中国农业科学 ›› 2020, Vol. 53 ›› Issue (6): 1126-1139.doi: 10.3864/j.issn.0578-1752.2020.06.005
张海燕1,解备涛1,汪宝卿1,董顺旭1,段文学1(),张立明2()
收稿日期:
2019-08-19
接受日期:
2019-09-19
出版日期:
2020-03-16
发布日期:
2020-04-09
通讯作者:
段文学,张立明
作者简介:
张海燕,E-mail:zhang_haiyan02@163.com。|解备涛,E-mail:279151695@qq.com。
基金资助:
HaiYan ZHANG1,BeiTao XIE1,BaoQing WANG1,ShunXu DONG1,WenXue DUAN1(),LiMing ZHANG2()
Received:
2019-08-19
Accepted:
2019-09-19
Online:
2020-03-16
Published:
2020-04-09
Contact:
WenXue DUAN,LiMing ZHANG
摘要:
【目的】研究不同时期干旱胁迫导致甘薯减产的机理,为旱作地区甘薯生产提供理论依据和技术支撑。【方法】在人工控水条件下,以抗旱品种济薯21和不抗旱品种济紫薯1号为试验材料,每个品种设4个水分处理,分别为WW(全生育期正常灌水,对照)、DS1(发根分枝期干旱胁迫)、DS2(蔓薯并长期干旱胁迫)和DS3(快速膨大期干旱胁迫),研究不同时期干旱胁迫对甘薯生长和抗氧化能力的影响。【结果】干旱胁迫导致甘薯薯干产量显著下降,早期干旱胁迫薯干产量下降幅度最大,济薯21(抗旱品种)的DS1、DS2和DS3处理产量分别比对照减产32.24%、30.68%和13.76%,济紫薯1号(不抗旱品种)分别比对照减产44.02%、39.54%和17.87%。功能叶、纤维根和块根抗氧化酶活性均在干旱胁迫后升高,且干旱胁迫时间越早,抗氧化酶活性升高的幅度越大;各生育时期纤维根的酶活性均高于块根和功能叶,说明甘薯纤维根对干旱胁迫的敏感性最强。干旱胁迫可导致甘薯功能叶相对电导率升高,功能叶、纤维根和块根的MDA含量升高,且胁迫时间越早,升高的幅度越大。【结论】干旱胁迫时间越早,功能叶、纤维根和块根的抗氧化酶系统受破坏程度越大,从而抑制了甘薯叶片和根系的正常生长,限制了块根的形成和膨大,发根分枝期是甘薯块根产量对水分最敏感的时期。
张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同时期干旱胁迫对甘薯生长和抗氧化能力的影响[J]. 中国农业科学, 2020, 53(6): 1126-1139.
HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato[J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
表2
不同时期干旱胁迫对甘薯块根产量的影响"
处理 Treatment | 济薯21 JS 21 | 济紫薯1号 JZ 1 | ||
---|---|---|---|---|
薯干产量 Dry weight (kg·hm-2) | 相比对照 Compared with CK (%) | 薯干产量 Dry weight (kg·hm-2) | 相比对照 Compared with CK (%) | |
WW | 3210.02±149.60a | — | 4192.22±117.21a | — |
DS1 | 2175.14±104.54c | 32.24 | 2346.95±94.03c | 44.02 |
DS2 | 2225.24±134.03c | 30.68 | 2534.54±95.57c | 39.54 |
DS3 | 2768.43±143.75b | 13.76 | 3443.27±111.90b | 17.87 |
表3
不同时期干旱胁迫对甘薯地上部和地下部生物量的影响"
处理 Treatment | 栽植后天数 Days after planting (d) | ||||||||
---|---|---|---|---|---|---|---|---|---|
济薯21 JS 21 | 济紫薯1号 JZ 1 | ||||||||
40 | 60 | 80 | 100 | 40 | 60 | 80 | 100 | ||
地上部生物量 Biomass of aboveground part | WW | 18.93±1.65a | 58.56±2.45a | 79.76±2.15a | 87.24±2.77a | 19.52±1.84a | 62.79±2.04a | 75.72±2.14a | 85.13±2.63a |
DS1 | 13.49±1.4b | 40.43±1.31c | 46.43±1.87d | 61.79±3.48d | 13.38±0.69b | 36.20±2.64c | 42.24±3.56d | 53.27±1.73d | |
DS2 | 18.21±1.74a | 46.49±2.26b | 60.52±2.74c | 73.31±3.14c | 23.65±1.37a | 43.56±3.15b | 56.34±2.46c | 68.87±3.04c | |
DS3 | 19.56±1.88a | 59.54±2.04a | 70.24±2.34b | 79.73±1.65b | 21.61±1.04a | 59.74±3.05a | 66.75±3.12b | 77.28±3.18b | |
地下部生物量 Biomass of underground part | WW | 1.43±0.58a | 5.39±0.36a | 17.89±0.59a | 31.13±0.69a | 1.65±0.25a | 6.82±0.79a | 15.36±1.08a | 30.96±1.05a |
DS1 | 0.83±0.35b | 3.95±0.90c | 11.21±0.69d | 20.96±1.16d | 0.81±0.25bc | 3.43±0.25c | 7.83±0.48d | 16.26±1.12d | |
