中国农业科学 ›› 2022, Vol. 55 ›› Issue (14): 2696-2708.doi: 10.3864/j.issn.0578-1752.2022.14.002
胡亚丽(),聂靖芝,吴霞,潘姣,曹珊,岳娇,罗登杰,王财金,李增强,张辉,吴启境,陈鹏()
收稿日期:
2022-02-27
接受日期:
2022-04-24
出版日期:
2022-07-16
发布日期:
2022-07-26
通讯作者:
陈鹏
作者简介:
胡亚丽,E-mail: 基金资助:
HU YaLi(),NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng()
Received:
2022-02-27
Accepted:
2022-04-24
Online:
2022-07-16
Published:
2022-07-26
Contact:
Peng CHEN
摘要:
【目的】研究水杨酸(SA)引发对盐胁迫下红麻生长及生理响应,并揭示SA引发对红麻中逆境相关基因的诱导模式,为红麻耐盐性研究提供理论依据。【方法】以2个不同耐盐性红麻品种(盐抗性材料为CP018,盐感性材料为CP047)为研究对象,将种子引发处理后进行水培试验,分析SA引发对红麻种子萌发及150 mmol·L-1 NaCl胁迫下幼苗农艺性状及生理方面的影响,并通过qRT-PCR技术分析SA引发逆境相关基因的表达模式。【结果】盐抗性品种CP018经过0.2 mmol·L-1 SA引发后,能显著提升种子发芽率、发芽势和发芽指数,分别提高34.78%、31.30%和58.07%;盐感性材料CP047也有一定的提高,分别提高7.50%、10.56%和6.23%,但是未达到显著水平。在盐胁迫条件下,经SA引发(S1)与未引发(N1)相比,株高抑制率在盐抗性和盐感性品种中分别显著降低4.07%(CP018)和3.91%(CP047),干重抑制率在2个品种中分别显著降低15.50%(CP018)和15.68%(CP047);鲜重抑制率在盐感性品种CP047中显著降低4.46%,但在盐抗性品种CP018中未达到显著水平。根系扫描分析表明,根长抑制率在盐抗性和盐感性材料中分别显著下降10.74%(CP018)和10.77%(CP047);根表面积抑制率在盐抗性和盐感性品种中分别下降5.09%(CP018)和2.95%(CP047),仅在盐抗性品种CP018中达到显著水平;而根系活力抑制率在盐感性品种CP047中降低46.21%,在盐抗性品种CP018中降低6.56%,仅在盐感性品种CP047中达到显著水平。灰色关联度分析发现根系活力是对影响植株干重最重要的因素。SA引发能降低盐胁迫下红麻叶片的MDA含量,提高POD和SOD酶活性。对12个逆境相关基因的表达量分析结果表明,ACCD、APX2、SOS1、ARR2、PAL、ERF.C3、CHIT和TIFY11表达水平在SA引发处理下均显著上调,而ERF9、ERS1、MYC2和XTH22在2个材料中的表达模式存在差异,其中,XTH22在CP047中显著上调,在盐抗性品种CP018中无显著变化,ERS1和MYC2在盐抗性品种CP018中显著上调,在盐感性品种CP047中却显著下降,而ERF9在2个品种中的趋势则与此相反。【结论】适宜浓度的SA引发可以显著缓解红麻在盐胁迫下的生长,且对不同红麻种质资源的影响程度和方式存在差异,SA可能通过影响生理过程如抗氧化酶系统,并通过诱导特异基因的表达调节红麻植株对非生物胁迫的响应。
胡亚丽,聂靖芝,吴霞,潘姣,曹珊,岳娇,罗登杰,王财金,李增强,张辉,吴启境,陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响[J]. 中国农业科学, 2022, 55(14): 2696-2708.
HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings[J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
表2
实时荧光定量PCR引物序列"
引物名称 Primer name | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
18SrRNA (reference gene) | AGAAACGGCTACCACATC | TACTCATTCCAATTACCAGACTC |
ERF9 | GCGTGAGTTTCGTGGACATAAG | CCTTCCACCGTCGGGCTA |
APX2 | ACCCCACAGTGAGCGAAGATT | GCTAAACGGAGGATGATGGG |
ACCD | AGAGGCAGGCGAAGGAAGC | GAGAGTCCCCAGGAGAGCGA |
XTH22 | CAACTCTGCTGGCACTGTCACTG | TCTGTTACCCTTTCCTTGGCTGAAC |
TIFY11 | CCAAAAGTCCGGCAAGGCTCTC | GCCTAGATGTTTCAATCCCTGCAAC |
ERS1 | GAAGCACACTCGACAGGCACAC | TCCACAGGGCACATTCCTCCAG |
MYC2 | TCTTCAGCCTCCTCCTCATCGC | CCAGAATATAGCATACGCCCACCAG |
ARR2 | AGGCTTCTCAAGACTTCTTCGGTTG | AGATTCACTCCCAGTCCCACATCC |
SOS1 | CGGAGCCTGTTGATGCGGTTATC | CCGAGACCGATGCCAATGATGAG |
CHIT | ATGTCGGCAGCAAAACTTCA | TGCTGGGGCTCATCTCCTT |
PAL | TGGCCACGACCCTTTGAACT | CCGAAACTCAGCCACCATGC |
ERF.C3 | AGGTCCAGGGGCAAGAAATGTAAAC | TCCCAAATCCTCAAACACCACCAAG |
[1] | RAMESH M. Kenaf (Hibiscus cannabinus L.) fibre based bio- materials: A review on processing and properties. Progress in Materials Science, 2016, 78: 1-92. |
[2] |
WEI F, TANG D F, LI Z Q, KASHIF M H, KHAN A, LU H, JIA R X, CHEN P. Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf (Hibiscus cannabinus L.). Biological Research, 2019, 52(1): 1-11.
doi: 10.1186/s40659-018-0209-0 |
[3] |
CUEVAS J, DALIAKOPOULOS I N, DEL MORAL F, HUESO J J, TSANIS I K. A review of soil-improving cropping systems for soil salinization. Agronomy, 2019, 9(6): 295.
doi: 10.3390/agronomy9060295 |
[4] | 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684. |
WANG J L, HUANG X J, ZHONG T Y, CHEN Z G. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684. (in Chinese) | |
[5] | HANIN M, EBEL C, NGOM M, LAPLAZE L, MASMOUDI K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 2016, 7: 1787. |
[6] |
MITTLER R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405-410.
doi: 10.1016/S1360-1385(02)02312-9 |
[7] | ZHAO C Z, ZHANG H, SONG C P, ZHU J K, SHABALA S. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 2020, 1(1): 100017. |
[8] |
APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.
doi: 10.1146/annurev.arplant.55.031903.141701 |
[9] | BRADFORD K J. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience, 1986, 21(5): 1105-1112. |
[10] | 杜锦, 肖萌, 郝娜娜, 曹高燚, 向春阳. 不同药剂引发对干旱胁迫下玉米种子萌发及幼苗生长的影响. 种子, 2014, 33(11): 43-46. |
DU J, XIAO M, HAO N N, CAO G Y, XIANG C Y. Effects of seed priming with different agents on seed germination and seedling growth in maize (Zea mays L.) under water deficit stress. Seed, 2014, 33(11): 43-46. (in Chinese) | |
[11] | 李秀梅, 古吉, 李亚清, 宋碧清, 孙云龙, 陈雪艳, 郑昀晔. 不同引发温度及时间对烟草种子低温萌发的影响. 种子, 2020, 39(5): 99-103. |
LI X M, GU J, LI Y Q, SONG B Q, SUN Y L, CHEN X Y, ZHENG Y Y. Effects of different initiation temperature and time on low temperature germination of tobacco seeds. Seed, 2020, 39(5): 99-103. (in Chinese) | |
[12] | 林春光, 许天委, 李国寅. 不同浓度PEG-6000对大叶榄仁种实的引发效应. 耕作与栽培, 2020, 40(3): 6-9. |
LIN C G, XU T W, LI G Y. Germination effect of PEG-6000 at different concentrations on the seed of Terminalia catappa. Tillage and Cultivation, 2020, 40(3): 6-9. (in Chinese) | |
[13] | 姚东伟, 吴凌云, 沈海斌, 田守波, 李明. 种子引发技术研究与应用进展. 上海农业学报, 2020, 36(5): 153-160. |
YAO D W, WU L Y, SHEN H B, TIAN S B, LI M. Advances in research and application on seed priming technology. Acta Agriculturae Shanghai, 2020, 36(5): 153-160. (in Chinese) | |
[14] |
IBRAHIM E A. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 2016, 192: 38-46.
