 August | 9月份 September | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |||||||||||||||||||||||||||
移栽南粳9108温度升高胁迫处理 Temperature rise stress treatment of TP NJ9108 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
直播南粳9108温度升高胁迫处理 Temperature rise stress treatment of DS NJ9108 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
移栽南粳46温度升高胁迫处理 Temperature rise stress treatment of TP NJ46 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
直播南粳46温度升高温胁迫处理 Temperature rise stress treatment of DS NJ46 |
表3
水稻产量及其构成因素指标在年度间、品种、种植方式及温度处理间的方差分析"
变异来源 Source of variation | 穗数 No. of panicles per hole | 每穗粒数 Spikelet number per panicle | 千粒重 1000-grain weight (g) | 结实率 Filled grain percentage (%) | 实际产量 Actual yield per hole (g) | 收获指数 Harvest index | 干物质转运量 Dry matter translocation amount (g·hole-1) |
---|---|---|---|---|---|---|---|
年度Y | 1.16ns | 0.32ns | 0.61ns | 1.32ns | 3.63ns | 0.13ns | 2.45ns |
品种V | 1.11ns | 186.46** | 93.22** | 9296.25** | 7157.96** | 233.75** | 474.33** |
种植方式P | 2.74ns | 70.91** | 10.30** | 24.80** | 63.37** | 5.23** | 13.18** |
温度处理T | 0.91ns | 31.98** | 31.71** | 17056.86** | 9731.15** | 1336.83** | 4303.98** |
Y×V | 0.97ns | 0.32ns | 0.02ns | 0.83ns | 0.01ns | 0.71ns | 0.01ns |
Y×P | 0.91ns | 0.30ns | 1.38ns | 5.586ns | 0.05ns | 1.75ns | 0.01ns |
Y×T | 1.00ns | 2.67ns | 2.21ns | 2.94ns | 2.28ns | 3.26ns | 0.35ns |
V×P | 0.33ns | 7.20** | 25.41** | 67.39** | 136.46** | 0.71ns | 56.03** |
V×T | 0.91ns | 49.97** | 1.36ns | 3346.24** | 270.61** | 221.41** | 84.07** |
P×T | 0.66ns | 11.47** | 0.68** | 16.03** | 200.42** | 6.97** | 26.29** |
V×P×T | 0.77ns | 44.74** | 2.61ns | 134.66** | 49.01** | 31.15** | 169.53** |
Y×V×P | 0.87ns | 2.67ns | 3.96ns | 0.47* | 0.59ns | 1.93ns | 1.07ns |
Y×V×T | 1.04ns | 0.08ns | 0.41ns | 0.20ns | 0.49ns | 0.71ns | 1.36ns |
Y×P×T | 1.06ns | 0.30ns | 3.30ns | 0.28ns | 2.26ns | 0.71ns | 4.76ns |
Y×V×P×T | 1.00ns | 0.08ns | 0.91ns | 2.73ns | 4.12ns | 0.19ns | 3.12ns |
表4
温度升高对水稻产量及其构成因素的影响"
品种 Variety | 种植方式 Planting modes | 温度处理 Temperature treatment | 穗数 No. of panicles per hole | 每穗粒数 Spikelet number per panicle | 千粒重 1000-grain weight (g) | 结实率 Filled grain percentage (%) | 实际产量 Actual yield per hole (g) | 收获指数 Harvest index |
---|---|---|---|---|---|---|---|---|
南粳9108 NJ9108 | 移栽 TP | 常温 NT | 10.89±0.29Aa | 118.24±0.61Aa | 25.85±0.16Aa | 88.26±0.07Aa | 24.50±0.03Aa | 0.52±0.01Aa |
中度升温 MT | 10.89±0.11Aa | 116.10±0.64Aa | 24.66±0.13Ab | 47.51±0.32Bb | 19.38±0.12Bb | 0.45±0.02Ab | ||
极端高温 HT | 10.56±0.29Aa | 109.41±0.17Bb | 25.01±0.26Aab | 7.32±0.17Cc | 11.01±0.03Cc | 0.27±0.01Bc | ||
直播 DS | 常温 NT | 12.78±0.11Aa | 122.99±0.23Aa | 25.63±0.06Aa | 87.32±0.71Aa | 28.65±0.09Aa | 0.56±0.01Aa | |
中度升温 MT | 12.33±0.19Aa | 115.81±1.12ABb | 24.95±0.08Ab | 52.45±0.68Bb | 22.32±0.14Bb | 0.47±0.01Ab | ||
极端高温 HT | 12.11±0.29Aa | 111.47±0.67Bb | 25.25±0.15Aab | 5.04±0.11Cc | 9.33±0.09Cc | 0.22±0.02Bc | ||
南粳46 NJ46 | 移栽 TP | 常温 NT | 11.56±0.11Aa | 123.54±1.21Aa | 26.89±0.02Aa | 87.32±0.45Aa | 32.11±0.18Aa | 0.53±0.00Aa |