DS2 | 1.27±0.19a | 4.71±0.68b | 13.72±0.66c | 24.65±1.19c | 1.26±0.24ab | 4.41±0.57b | 10.66±0.17c | 22.23±0.98c | |
DS3 | 1.36±0.77a | 5.72±1.02a | 16.18±0.39b | 28.44±1.48b | 1.73±0.38a | 6.28±0.47a | 13.75±1.07b | 26.97±1.06b |
表4
不同时期干旱胁迫对甘薯叶面积系数的影响"
处理 Treatment | 栽植后天数 Days after planting (d) | |||||||
---|---|---|---|---|---|---|---|---|
济薯21 JS 21 | 济紫薯1号 JZ 1 | |||||||
40 | 60 | 80 | 100 | 40 | 60 | 80 | 100 | |
WW | 1.73±0.03a | 4.01±0.45a | 5.63±0.25a | 5.21±0.38a | 1.65±0.34a | 4.25±0.45a | 6.43±0.31a | 5.85±0.34a |
DS1 | 1.25±0.24b | 2.15±0.31c | 2.78±0.18d | 2.08±0.05d | 1.14±0.15b | 2.61±0.15c | 2.77±0.37d | 2.33±0.21d |
DS2 | 1.72±0.02a | 3.22±0.27b | 3.88±0.25c | 3.27±0.04c | 1.63±0.43a | 3.45±0.26b | 3.82±0.26c | 3.46±0.25c |
DS3 | 1.77±0.16a | 3.99±0.19a | 4.97±0.45b | 4.54±0.25b | 1.69±0.47a | 4.36±0.36a | 5.12±0.13b | 4.63±0.19b |
表5
不同时期干旱胁迫对甘薯功能叶SOD、POD、CAT和APX活性的影响"
处理 Treatment | 酶活性 Enzymatic activity | 栽植后天数 Days after planting(d) | |||||||
---|---|---|---|---|---|---|---|---|---|
济薯21 JS 21 | 济紫薯1号 JZ 1 | ||||||||
40 | 60 | 80 | 100 | 40 | 60 | 80 | 100 | ||
WW | SOD酶活性 SOD activity | 250.56±27.15b | 406.31±26.62b | 385.77±26.75b | 306.22±27.15c | 183.21±28.01b | 289.29±27.43b | 256.07±27.57b | 181.75±26.15c |
DS1 | 320.43±25.39a | 361.52±25.93c | 328.00±25.40c | 286.58±25.39d | 214.00±26.12a | 249.21±26.70c | 214.13±26.13c | 142.27±26.12d | |
DS2 | 255.91±26.80b | 445.00±27.23a | 393.03±26.49b | 325.25±26.80b | 171.68±27.63b | 299.81±28.09a | 259.81±22.23b | 214.27±21.63b | |
DS3 | 254.23±25.21b | 410.24±26.31b | 420.97±25.14a | 369.18±25.21a | 178.41±25.93b | 281.66±27.11b | 291.86±21.85a | 235.48±20.93a | |
WW | POD酶活性 POD activity | 305.25±27.07b | 396.21±17.14b | 362.00±27.19c | 290.50±27.08a | 280.55±17.15b | 349.75±15.30b | 318.50±20.25b | 277.50±17.31b |
DS1 | 405.90±27.23a | 373.28±11.07c | 296.49±21.21d | 169.25±17.24c | 352.69±21.29a | 334.50±17.89c | 231.75±22.12c | 162.25±10.18c | |
DS2 | 317.74±17.25b | 421.76±17.16a | 382.25±27.27b | 267.25±27.05b | 276.81±22.30b | 388.73±16.13a | 323.00±23.01b | 308.75±17.24a | |
DS3 | 315.25±27.17b | 406.50±17.28b | 395.75±17.09a | 299.25±17.32a | 252.80±25.06b | 348.69±15.24b | 367.00±17.25a | 318.50±17.68a | |
WW | CAT酶活性 CAT activity | 19.45±3.15b | 35.76±1.62b | 29.37±2.75b | 24.46±3.15b | 17.91±3.94b | 29.87±1.43b | 23.55±2.57b | 19.32±3.25a |
DS1 | 30.67±1.80a | 28.25±1.93c | 25.45±1.40c | 20.89±3.39c | 23.24±2.12a | 19.89±1.70c | 14.33±3.13c | 10.45±3.12b | |
DS2 | 20.38±1.58b | 40.42±3.23a | 33.67±1.49a | 27.20±2.80a | 17.84±1.63b | 35.67±1.09a | 25.52±2.29b | 20.56±1.63a | |