doi: 10.1016/j.jplph.2015.12.011 |
[15] | RASKIN I. Role of salicylic acid in plants. Annual Review of Plant Biology, 1992, 43: 439-463. |
[16] |
SAKO K, NGUYEN H M, SEKI M. Advances in chemical priming to enhance abiotic stress tolerance in plants. Plant and Cell Physiology, 2020, 61(12): 1995-2003.
doi: 10.1093/pcp/pcaa119 |
[17] | 侯林欣, 吕强, 黄明, 焦念元, 尹飞, 刘领, 吕梦, 付国占. 不同温度水杨酸引发对干旱胁迫下玉米种子发芽及幼苗生理特性的影响. 中国农学通报, 2021, 37(19): 13-21. |
HOU L X, LÜ Q, HUANG M, JIAO N Y, YIN F, LIU L, LÜ M, FU G Z. SA priming of maize seeds at different temperature under drought stress: Effect on seed germination and seedling physiological characteristics. Chinses Agricultural Science Bulletin, 2021, 37(19): 13-21. (in Chinese) | |
[18] |
AFZAL I, BASRA S M A, AHMAD N, CHEEMA M A, HAQ M A, KAZMI M H, IRFAN S. Enhancement of antioxidant defense system induced by hormonal priming in wheat. Cereal Research Communications, 2011, 39(3): 334-342.
doi: 10.1556/CRC.39.2011.3.3 |
[19] | AHMAD F, KAMAL A, SINGH A, ASHFAQUE F, ALAMRI S, SIDDIQUI M H. Salicylic acid modulates antioxidant system, defense metabolites, and expression of salt transporter genes in Pisum sativum under salinity stress. Journal of Plant Growth Regulation, 2020: 1-14. |
[20] | AFZAL I, BASRA S M A, FAROOQ M, NAWAZ A. Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. International Journal of Agriculture and Biology, 2006, 8(1): 23-28. |
[21] | 朱伟, 李聪, 马斌强, 李伶俐, 马宗斌, 袁超. 水杨酸浸种对抗虫棉种子萌发的影响. 江西农业学报, 2010, 22(3): 34-36. |
ZHU W, LI C, MA B Q, LI L L, MA Z M, YUAN C. Effect of seed-soaking with salicylic acid on deed germination of insect-resistant cotton. Acta Agriculturae Jiangxi, 2010, 22(3): 34-36. (in Chinese) | |
[22] | 王铁兵, 王鹏, 蒋建军, 王芳. 不同药剂引发处理对老化玉米种子萌发及幼苗生长的影响. 中国草地学报, 2020, 42(5): 31-39. |
WANG T B, WANG P, JIANG J J, WANG F. Effects of different initiators on germination and seedlings growth of aged maize seeds. Chinese Journal of Grassland, 2020, 42(5): 31-39. (in Chinese) | |
[23] |
HORVATH E, BRUNNER S, BELA K, PAPDI C, SZABADOS L, TARI I, CSISZAR J. Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Functional Plant Biology, 2015, 42(12): 1129-1140.
doi: 10.1071/FP15119 |
[24] |
CHEN P, RAN S M, LI R, HUANG Z P, QIAN J H, YU M L, ZHOU R Y. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 2014, 34(4): 1879-1891.
doi: 10.1007/s11032-014-0146-8 |
[25] | 李桂荣, 程珊珊, 张少伟, 扈惠灵, 连艳会, 周瑞金, 朱自果. 葡萄抗寒相关生理生化指标灰色关联分析. 东北林业大学学报, 2018, 46(10): 40-47, 53. |
LI G R, CHENG S S, ZHANG S W, HU H L, LIAN Y H, ZHOU R J, ZHU Z G. Grey correlation analysis of physi-biochemical indexes related to cold tolerance in different grapes. Journal of Northeast Forestry University, 2018, 46(10): 40-47, 53. (in Chinese) | |
[26] |
CAYUELA E, PEREZALFOCEA F, CARO M, BOLARIN M C. Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiologia plantarum, 1996, 96(2): 231-236.
doi: 10.1111/j.1399-3054.1996.tb00207.x |
[27] |
杨小环, 马金虎, 郭数进, 李新基, 李盛. 种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响. 中国生态农业学报, 2011, 19(1): 103-109.