中度升温 MT | 11.67±0.33Aa | 120.41±0.45Aa | 26.36±0.54Aa | 76.64±0.63Bb | 27.26±0.03Bb | 0.48±0.00Bb | ||
极端高温 HT | 11.22±0.22Aa | 117.80±1.40Aa | 25.59±0.20Aa | 56.92±0.54Cc | 20.79±0.11Cc | 0.38±0.00Cc | ||
直播 DS | 常温 NT | 13.33±0.19Aa | 121.55±0.36Aa | 26.27±0.08Aa | 88.39±0.62Aa | 33.89±0.16Aa | 0.51±0.01Aa | |
中度升温 MT | 11.33±0.38Bb | 126.99±1.72Aa | 25.82±0.06ABb | 65.47±0.19Bb | 25.28±0.11Bb | 0.48±0.01ABa | ||
极端高温 HT | 11.22±0.29Bb | 125.50±1.16Aa | 25.36±0.02Bc | 55.02±1.35Cc | 19.58±0.16Cc | 0.41±0.01Bb | ||
南粳9108 NJ9108 | 种植方式 Planting modes | 74.54** | 16.69* | 0.66 | 61.91** | 64.20** | 0.17 | |
温度处理 Temperature treatments | 2.33 | 122.07** | 19.73** | 19670.00** | 1831.00** | 338.68** | ||
种植方式×温度处理 Planting modes×Temperature treatments | 0.51 | 7.49* | 1.74 | 28.23** | 62.60** | 8.08* | ||
南粳46 NJ46 | 种植方式 Planting modes | 4.68 | 18.81** | 5.64 | 42.78** | 2.04 | 0.29 | |
温度处理 Temperature treatments | 11.07** | 1.58 | 10.86* | 940.85** | 514.37** | 232.72** | ||
种植方式×温度处理 Planting modes×Temperature treatments | 8.68** | 10.49* | 0.38 | 36.24** | 12.35** | 8.21* |
表5
温度升高对不同种植方式下水稻一、二次枝梗籽粒千粒重和结实率的影响"
品种 Variety | 种植方式 Planting modes | 温度处理 Temperature treatments | 一次枝梗千粒重 1000-grain weight of primary branch (g) | 二次枝梗千粒重 1000-grain weight of secondary branch (g) | 一次枝梗结实率 Filled grain percentage of primary branch (%) | 二次枝梗结实率 Filled grain percentage of secondary branch (%) |
---|---|---|---|---|---|---|
南粳9108 NJ9108 | 移栽 TP | 常温 NT | 27.71±0.33Aa | 25.52±0.09Aa | 90.82±0.28Aa | 84.88±0.09Aa |
中度升温MT | 25.35±0.14ABb | 24.03±0.216Bb | 55.27±0.72Bb | 36.30±0.43Bb | ||
极端高温HT | 25.24±0.16Bb | 23.96±0.05Bb | 7.95±0.40Cc | 7.13±0.12Cc | ||
直播 DS | 常温 NT | 26.47±0.50Aa | 25.23±0.03Aa | 89.48±0.44Aa | 85.11±0.81Aa | |
中度升温MT | 26.53±0.22Aa | 24.07±0.00Bb | 60.64±1.12Bb | 43.93±2.05Bb | ||
极端高温HT | 25.57±0.17Aa | 23.78±0.16Bb | 5.52±0.07Cc | 4.35±0.09Cc | ||
南粳46 NJ46 | 移栽 TP | 常温 NT | 27.95±0.64Aa | 26.62±0.39Aa | 90.00±0.83Aa | 83.17±0.18Aa |
中度升温MT | 26.79±0.11Aa | 26.34±0.56Aa | 81.16±2.13Aa | 72.60±0.52Bb | ||
极端高温HT | 26.26±0.11Aa | 25.23±0.23Aa | 60.11±1.32Bb | 53.47±0.52Cc | ||
直播 DS | 常温 NT | 28.68±0.02Aa | 26.70±0.23Aa | 90.44±0.43Aa | 85.65±0.92Aa | |
中度升温MT | 27.50±0.01Bb | 25.25±0.02Aab | 73.69±1.27Bb | 54.80±0.09Bb | ||
极端高温HT | 27.06±0.17Bb | 24.78±0.40Ab | 63.97±0.84Cc | 44.29±1.99Bc | ||
南粳9108 NJ9108 | 种植方式 Planting modes | 0.16 | 2.26 | 1.22 | 5.1 | |
温度处理 Temperature treatments | 18.52** | 97.08** | 10160.00** | 3748.00** | ||
种植方式×温度处理 Planting modes×Temperature treatments | 9.39* | 0.99 | 25.60** | 17.02** | ||
南粳46 NJ46 | 种植方式 Planting modes | 11.05* | 2.99 | 1.06 | 111.92** | |
温度处理 Temperature treatments | 18.99** | 11.53** | 252.87** | 712.90** | ||
种植方式×温度处理 Planting modes×Temperature treatments | 0.02 | 1.43 | 10.71** | 57.97** |
表6
温度升高对不同种植方式下干物质转运特性的影响"