DS3 | 19.78±0.63b | 33.21±2.31b | 35.21±2.14a | 29.53±3.21a | 18.35±2.93b | 30.41±2.11b | 29.56±1.85a | 21.87±2.93a | |
WW | APX酶活性 APX activity | 9.73±1.20b | 18.88±0.81b | 16.69±1.38a | 14.23±1.58a | 8.95±2.01b | 16.94±0.72a | 13.78±1.79ab | 11.66±1.02a |
DS1 | 15.34±0.61a | 14.12±0.97c | 12.73±0.70b | 10.45±1.70bc | 11.62±1.06a | 9.95±0.85b | 7.17±0.56c | 5.23±1.09c | |
DS2 | 10.19±1.21b | 20.21±1.62a | 15.84±0.75a | 11.60±1.40b | 8.92±0.81b | 17.84±0.54a | 12.76±0.45b | 9.28±0.81b | |
DS3 | 9.89±1.06b | 16.61±1.16bc | 17.61±1.07a | 12.77±1.61ab | 9.18±1.46b | 16.21±1.06a | 14.78±0.93a | 10.94±1.96ab |
表6
不同时期干旱胁迫对甘薯纤维根SOD、POD、CAT和APX活性的影响"
处理 Treatment | 酶活性 Enzymatic activity | 栽植后天数 Days after planting (d) | |||||||
---|---|---|---|---|---|---|---|---|---|
济薯21 JS 21 | 济紫薯1号 JZ 1 | ||||||||
40 | 60 | 80 | 100 | 40 | 60 | 80 | 100 | ||
WW | SOD酶活性 SOD activity | 1429.78±289.17b | 3253.62±216.59b | 3079.03±219.65c | 2402.85±209.17b | 957.32±209.41b | 2658.95±251.61b | 2376.57±290.23b | 1944.87±209.41c |
DS1 | 2223.62±247.28a | 2372.93±230.24c | 2088.02±193.45d | 1835.93±247.28d | 1218.98±264.59a | 1318.31±248.45c | 1120.07±264.85c | 1009.31±264.59d | |
DS2 | 1475.21±280.84b | 3582.50±201.07a | 3140.79±247.52b | 2564.61±280.84c | 859.25±245.56b | 2848.40±244.89a | 2408.41±229.61b | 2121.29±245.63b | |
DS3 | 1460.97±243.04b | 3287.04±219.26b | 3378.28±273.46a | 2938.00±243.04a | 916.50±260.21b | 2694.14±211.45b | 2580.82±258.27a | 2201.61±260.05a | |
WW | POD酶活性 POD activity | 1115.75±101.22b | 1388.63±61.41b | 1286.00±241.38b | 1071.50±81.24c | 1041.64±71.44b | 1249.25±91.89b | 1155.5±81.76b | 1092.5±71.89a |
DS1 | 1417.70±90.68a | 1319.84±83.21bc | 1089.47±84.45c | 707.75±71.73d | 1258.07±72.15a | 1103.50±81.77c | 795.25±93.35c | 586.75±50.54b | |
DS2 | 1153.207±71.76b | 1565.29±77.47a | 1446.75±83.62a | 1201.75±89.16a | 1030.42±98.69b | 1366.19±71.39a | 1169.00±65.89b | 1126.25±71.73a | |
DS3 | 1145.75±89.54b | 1419.50±65.85b | 1387.25±75.81a | 1107.75±71.97b | 958.40±45.62b | 1186.06±71.73bc | 1301.00±75.76a | 1155.5±84.56a | |
WW | CAT酶活性 CAT activity | 90.35±12.45b | 149.27±7.86b | 130.11±71.28b | 125.38±12.45a | 85.72±11.52b | 131.61±7.30b | 122.65±10.05b | 109.96±11.23a |
DS1 | 134.69±9.17a | 125.00±8.80c | 113.80±8.13c | 95.56±11.17b | 104.95±9.35a | 91.56±8.11c | 69.32±7.38c | 53.80±9.35b | |
DS2 | 93.51±8.40b | 173.68±12.69a | 146.68±7.20a | 128.80±10.40a | 83.37±7.88b | 145.68±6.26a | 124.08±9.88b | 114.24±7.88a | |
DS3 | 91.12±6.64b | 144.86±9.94b | 152.84±7.47a | 130.12±9.64a | 85.42±8.78b | 133.64±5.32b | 130.24±8.56a | 119.48±6.78a | |