doi: 10.3724/SP.J.1011.2011.00103 |
YANG X H, MA J H, GUO S J, LI X J, LI S. Effects of seed priming on sorghum (Sorghum bicolor L.) seed germination and seedling growth under salt stress. Chinese Journal of Eco-Agriculture, 2011, 19(1): 103-109. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00103 |
|
[28] | 何奇江, 李楠, 傅懋毅, 周文伟, 王波. 氯化钠胁迫对雷竹根系活力和细胞膜透性的影响. 浙江农林大学学报, 2013, 30(6): 944-949. |
HE Q J, LI N, FU M Y, ZHOU W W, WANG B. Root activity and cell membrane permeability in Phyllostachys violascens with NaCl stress. Journal of Zhejiang A&F University, 2013, 30(6): 944-949. (in Chinese) | |
[29] | 王立红, 孙影影, 李星星, 阿曼古丽•买买提阿力, 扎拉提•努布尔提拉, 张巨松. 水杨酸浸种对NaCl胁迫下棉花种子萌发和幼苗根系生长的影响. 中国农业大学学报, 2016, 21(4): 10-17. |
WANG L H, SUN Y Y, LI X X, MAIMAITIALI A, NUBUERTILA Z, ZHANG J S. Effects of salicylic soaking on seed germination and root growth of cotton under stress. Journal of China Agricultural University, 2016, 21(4): 10-17. (in Chinese) | |
[30] | 李畅, 苏家乐, 刘晓青, 何丽斯, 陈尚平, 肖政, 熊才法. 干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响. 西北植物学报, 2015, 35(7): 1421-1427. |
LI C, SU J L, LIU X Q, HE L S, CHEN S P, XIAO Z, XIONG C F. Effects of drought stress on seed germination and seedling physiological characteristics of Rhododendron latoucheae. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1421-1427. (in Chinese) | |
[31] |
NOREEN Z, ASHRAF M. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 2009, 166(16): 1764-1774.
doi: 10.1016/j.jplph.2009.05.005 |
[32] | 姚军朋, 姚拓, 王小利. ACC脱氨酶的应用研究进展与评述. 生物技术, 2010, 20(2): 87-91. |
YAO J P, YAO T, WANG X L. Research progress and application of 1-aminocyclopropane-1-carboxylate deaminase. Biotechnology, 2010, 20(2): 87-91. (in Chinese) | |
[33] |
CONTESTO C, DESBROSSES G, LEFOULON C, GILLES B, BOREL F, GALLAND M, GAMET L, VAROQUAUX F, TOURAINE B. Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science, 2008, 175(1/2): 178-189.
doi: 10.1016/j.plantsci.2008.01.020 |
[34] |
YE H Y, DU H, TANG N, LI X H, XIONG L Z. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 2009, 71(3): 291-305.
doi: 10.1007/s11103-009-9524-8 |
[35] |
CHO S K, KIM J E, PARK J A, EOM T J, KIM W T. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letters, 2006, 580(13): 3136-3144.
doi: 10.1016/j.febslet.2006.04.062 |
[36] | 张萍萍. 大丽花耐热性及化学调控机理的基础研究[D]. 苏州: 苏州大学, 2016. |
ZHANG P P. Basic study on mechanisms of thermotolerance and chemical regulation in Dahlia[D]. Suzhou: Soochow University, 2016. (in Chinese) | |
[37] |
DU M, ZHAO J, TZENG D T W, LIU Y Y, DENG L, YANG T X, ZHAI Q Z, WU F M, HUANG Z, ZHOU M, WANG Q M, CHEN Q, ZHONG S L, LI C B, LI C Y. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell, 2017, 29(8): 1883-1906.
doi: 10.1105/tpc.16.00953 |
[38] |
LORETI E, VAN VEEN H, PERATA P. Plant responses to flooding stress. Current Opinion in Plant Biology, 2016, 33: 64-71.
