[1]李宗道. 麻类的理论与技术. 上海: 上海科学技术出版社, 1980: 388-389.
Li Z D. Theory and Technology of Bast. Shanghai: Shanghai Scientific and Technical Press, 1980: 388-389. (in Chinese)
[2]程 舟, 鲛岛一彦, 陈家宽. 日本的红麻研究、加工和利用. 中国麻业, 2001, 23(3): 16-24.
Cheng Z, Kazuhiko S, Chen J K. The research, production and utilization of bast fiber in Japanese. Plant Fiber and Products, 2001, 23(3): 16-24. (in Chinese)
[3]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphey-Smith Dr. I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16(1): 1090-1094.
[4]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2(9): 1131-1145.
[5]Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S Y, Ober E S, Salekdeh G H. Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005, 5(4): 950-960.
[6]Costa P, Bahrman N, Frigerio J M, Kremer A, Plomion C. Water-deficit-responsive proteins in maritime pine. Plant Molecular Biology, 1998, 38(4): 587-596.
[7]Reviron M P, Vartanian N, Sallantin M, Huet J C, Pernollet J C, de Vienne D. Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiology, 1992, 100(3): 1486-1493.
[8]Leymarie J, Damerval C, Marcotte L, Combes V, Vartanian N. Two-dimensional protein patterns of Arabidopsis wild-type and auxin insensitive mutants, axr1, axr2, reveal interactions between drought and hormonal responses. Plant and Cell Physiology, 1996, 37(7): 966-975.
[9]Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Peltier G. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. The Plant Journal, 1998, 13(1): 97-107.
[10]Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response to progressive water deficit in maize quantitative variation and polypeptide identification. Plant Physiology, 1998, 117(4): 1253-1263.
[11]Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000, 405: 837-846.
[12]王朝云, 揭雨成. 水分胁迫对红麻生理特性和产量的影响. 作物学报, 1995, 21(6): 746-751.
Wang C Y, Jie Y C. Effects of water stress on physiological characteristics and yield in kenaf. Acta Agronomica Sinica, 1995, 21(6): 746-751. (in Chinese)
[13]李 燕, 蔡建秀, 郑少泉, 陈思思, 陈清西, 陈 伟. “红核子”龙眼胚胎发育不同时期的蛋白质组分析. 热带作物学报, 2006, 27(4): 64-68.
Li Y, Cai J X, Zheng S Q, Chen S S, Chen Q X, Chen W. Analysis of proteins during different embryo development stages of Longan “Red Seed”. Chinese Journal of Tropical Crops, 2006, 27(4): 64-68. (in Chinese)
[14]Dai Z, Liu Y K, Cui J F, Shen H L, Chen J, Sun R X, Zhang Y, Zhou X W, Yang P Y, Tang Z Y. Identification and analysis of altered α1,6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics, 2006, 6(21): 5857-5867.
[15]Vincent D, Ergul A, Bohlman M C, Tattersall E A R, Tillett R L, Wheatley M D, Woolsey R, Quilici D R, Joets J, Schlauch K, Schooley D A, Cushman J C, Cramer G R. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. Journal of Experimental Bontany, 2007, 58(7): 1873-1892.
[16]兰 涛, 汪 斌, 童志军, 谢端端, 吴为人, 祁建民. 红麻种质资源耐旱性的初步鉴定研究. 中国麻业科学, 2007, 29(6): 322-325.
Lan T, Wang B, Tong Z J, Xie D D, Wu W R, Qi J M. Identification research on drought tolerance of kenaf germplasm resources. Plant Fiber Sciences in China, 2007, 29(6): 322-325. (in Chinese)
[17]Pankovic D, Sakac Z, Kevresan S, Plesnicar M. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: Photosynthesis, electron transport and carbon metabolism. Journal of Experiment Botany, 1999, 50(330): 128-138.
[18]Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. Journal of Proteome Research, 2006, 5(2): 396-403.
[19]Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot J P, Rouhier N, Broin M. Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. The Plant Journal, 2005, 41: 31-42.
[20]霍晨敏, 赵宝存, 葛荣朝, 沈银柱, 黄占景. 小麦耐盐突变体盐胁迫下的蛋白质组分析. 遗传学报, 2004, 31(12): 1408-1414.
Huo C M, Zhao B C, Ge R C, Shen Y Z, Huang Z J. Proteomic analysis of the salt tolerance mutant of wheat under salt stress. Acta Genetica Sinica, 2004, 31(12): 1408-1414. (in Chinese)
[21]Parker R, Flowers T J, Moore A L, Harpham N V J. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. Journal of Experimental Botany, 2006, 57(5): 1109-1118.
[22]Parry M A J, Andralojc P J, Khan S, Lea P J, Keys A J. Rubisco activity: effects of drought stress. Annals of Botany, 2002, 89(7): 833-839.
[23]李常健, 林清华, 张楚富, 李泽松, 彭 进, 朱英国, Peng Shao-bing, Bennett John. NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响. 武汉大学学报: 自然科学版, 1999, 4(4): 497-500.
Li C J, Lin Q H, Zhang C F, Li Z S, Peng J, Zhu Y G, Peng S B, Bennett J. Effect of NaCl stress on activity and isozymes of glutamine synthetase in rice plants. Journal of Wuhan University: Natural Science Edition, 1999, 4(4): 497-500. (in Chinese)
[24]姜海青. 红麻干旱胁迫的蛋白质组学初步研究[D]. 福州: 福建农林大学, 2008.
Jiang H Q. Preliminary proteomic study of kenaf under drought stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)
[25]Hoshi H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Talabe T, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpress cholorplast glutamine sythetase. Plant Molecular Biology, 2000, 43: 103-111.
[26]Stock D, Leslie A G W, Walker J E. Molecular architecture of the rotary motor in ATP synthasee. Science, 1999, 286(5445): 1700-1705.
[27]Yoshida M, Muneyuki E, Hisabori T. ATP synthase-a marvelous rotary engine of the cell. Nature Reviews Molecular cell Biology, 2001, 2(9): 669-677. |