WW | APX酶活性 APX activity | 35.12±4.15b | 64.76±2.62b | 59.37±8.43a | 54.79±4.15a | 33.57±4.21b | 49.87±2.43b | 47.88±3.57b | 44.65±3.06a |
DS1 | 49.90±3.39a | 46.67±2.93c | 42.93±2.71c | 36.85±3.38b | 39.98±3.05a | 35.52±2.15c | 28.11±4.13c | 22.93±4.12c | |
DS2 | 36.17±2.80b | 72.89±4.23a | 53.89±2.40b | 47.93±2.45a | 32.79±2.63b | 53.56±2.75a | 44.36±3.29b | 39.08±2.63b | |
DS3 | 35.37±2.21b | 63.29±3.31b | 60.95±2.49a | 49.37±3.21a | 33.47±3.11b | 49.55±4.15b | 50.41±2.85a | 40.83±4.59b |
表7
不同时期干旱胁迫对甘薯块根SOD、POD、CAT和APX活性的影响"
处理 Treatment | 酶活性 Enzymatic activity | 栽植后天数 Days after planting (d) | |||||||
---|---|---|---|---|---|---|---|---|---|
济薯21 JS 21 | 济紫薯1号 JZ 1 | ||||||||
60 | 80 | 100 | 120 | 60 | 80 | 100 | 120 | ||
WW | SOD酶活性 SOD activity | 1578.09±187.11b | 2234.70±158.95b | 2021.72±150.98 c | 1684.19±123.11a | 707.68±40.21b | 1591.09±131.47b | 1208.37±133.62b | 799.62±78.21b |
DS1 | 1962.34±145.01a | 1888.36±168.39c | 1604.01±160.16d | 1276.19±120.01c | 1176.99±71.21a | 970.67±120.18c | 877.69±121.37c | 582.49±51.21c | |
DS2 | 1507.49±141.72b | 2547.50±148.34a | 2161.69±179.62b | 1488.86±131.72b | 744.22±97.88b | 1648.97±141.53a | 1328.97±125.66b | 878.48±44.23b | |
DS3 | 1598.28±157.26b | 2256.32±174.22b | 2315.36±156.19a | 1530.47±117.26b | 781.26±78.27b | 1549.15±126.42b | 1605.24±135.68a | 995.16±38.27a | |
WW | POD酶活性 POD activity | 557.88±85.46b | 694.32±74.28b | 643.00±54.38c | 535.75±44.16b | 520.82±44.31b | 624.63±54.59b | 577.75±41.54b | 516.25±34.59a |
DS1 | 708.85±94.54a | 659.92±82.14c | 544.73±82.42d | 353.88±34.48c | 629.03±55.57a | 601.75±34.51c | 447.63±54.69c | 343.38±30.36b | |
DS2 | 576.60±74.51b | 752.65±94.31a | 673.38±74.54b | 588.88±44.10a | 515.21±56.78b | 673.10±64.26a | 584.50±35.68b | 523.13±44.49a | |
DS3 | 572.88±84.33b | 709.75±95.13b | 693.63±74.18a | 568.88±34.65a | 479.20±58.91b | 593.03±81.01c | 640.50±70.15a | 537.75±34.21a | |
WW | CAT酶活性 CAT activity | 56.90±4.45b | 89.52±2.86b | 76.74±4.25b | 66.92±2.45b | 53.81±5.98b | 75.74±2.30a | 63.10±4.72a | 58.64±2.45a |
DS1 | 79.35±4.17a | 74.50±3.87c | 68.90±2.20c | 59.78±4.17c | 64.47±4.35a | 57.78±3.12b | 46.66±5.48b | 38.90±2.35b | |
DS2 | 58.76±3.45b | 98.84±4.69a | 85.34±2.47a | 70.40±2.46a | 53.69±2.88b | 79.34±1.26a | 68.04±3.88a | 52.12±2.88a | |
DS3 | 57.56±2.61b | 84.43±4.94b | 88.42±4.43a | 72.06±4.65a | 54.71±2.78b | 74.82±6.45a | 70.12±2.56a | 55.74±4.78a | |
WW | APX酶活性 APX activity | 17.08±1.09b | 30.17±1.21b | 28.91±1.17a | 24.86±0.97a | 16.05±1.67b | 26.25±1.53a | 24.26±1.81a | 21.44±1.67a |
DS1 | 26.93±1.45a | 24.78±2.54c | 22.29±1.47b | 18.24±1.45b | 20.32±1.95a | 19.35±1.07b | 15.40±0.92b | 12.96±1.35b | |
