中国农业科学 ›› 2020, Vol. 53 ›› Issue (3): 461-473.doi: 10.3864/j.issn.0578-1752.2020.03.001
周练,熊雨涵,洪祥德,周京,刘朝显,王久光,王国强,蔡一林()
收稿日期:
2019-07-03
接受日期:
2019-08-02
出版日期:
2020-02-01
发布日期:
2020-02-13
通讯作者:
蔡一林
作者简介:
周练,E-mail:zhoulianjojo@swu.edu.cn。|熊雨涵,E-mail:xiongyh11@163.com
基金资助:
ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin()
Received:
2019-07-03
Accepted:
2019-08-02
Online:
2020-02-01
Published:
2020-02-13
Contact:
YiLin CAI
摘要:
【目的】质膜内在蛋白(plasma membrane intrinsic proteins,PIPs)广泛存在于植物细胞的膜系统上,在植物体内水分运输和水分平衡的过程中至关重要。对ZmPIP2;6在植物水分胁迫耐性中的功能进行探究,为玉米培育抗旱耐盐新品种提供优秀基因资源。【方法】分析并比对ZmPIP2;6与其他物种中报道参与水分胁迫的PIPs的氨基酸序列,构建ZmPIP2;6-GFP载体并通过PEG介导转化玉米原生质体,对ZmPIP2;6进行亚细胞定位。采集玉米的不同组织样品,包括根、茎、叶、未成熟雄穗、未成熟雌穗、胚和胚乳;对玉米进行PEG或NaCl处理,在处理的不同时间点采集玉米的根和叶样品。提取总RNA并通过qRT-PCR调查ZmPIP2;6在玉米不同组织以及在水分胁迫下的表达模式。构建ZmPIP2;6超表达载体,发展并鉴定ZmPIP2;6超表达拟南芥材料,观察转基因植株对渗透、盐及干旱胁迫的耐性生理表型,并测量其根长、叶片水分散失率等性状。检测在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达。【结果】氨基酸序列分析比对结果显示ZmPIP2;6具有PIP蛋白的典型结构与并且其他物种的PIP蛋白具有很高的同源性。转化玉米原生质体试验结果显示ZmPIP2;6蛋白定位在细胞质膜。qRT-PCR结果显示ZmPIP2;6在玉米未成熟雄穗中表达量最高,并且在玉米受到渗透和盐胁迫后根和叶中的ZmPIP2;6表达受到显著诱导。在MS固体培养基上进行渗透胁迫处理和盐胁迫处理以及进一步的土培试验中进行干旱胁迫处理,ZmPIP2;6超表达拟南芥植株相对野生型都显示出更强的胁迫耐性。在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达受到不同程度的影响。【结论】玉米内在质膜蛋白基因ZmPIP2;6在渗透或盐胁迫下表达上调,在拟南芥中超表达ZmPIP2;6会增强植株对渗透、盐和干旱胁迫的耐性,并且在盐或干旱胁迫条件下会影响拟南芥中胁迫相关基因的表达。ZmPIP2;6可能参与植物水分胁迫响应过程。
周练,熊雨涵,洪祥德,周京,刘朝显,王久光,王国强,蔡一林. 玉米质膜内在蛋白ZmPIP2;6响应渗透、盐和 干旱胁迫的功能鉴定[J]. 中国农业科学, 2020, 53(3): 461-473.
ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress[J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[1] | OBELL D B, ROBERTS M J, SCHLENKER W, BRAUN N, LITTLE B B, REJESUS R M, HAMMER G L . Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 2014,344:516-519. |
[2] | YU C . China’s water crisis needs more than words. Nature, 2011,470:307. |
[3] | KNEPPER M A . The aquaporin family of molecular water channels. Proceedings of the National Academy of Sciences of the United States of America, 1994,91:6255-6258. |
[4] | TYERMAN S D, NIEMIETA C M, BRAMLEY H . Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant, Cell & Environment, 2002,25:173-194. |
[5] | MAUREL C . Plant aquaporins: Novel functions and regulation properties. FEBS Letters, 2007,581:2227-2236. |
[6] | KALDENHOFF R, RIBAS-CARBO M, SANS J F, LOVISOLO C, HECKWOLF M, UEHLEIN N . Aquaporins and plant water balance. Plant, Cell & Environment, 2008,31:658-666. |
[7] | CHAUMONT F, TYERMAN S D . Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiology, 2014,164:1600-1618. |
[8] | CHAUMONT F, BARRIEU F, WOJCIK E, CHRISPEELS M J, JUNG R . Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 2001,125:1206-1215. |
[9] | MAUREL C, VERDOUCQ L, LUU D T, SANTONI V . Plant aquaporins: Membrane channels with multiple integrated functions. Annual Review of Plant Biology, 2008,59:595-624. |
[10] | HACHEZ C, BESSERER A, CHEVALIER A S, CHAUMONT F . Insights into plant plasma membrane aquaporin trafficking. Trends in Plant Science, 2013,18:344-352. |
[11] | FETTER K, VAN WILDER V, MOSHELION M, CHAUMONT F . Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell, 2004,16:215-228. |
[12] | ZELAZNY E, BORST J W, MUYLAERT M, BATOKO H, HEMMINGA M A, CHAUMONT F . FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proceedings of the National Academy of Sciences of the United States of America, 2007,104:12359-12364. |
[13] | VANDELEUR R K, MAYO G, SHELDEN M C, GILLIHAM M, KAISER B N, TYERMAN S D . The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 2009,149:445-460. |