doi: 10.1016/j.pbi.2016.06.005 |
[39] | 刘晓芬, 向理理, 殷学仁, 李方, 陈昆松. 乙烯响应因子ERF参与转基因菊花水培低氧胁迫耐受性的调控. 园艺学报, 2018, 45(1): 109-116. |
LIU X F, XIANG L L, YIN X R, LI F, CHEN K S. Ethylene responsive factors ERF regulated the hypoxia response of transformed chrysanthemum lines. Acta Horticulturae Sinica, 2018, 45(1): 109-116. (in Chinese) | |
[40] | 董翠翠, 马岩岩, 谢让金, 邓烈, 易时来, 吕强, 郑永强, 何绍兰. 柑橘CitERF9和CitAP2-7在不同逆境和外源激素处理下的表达. 园艺学报, 2016, 43(2): 239-248. |
DONG C C, MA Y Y, XIE R J, DENG L, YI S L, LÜ Q, ZHENG Y Q, HE S L. Expression of two citrus AP2/ERF genes under different hormone and stress treatments. Acta Horticulturae Sinica, 2016, 43(2): 239-248. (in Chinese) | |
[41] | 王盼盼. 细胞分裂素通过水杨酸途径调控拟南芥根发育的分子机理研究[D]. 金华: 浙江师范大学, 2021. |
WANG P P. Molecular mechanism of cytokinin regulation of root development via salicylic acid signaling in Arabidopsis[D]. Jinhua: Zhejiang Normal University, 2021. (in Chinese) | |
[42] | 陈首业. 利用西伯利亚白刺Na+/H+逆向转运蛋白基因提高转基因杨树耐盐性的研究[D]. 呼和浩特: 内蒙古大学, 2021. |
CHEN S Y. Study on salt-tolerance improvement of poplar by transformation using Na+/H+ antiporter genes from Nitraria Sibirica pall[D]. Hohhot: Inner Mongolia University, 2021. (in Chinese) | |
[43] | 刘卓毅, 于文菲, 蔡文丽, 刘子珊, 张雨, 袁媛, 伍炳华, 吕美玲. 辣椒几丁质酶类基因家族的全基因组鉴定和表达特征分析. 热带作物学报, 2021, 42(11): 3101-3110. |
LIU Z Y, YU W F, CAI W L, LIU Z S, ZHANG Y, YUAN Y, WU B H, LÜ M L. Genome-wide identification and expression analysis of CTL gene family members in Capsicum annuum L. Chinese Journal of Tropical Crops, 2021, 42(11): 3101-3110. (in Chinese) | |
[44] | 周兴元. 几种暖季型草坪草耐盐及耐荫性研究[D]. 南京: 南京林业大学, 2004. |
ZHOU X Y. Study on salt and shade tolerance of warm-seasonal turfgrasses[D]. Nanjing: Nanjing Forestry University, 2004. (in Chinese) |
[1] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[2] | 刘闯,高振,姚玉新,杜远鹏. 葡萄钾离子转运基因VviHKT1;7在盐胁迫下的功能鉴定[J]. 中国农业科学, 2021, 54(9): 1952-1963. |
[3] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[4] | 张桂云,朱静雯,孙明法,严国红,刘凯,宛柏杰,代金英,朱国永. 盐胁迫条件下长白10号水稻籽粒中差异代谢物的分析[J]. 中国农业科学, 2021, 54(4): 675-683. |
[5] | 毕蒙蒙,刘迪,高歌,祝朋芳,毛洪玉. CmWRKY15-1通过水杨酸信号通路调控菊花白色锈病抗性[J]. 中国农业科学, 2021, 54(3): 619-628. |
[6] | 王洁,吴晓宇,杨柳,段巧红,黄家保. 大白菜ACA基因家族的全基因组鉴定与表达分析[J]. 中国农业科学, 2021, 54(22): 4851-4868. |
[7] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[8] | 王娜,赵资博,高琼,何守朴,马晨辉,彭振,杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析[J]. 中国农业科学, 2021, 54(2): 248-260. |
[9] | 张婧芸,刘语诺,王兆昊,彭爱红,陈善春,何永睿. 转CiNPR4基因柑橘抗溃疡病的机制解析[J]. 中国农业科学, 2021, 54(18): 3871-3880. |
[10] | 闫振华,刘东尧,贾绪存,杨琴,陈艺博,董朋飞,王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响[J]. 中国农业科学, 2021, 54(17): 3592-3608. |
[11] | 孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083. |
[12] | 李慧,韩占品,贺丽霞,杨亚苓,尤书燕,邓琳,王春国. 花椰菜BraERF023a的克隆及在响应盐和干旱胁迫中的功能[J]. 中国农业科学, 2021, 54(1): 152-163. |
[13] | 孟淑君,张雪海,王琪月,张稳,黄力,丁冬,汤继华. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682. |
[14] | 周练,熊雨涵,洪祥德,周京,刘朝显,王久光,王国强,蔡一林. 玉米质膜内在蛋白ZmPIP2;6响应渗透、盐和 干旱胁迫的功能鉴定[J]. 中国农业科学, 2020, 53(3): 461-473. |
[15] | 司旭阳,贾哓玮,张洪艳,贾羊羊,田士军,张科,潘延云. 中国春小麦肌醇磷脂依赖的磷脂酶C基因的全基因组鉴定及表达分析[J]. 中国农业科学, 2020, 53(24): 4969-4981. |
|