DS2 | 17.78±1.89b | 33.60±1.19a | 27.60±1.65a | 22.62±2.27a | 15.53±0.82b | 29.37±0.84a | 21.57±3.26a | 18.39±1.92a | |
DS3 | 17.25±1.56b | 29.19±2.39b | 30.96±2.85a | 23.92±2.09a | 15.98±1.52b | 26.70±1.88a | 25.94±2.37a | 19.55±1.55a |
[1] | 李长志, 李欢, 刘庆, 史衍玺 . 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016,22(2):511-517. |
LI C Z, LI H, LIU Q, SHI Y X . Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages. Journal of Plant Nutrition and Fertilizer, 2016,22(2):511-517. (in Chinese) | |
[2] | 张海燕, 段文学, 解备涛, 董顺旭, 汪宝卿, 史春余, 张立明 . 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018,44(1):126-136. |
ZHANG H Y, DUAN W X, XIE B T, DONG S X, WANG B Q, SHI C Y, ZHANG L M . Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato. Acta Agronomica Sinica, 2018,44(1):126-136. (in Chinese) | |
[3] | VILLORDON A Q . Characterization of lateral root development at the onset of storage root initiation in ‘Beauregard’ sweetpotato adventitious roots. Hortscience, 2012,47(7):961-968. |
[4] | CHOWDHORY S R, SINGH R, KUNDU D K, ANTONY E, THAKUR A K, VERMA H N . Growth, dry matter partitioning and yield of sweet potato ( Ipomoea batatas L.) as influence by soil mechanical impedance and mineral nutrition under different irrigation regimes. Advances in Horticultural Science, 2000,16(1):25-29. |
[5] | FANG Y J, XIONG L Z . General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015,72(4):673-689. |
[6] | REDDY A R, CHAITANYA K V, VIVEKANANDAN M . Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 2004,161(11):1189-1202. |
[7] | KIM Y H, JEONG J C, LEE H S, KWAK S S . Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions. Molecular Biology Reports, 2013,40(4):2887-2896. |
[8] | SRIVALLI B, SHARMA G, KHANNA CHOPRA R . Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum, 2003,119(4):503-512. |
[9] | GUO Z F, OU W, LU S L, ZHONG Q . Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology Biochemistry, 2006,44(11/12):828-836. |
[10] | LI Z, ZHOU H, PENG Y, ZHANG X, MA X, HUANG L, YAN Y . Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regulation, 2015,76(1):71-82. |
[11] | 陈京 . 抗旱性不同的甘薯品种对渗透胁迫的生理响应. 作物学报, 1999,25(2):232-236. |
CHEN J . Physiological response for different drought resistance of sweet potato under osmotic stress. Acta Agronomica Sinica, 1999,25(2):232-236. (in Chinese) | |
[12] | GILL S S, TUTEJA N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry, 2010,48(12):909-930. |
[13] | 李文卿, 潘廷国, 柯玉琴, 陈凤翔 . 土壤水分胁迫对甘薯苗期活性氧代谢的影响. 福建农业学报, 2000,15(4):45-50. |