品种 Variety | 种植方式 Planting modes | 温度处理 Temperature treatments | 始穗期 Initial heading stage (g·hole-1) | 成熟期 Mature stage (g·hole-1) | 转运量 Translocation amount (g·hole-1) | 转运率 Translocation rate (%) | 贡献率 Contribution rate (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
茎叶 Stem and leaf | 穗 Panicle | 茎叶 Stem and leaf | 穗 Panicle | |||||||
南粳9108 NJ9108 | 移栽 TP | 常温 NT | 40.75±0.93 | 2.48±0.06 | 30.73±0.80Bc | 29.95±1.12Aa | 10.02±0.46Aa | 24.60 | 33.46 | |
中度升温MT | 32.71±0.85Bb | 21.32±0.55Bb | 8.04±0.21Bb | 19.73 | 37.71 | |||||
极端高温 HT | 35.71±0.93Aa | 12.11±1.31Cc | 5.04±0.15Cc | 12.37 | 41.63 | |||||
直播 DS | 常温 NT | 39.89±1.04 | 3.15±0.08 | 28.86±0.75Bc | 31.52±0.82Aa | 11.03±0.29Aa | 27.65 | 35.00 | ||
中度升温 MT | 30.09±0.78Bb | 25.55±0.56Bb | 9.80±0.27Bb | 24.56 | 38.34 | |||||
极端高温 HT | 36.19±0.94Aa | 9.39±0.34Cc | 3.70±0.18Cc | 9.28 | 39.40 | |||||
南粳46 NJ46 | 移栽 TP | 常温 NT | 40.15±0.97 | 2.87±0.07 | 27.74±0.72Cc | 35.32±0.92Aa | 12.41±0.32Aa | 30.91 | 35.13 | |
中度升温 MT | 30.95±0.80Bb | 29.99±1.08Bb | 9.20±0.24Bb | 22.92 | 30.69 | |||||
极端高温 HT | 34.25±0.89Aa | 22.87±0.59Cc | 5.90±0.17Cc | 14.69 | 25.80 | |||||
直播 DS | 常温 NT | 40.7±1.12 | 3.05±0.05 | 28.89±0.75Cc | 35.28±1.32Aa | 11.81±0.31Aa | 29.02 | 33.48 | ||
中度升温 MT | 31.75±0.83Bb | 29.81±0.78Bb | 8.95±0.13Bb | 21.99 | 30.02 | |||||
极端高温 HT | 34.25±0.72Aa | 21.58±0.57Cc | 6.46±0.09Cc | 15.86 | 29.91 |
表7
光合物质生产特性与产量构成因素的相关性分析"
相关性 Correlation | 穗数 No. of panicles | 每穗粒数 Spikelet number per panicle | 千粒重 1000-grain weight | 结实率 Filled grain percentage | 一次枝梗籽粒结实率 Filled grain percentage of primary branch | 二次枝梗籽粒结实率 Filled grain percentage of secondary branch | 产量 Yield |
---|---|---|---|---|---|---|---|
干物质重量 Dry matter weight | 0.309 | 0.700* | 0.853** | 0.932** | 0.901** | 0.956** | 0.908** |
转运量 Translocation amount | 0.459 | 0.587* | 0.619* | 0.887** | 0.879** | 0.880** | 0.936** |
SPAD值 SPAD value | -0.164 | 0.352 | 0.146 | -0.217 | -0.183 | -0.257 | -0.153 |
剑叶净光合速率 Net photosynthetic rate of flag leaf | -0.194 | -0.743** | -0.499 | -0.689* | -0.729** | -0.628* | -0.676* |
气孔导度 Stomatal conductance | 0.452 | 0.502 | 0.427 | 0.742** | 0.731** | 0.740** | 0.801** |
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1535. |
[2] | 秦大河. 气候变化与干旱. 科技导报, 2009, 27(11): 3. |
QIN D H.Climate change and drought. Science & Technology Review, 2009, 27(11): 3. (in Chinese) | |
[3] | 凌霄霞, 张作林, 翟景秋,叶树春,黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45(3): 323-334. |
LING X X, ZHANG Z L, ZHAI J Q, YE S C, HUANG J L.A review for impacts of climate change on rice production in China. Acta Agronomica Sinica, 2019, 45(3): 323-334. (in Chinese) | |
[4] | LIU Z H, YANG P, TANG H J, WU W B, ZHANG L, YU Q Y, LI Z G.Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980-2010. Regional Environmental Change, 2015, 15(5): 919-929. |
[5] | WASSMANN R, JAGADISH S V K, SUMFLETH K, PATHAK H, HOWELL G, LSMAIL A, SERRAJ R, REDONA E, SINGH R K, HEUER S. Regional vulnerability of climate change impacts on asian rice production and scope for adaptation. Advances in Agronomy |
2009, 102(9): 91-133. | |