LI W Q, PAN T G, KE Y Q, CHEN F X . Effects of soil water stress on metabolism of active oxygen in leaves of sweet potato seedling. Fujian Journal of Agricultural Sciences, 2000,15(4):45-50. (in Chinese) | |
[14] | 何冰, 许鸿原, 陈京 . 干旱胁迫对甘薯叶片质膜透性及抗氧化酶类的影响. 广西农业大学学报, 1997,16(4):287-290. |
HE B, XU H Y, CHEN J . Effects of drought stress on the permeability of plasma membrane and antioxidation enzymes of the leaves of sweet potato, Journal of Guangxi Agricultural University, 1997,16(4):287-290. (in Chinese) | |
[15] | 张明生, 谈锋, 张启堂 . 快速鉴定甘薯品种抗旱性的生理指标及方法的筛选. 中国农业科学, 2001,34(3):260-265. |
ZHANG M S, TAN F, ZHANG Q T . Physiological indices for rapid identification of sweet potato drought resistance and selection of methods. Scientia Agricultura Sinica, 2001,34(3):260-265. (in Chinese) | |
[16] | 陈京, 王支槐, 周启贵 . PEG处理对甘薯叶肉细胞超微结构的影响. 西南师范大学学报(自然科学版), 1997,22(4):398-404. |
CHEN J, WANG Z H, ZHOU Q G . Effects of PEG treatment on ultrastructure in mesophyll cells of sweet potato. Journal of Southwest China Normal University (Natural Science), 1997,22(4):398-404. (in Chinese) | |
[17] | 李锦树, 王洪春, 王文英, 朱亚芳 . 干旱对玉米叶片细胞透性及膜脂的影响. 植物生理学报, 1983,9(3):223-230. |
LI J S, WANG H C, WANG W Y, ZHU Y F . Effect of drought on the permeability and membrane lipid composition from maize leaves. Acta Phytophysiologia Sinica, 1983,9(3):223-230. (in Chinese) | |
[18] | DHINDSA R S, MATOWE W . Drought tolerance in two mosses: Correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 1981,32(1):79-91. |
[19] | 山仑, 康绍忠, 吴普特 . 中国节水农业. 北京:中国农业出版社, 2004: 229-230. |
SHAN L, KANG S Z, WU P T . Water Saving Agriculture in China. Beijing: China Agriculture Press, 2004: 229-230. (in Chinese). | |
[20] | 王留梅, 毛守民, 潘明华, 周利霞 . 甘薯叶面积系数田间速测方法初探. 中国农学通报, 2001, 17(6):82-90. |
WANG L M, MAO S M, PAN M H, ZHOU L X . Field measurement method of leaf area index of sweet potato. Chinese Agricultural Science Bulletin, 2001,17(6):82-90. ( in Chinese). | |
[21] | 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社 2000: 184-185. |
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000: 184-185. (in Chinese) | |
[22] | 张丹, 刘国顺, 章建新, 徐敏 . 打顶时期对烤烟根系活力及烟碱积累规律的影响. 中国烟草科学, 2006,27(1):38-41. |
ZHANG D, LIU G S, ZHANG J X, XU M . Effect of different topping time on activity of root system and accumulation of nicotine in tobacco plants. Chinese Tobacco Science, 2006,27(1):38-41. (in Chinese) | |
[23] | 陈建勋, 王晓峰 . 植物生理学实验指导(第二版). 广州:华南理工大学出版社, 2006: 64-66. |
CHEN J X, WANG X F . Guidance of Plant Physiological Experiment(2nd edition). Guangzhou: South China University of Technology Publishers, 2006: 64-66. (in Chinese) | |
[24] | 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波 . 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012,23(3):724-730. |
MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B . Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chinese Journal of Applied Ecology, 2012,23(3):724-730. (in Chinese) | |
[25] | PINHEIRO C, CHAVES M M . Photosynthesis and drought: Can we make metabolic connections from available data. Journal of Experimental Botany, 2011,62:869-882. |
[26] | 井大炜, 邢尚军, 杜振宇, 刘方春 . 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响. 应用生态学报, 2013,24(7) : 1809-1816. |
JING D W, XING S J, DU Z Y, LIU F C, . Effects of drought stress on the growth,photosynthetic characteristics,and active oxygen metabolism of poplar seedlings. Chinese Journal of Applied Ecology, 2013,24(7) : 1809-1816. ( in Chinese) | |
[27] | 张明生, 谢波, 戚金亮, 谈锋, 张启堂, 杨永华 . 甘薯植株形态、生长势和产量与品种抗旱性的关系. 热带作物学报, 2006,27(1):39-43. |
ZHANG M S, XIE B, QI J L, TAN F, ZHANG Q T, YANG Y H . Relationship of drought resistance of sweet potato with its plant type, growth vigour and yield under water stress. Chinese Journal of Tropical Crops, 2006,27(1):39-43. (in Chinese) | |
[28] | 谈锋, 张启堂, 陈京, 李坤培 . 甘薯品种抗旱适应性的数量分析. 作物学报, 1991,17(5):394-398. |
TAN F, ZHANG Q T, CHEN J, LI K P . Quantitative analysis of adaptability of drought resistance in sweet potato cultivars. Acta Agronomica Sinica, 1991,17(5):394-398. (in Chinese) | |
[29] | 张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明 . 不同甘薯品种抗旱性评价及耐旱指标筛选. 作物学报, 2019,45(3):419-430. |
ZHANG H Y, XIE B T, WANG B Q, DONG S X, DUAN W X, ZHANG L M . Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars. Acta Agronomica Sinica, 2019,45(3):419-430. (in Chinese) | |
[30] | 许育彬, 程雯蔚, 陈越, 华千勇 . 不同施肥条件下干旱对甘薯生长发育和光合作用的影响. 西北农业学报, 2007,16(2):59-64. |
XU Y B, CHENG W W, CHEN Y, HUANG Q Y . Effect of drought on growth and development and photosynthesis of sweet potato under different fertilization conditions. Acta Agriculturae Boreali-Occidentalis Sinica, 2007,16(2):59-64. (in Chinese) | |
[31] | 孙哲, 史春余, 刘桂玲, 高俊杰, 柳洪鹃, 郑建利, 张鹏 . 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异. 植物营养与肥料学报, 2016,22(4):1071-1078. |
SUN Z, SHI C Y, LIU G L, GAO J J, LIU H J, ZHENG J L, ZHANG P . Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1071-1078. (in Chinese) | |
[32] | 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余 . 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018,29(6):1943-1950. |
ZHANG H Y, XIE B T, DUAN W X, DONG S X, WANG B Q, ZHANG L M, SHI C Y . Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chinese Journal of Applied Ecology, 2018,29(6):1943-1950. (in Chinese) | |
[33] | 李璇, 岳红, 王升, 黄璐琦, 马炯, 郭兰萍 . 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013,38(7):973-978. |