[6] | 张倩, 赵艳霞, 王春乙. 我国主要农业气象灾害指标研究进展. 自然灾害学报, 2010, 19(6): 40-54. |
ZHANG Q, ZHAO Y X, WANG C Y.Advances in research on major agro-meteorological disaster indexes in China. Journal of Natural Disasters, 2010, 19(6): 40-54. (in Chinese) | |
[7] | 谭中和, 蓝泰源, 任昌福, 方文. 杂交籼稻开花期高温胁迫危害及其对策的研究. 作物学报, 1985, 11(2): 103-108. |
TAN Z H, LAN T Y, REN C F, FANG W.Study on high temperature damage at flowering stage of indica hybrid rice and its countermeasures. Acta Agronomica Sinica, 1985, 11(2): 103-108. (in Chinese) | |
[8] | 汤昌本, 林迢, 简根梅, 裘鹏霄. 浙江早稻高温胁迫危害研究. 浙江气象科技, 2000, 21(2): 15-19. |
TANG C B, LIN Y, JIAN G M, QIU P X.Study on high temperature damage of early rice in Zhejiang province. Journal of Zhejiang Meteorology, 2000, 21(2): 15-19. (in Chinese) | |
[9] | ISHIGURO S, OGASAWARA K, FUJINO K, SATO Y, KISHIMA Y.Low temperature-responsive changes in the anther transcriptome’s repeat sequences are indicative of stress sensitivity and pollen sterility in rice strains. Plant Physiology, 2014, 164(2): 671-682. |
[10] | 谢晓金, 李秉柏, 李映雪, 李昊宇, 赵小艳, 杨沈斌, 王志明. 抽穗期高温胁迫对水稻产量构成要素和品质的影响. 中国农业气象, 2010, 31(3): 411-415. |
XIE X J, LI B B, LI Y X, LI H Y, ZHAO X Y, YANG S B, WANG Z M.Effects of high temperature stress on yield components and grain quality during heading stage. Chinese Journal of Agrometeorology, 2010, 31(3): 411-415. (in Chinese) | |
[11] | 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21(4): 396-402. |
SHENG J, TAO H J, CHEN L G.Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chinese Journal of Rice Science, 2007, 21(4): 396-402. (in Chinese) | |
[12] | 张祖建, 王晴晴, 郎有忠, 王春哥, 朱庆森, 杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响. 作物学报, 2014, 40(2): 273-282. |
ZHANG Z J, WANG Q Q, LANG Y Z, WANG C G, ZHU Q S, YANG J C.Effects of high temperature stress at heading stage on pollination and fertilization of different types of rice variety. Acta Agronomica Sinica, 2014, 40(2): 273-282. (in Chinese) | |
[13] | PENG S B, HUANG J L, JOHN E S, REBECCA C L, ROMEO M V, ZHONG X H, GRACE S C, GURDEY S K, KENNETH G C.Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the USA, 2004, 101(27): 9971-9975. |
[14] | 吴超, 崔克辉. 高温胁迫影响水稻产量形成研究进展. 中国农业科技导报, 2014, 16(3): 103-111. |
WU C, CUI K H.Progress on effect of high temperature on rice yield formation. Journal of Agricultural Science and Technology, 2014, 16(3): 103-111. (in Chinese) | |
[15] | MOHAMMED A R, TARPLEY L.High nighttime temperature affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology, 2009, 149(6/7): 999-1008. |
[16] | KIM J W, SHON J Y, LEE C K, YANG W H, YOON Y W, YANG W H, KIM Y G, LEE B W.Relationship between grain filling duration and leaf senescence of temperature rice under high temperature. Field Crop Research, 2011, 122(3): 207-213. |
[17] | MOHAMMED A R, TARPLEY L.Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science, 2009, 49(1): 313-322. |
[18] | SCAFARO A P, YAMORI W, CARMO-SILVA A E, SALVUCCI M E, CAEMMERER S V, ATWELL B J. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis). Physiologia Plantarum, 2012, 146(1): 99-109. |