LI X, YUE H, WANG S, HUANG L Q, MA J, GUO L P . Research of different effects on activity of plant antioxidant enzymes. China Journal of Chinese Materia Medica, 2013,38(7):973-978. (in Chinese) | |
[34] | NELSON D M, HU F S, TIAN J, STEFANOVA I, BROWN T A . Response of C3 and C4 plants to middle-holocene climatic variation near the prairie-forest ecotone of Minnesota. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(2):562-567. |
[35] | UZILDAY B, TURKAN I, SEKMEN A H, OZGUR R, KARAKAYA H C . Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Science, 2012,182:59-70. |
[36] | NAYYAR H, GUPTA D . Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stressand antioxidants. Environmental and Experimental Botany, 2006,58(1):106-113. |
[37] | HU L X, LI H Y, PANG H C, FU J . Responses of antioxidant gene,protein and enzymes to salinity stress in two genotypes of perennial ryegrass ( Lolium perenne) differing in salt tolerance. Journal of Plant Physiology, 2012,169(2):146-156. |
[38] | MISRA N, GUPTA A K . Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 2006,163(1):11-18. |
[39] | JIANG L, YANG H . Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicology and Environmental Safety, 2009,72(6):1687-1693. |
[40] | ALMESELMANI M, DESHMUKH P S, SAIRAM R K, KUSHWAHA S R, SINGH T P . Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006,171(3):382-388. |
[41] | OHE M, RAPOLU M, MIEDA T, MIYAGAWA Y . Decline in leaf photooxidative-stress tolerance with age in tobacco. Plant Science, 2005,168(6):1487-1493. |
[42] | 汪宝卿, 姜瑶, 解备涛, 董顺旭, 张海燕, 王庆美, 张立明 . 2个不同耐旱性甘薯品种的苗期根系蛋白组差异分析. 核农学报, 2017,31(2):232-240. |
WANG B Q, JIANG Y, XIE B T, DONG S X, ZHANG H Y, WANG Q M, ZHANG L M . Proteomic analysis of roots in seedling stage of two sweetpotato varieties with different drought tolerance. Journal of Nuclear Agricultural Sciences, 2017,31(2):232-240. (in Chinese) | |
[43] | 汪宝卿, 解备涛, 张海燕, 董顺旭, 段文学, 王庆美, 张立明 . 基于iTRAQ技术的不同耐旱性甘薯苗期根系差异蛋白分析. 核农学报, 2017,31(10):1904-1912. |
WANG B Q, XIE B T, ZHANG H Y, DONG S X, DUAN W X, WANG Q M, ZHANG L M . Analysis of differential proteome in roots during seedling stage of sweetpotato with different drought tolerance based on iTRAQ method. Journal of Nuclear Agricultural Sciences, 2017,31(10):1904-1912. (in Chinese) | |
[44] | KIM Y H, PARK S C, JI C Y, LEE J J, JEONG J C, LEE H S, KWAK S S . Diverse antioxidant enzyme levels in different sweetpotato root types during storage root formation. Plant Growth Regulation, 2015,75(1):155-164. |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[7] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|