[19] | ITO S, HARA T, KAWANAMI Y, WATANABE T, THIRAPORN K, OHTAKE N, SUEYOSHI K, MITSUI T, FUKUYAN T, TAKAHASHI Y, SATO A, OHYAMA T.Carbon and nitrogen transport during grain filling in rice under high-temperature conditions. Journal of Agronomy and Crop Science, 2009, 195(5): 368-376. |
[20] | 李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44(13): 2661-2672. |
LI J, ZHANG H C, DONG Y Y, NI X C, YANG B, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y.Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Scientia Agricultura Sinica, 2011, 44(13): 2661-2672. (in Chinese) | |
[21] | 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289. |
ZHANG H C, GONG J L.Research Status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. (in Chinese) | |
[22] | 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 高温胁迫对国稻6号开花结实习性的影响. 作物学报, 2008, 34(4): 669-674. |
TAO L X, TAN H J, WANG X, CAO L Y, SONG J, CHENG S H.Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6. Acta Agronomica Sinica, 2008, 34(4): 669-674. (in Chinese) | |
[23] | 石春林, 金庆之, 郑建初, 汤日圣. 减数分裂期高温胁迫对水稻颖花结实率影响的定量分析. 作物学报, 2008, 34(4): 627-631. |
SHI C L, JIN Q Z, ZHENG J C, TANG R S.Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets. Acta Agronomica Sinica, 2008, 34(4): 627-631. (in Chinese) | |
[24] | 杨陶陶, 解嘉鑫, 黄山, 谭雪明, 潘晓华, 曾勇军, 石庆华, 张俊, 曾研华. 花后增温胁迫对双季晚粳稻产量和稻米品质的影响. 中国农业科学, 2020, 53(7): 1338-1347. |
YANG T T, XIE J X, HUANG S, TAN X M, PAN X H, ZENG Y J, SHI Q H, ZHANG J, ZENG Y H.The Impacts of post-anthesis warming on grain yield and quality of late japonica rice in a double rice cropping system. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347. (in Chinese) | |
[25] | 郑建初, 张彬, 陈留根, 杜群, 秦永生, 宋健, 张卫健. 抽穗期高温胁迫对水稻产量构成要素和稻米品质的影响及其基因型差异. 江苏农业学报, 2005, 21(4): 249-254. |
ZHENG J C, ZHANG B, CHEN L G, DU Q, QIN Y S, SONG J, ZHANG W J.Genotype differences in effects of high air temperature in field on rice yield components and grain quality during heading stage. Jiangsu Journal of Agricultural Sciences, 2005, 21(4): 249-254. (in Chinese) | |
[26] | 董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫健. 开放式昼夜不同增温胁迫对单季稻影响的试验研究. 生态学报, 2011, 31(8): 2169-2177. |
DONG W J, DENG A X, ZHANG B, TIAN Y L, CHEN J, YANG F, ZHANG W J.An experimental study on the effects of different diurnal warming regimes on single cropping rice with Free Air Temperature Increased (FATI) facility. Acta Ecologica Sinica, 2011, 31(8): 2169-2177. (in Chinese) | |
[27] | 张桂莲, 陈立云, 张顺堂, 刘国华, 唐文邦, 贺治洲, 王明. 抽穗开花期高温胁迫对水稻剑叶理化特性的影响. 中国农业科学, 2007, 40(7): 1345-1352. |
ZHANG G L, CHEN L Y, ZHANG S T, LIU G H, TANG W B, HE Z Z, WANG M.Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Scientia Agricultura Sinica, 2007, 40(7): 1345-1352. (in Chinese) | |
[28] | 杜尧东, 李键陵, 王华, 唐湘如, 胡飞. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响. 生态学杂志, 2012, 31(10): 2541-2548. |
DU Y D, LI J L, WANG H, TANG X R, HU F.Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice. Chinese Journal of Ecology, 2012, 31(10): 2541-2548. (in Chinese) | |
[29] | CHENG W, SAKAI H, YAGI K, HASEGAWA T.Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010, 150(9): 1174-1181. |
[30] | 李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. 作物学报, 2011, 37(7): 1235-1248. |
LI J, ZHANG H C, CHANG Y, GONG J L, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H.Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agronomica Sinica, 2011, 37(7): 1235-1248. (in Chinese) | |
[31] | 马义虎, 杨祥田. 高温胁迫对水稻的影响及其对策的研究进展. 中国农学通报, 2015, 31(9): 1-8. |
MA Y H, YANG X T.Research advances on the effects of high temperature stress on rice and its counter-measures. Chinese Agricultural Science Bulletin, 2015, 31(9): 1-8. (in Chinese) | |
[32] | 刘维, 李祎君, 吕厚荃. 早稻抽穗开花至成熟期气候适宜度对气候变暖与提前移栽的响应. 中国农业科学, 2018, 51(1): 49-59. |
LIU W, LI H J, LÜ H Q.Response of heading to flowering to maturity of early rice to climate change and different transplant periods. Scientia Agricultura Sinica, 2018, 51(1): 49-59. (in Chinese) | |
[33] | 郭建茂, 吴越, 杨沈斌, 江晓东, 谢晓燕, 王锦杰, 申双和. 典型高温胁迫年不同播期一季稻产量差异及其原因分析. 中国农业气象, 2017, 38(2): 121-130. |
GUO J M, WU Y, YANG S B, JIANG X D, XIE X Y, WANG J J, SHEN S H.Yield differences and its causes for one season rice under different sowing dates in typical high temperature year. Chinese Journal of Agrometeorology, 2017, 38(2): 121-130. (in Chinese) | |
[34] | 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27(6): 591-602. |
DUAN Y, FU L, JU C X, LIU L J, YANG J C.Effects of application of nitrogen as panicle promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chinese Journal of Rice Science, 2013, 27(6): 591-602. (in Chinese) | |
[35] | 段骅, 俞正华, 徐云姬, 王志琴, 刘立军, 杨建昌. 灌溉方式对减轻水稻高温胁迫危害的作用. 作物学报, 2012, 38(1): 107-120. |
DUAN Y, YU Z H, XU Y J, WANG Z Q, LIU L J, YANG J C.Role of irrigation patterns in reducing harms of high temperature to rice. Acta Agronomica Sinica, 2012, 38(1): 107-120. (in Chinese) | |
[36] | 许轲, 孙圳, 霍中洋, 戴其根, 张洪程, 刘俊, 宋云生, 杨大柳, 魏海燕, 吴爱国, 王显, 吴冬冬. 播期、品种类型对水稻产量、生育期及温光利用的影响. 中国农业科学, 2013, 46(20): 4222-4233. |
XU K, SUN Z, HUO Z Y, DAI Q G, ZHANG H C, LIU J, SONG Y S, YANG D L, WEI H Y, WU A G, WANG X, WU D D.Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice. Scientia Agricultura Sinica, 2013, 46(20): 4222-4233. (in Chinese) | |
[37] | 李飞, 卓壮, UDAWELA U A S, 高用明, 石英尧. 水稻高温胁迫热害发生机理与耐高温胁迫遗传基础研究. 植物遗传资源学报, 2013, 14(1): 97-103. |
LI F, ZHUO Z, UDAWELA U A L S, GAO Y M, SHI Y Y. Damage mechanism of heat stress and genetic basis of heat tolerance in rice. Journal of Plant Genetic Resources, 2013, 14(1): 97-103. (in Chinese) |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[6] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 隋心意,赵小刚,陈鹏宇,李亚灵,温祥珍. 生菜LsPHYB可变剪接体的克隆与高温诱导表达模式[J]. 中国农业科学, 2022, 55(9): 1822-1830. |
[12] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[13] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[14] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[15] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
|