[14] | ALLEVA K, MARQUEZ M, VILLARREAL N, MUT P, BUSTAMANTE C, BELLATI J, MARTINEZ G, CIVELLO M, AMODEO G . Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit. Journal of Experimental Botany, 2010,61:3935-3945. |
[15] | BELLATI J, ALLEVA K, SOTO G, VITALI V, JOZEFKOWICZ C, AMODEO G . Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Molecular Biology, 2010,74:105-118. |
[16] | CHEN W, YIN X, WANG L, TIAN J, YANG R, LIU D, YU Z, MA N, GAO J . Involvement of rose aquaporin RhPIP1;1 in ethylene- regulated petal expansion through interaction with RhPIP2;1. Plant Molecular Biology, 2013,83:219-233. |
[17] | YANEFF A, SIGAUT L, MARQUEZ M, ALLEVA K, PIETRASANTA L I, AMODEO G . Heteromerization of PIP aquaporins affects their intrinsic permeability. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:231-236. |
[18] | JOHANSON U, KARLSSON M, JOHANSSON I, GUSTAVSSON S, SJOVALL S, FRAYSSE L, WEIG A R, KJELLBOM P . The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 2001,126:1358-1369. |
[19] | SAKURAI J, ISHIKAWA F, YAMAGUCHI T, UEMURA M, MAESHIMA M . Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant & Cell Physiology, 2005,46:1568-1577. |
[20] | ZHANG D Y, ALI Z, WANG C B, XU L, YI J X, XU Z L, LIU X Q, HE X L, HUANG Y H, KHAN I A, TRETHOWAN R M, MA H X . Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE, 2013,8:e56312. |
[21] | KOJIMA S, BOHNER A, VON WIREN N . Molecular mechanisms of urea transport in plants. The Journal of Membrane Biology, 2006,212:83-91. |
[22] | FLEXAS J, RIBAS-CARBO M, HANSON D T, BOTA J, OTTO B, CIFRE J, MCDOWELL N, MEDRANO H, KALDENHOFF R . Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. The Plant Journal, 2006,48:427-439. |
[23] | HECKWOLF M, PATER D, HANSON D T, KALDENHOFF R . The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO(2) transport facilitator. The Plant Journal, 2011,67:795-804. |
[24] | ZHOU L, WANG C, LIU R, HAN Q, VANDELEUR R K, DU J, TYERMAN S, SHOU H . Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance. BMC Plant Biology, 2014,14:181. |
[25] | MA J F, TAMAI K, YAMAJI N, MITANI N, KONISHI S, KATSUHARA M, ISHIGURO M, MURATA Y, YANO M . A silicon transporter in rice. Nature, 2006,440:688-691. |
[26] | TAKANO J, WADA M, LUDEWIG U, SCHAAF G, VON WIREN N, FUJIWARA T . The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 2006,18:1498-1509. |
[27] | MA J F, YAMAJI N, MITANI N, TAMAI K, KONISHI S, FUJIWARA T, KATSUHARA M, YANO M . An efflux transporter of silicon in rice. Nature, 2007,448:209-212. |
[28] | AFZAL Z, HOWTON T C, SUN Y, MUKHTAR M S . The roles of aquaporins in plant stress responses. Journal of Developmental Biology, 2016,4:E9. |
[29] | AROCA R, PORCEL R, RUIZ-LOZANO J M. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 2012,63:43-57. |
[30] | ZHU C, SCHRAUT D, HARTUNG W, SCHAFFNER A R . Differential responses of maize MIP genes to salt stress and ABA. Journal of Experimental Botany, 2005,56:2971-2981. |
[31] | 王卫锋, 张岁岐, 柴玉琳, 刘镜波 . 玉米幼苗根不同区段中ZmPIPs对短期水分胁迫及复水的转录响应. 西北植物学报, 2010,30:1959-1965. |
WANG W F, ZHANG S Q, CHAI Y L, LIU J B . Transcription regulation of ZmPIPs in defferent young maize root zones responses to short term in different young maize root water stress and rewater. Acta Botanica Boreali-Occidentalia Sinica, 2010,30:1959-1965. (in Chinese) | |
[32] | ZHOU S, HU W, DENG X, MA Z, CHEN L, HUANG C, WANG C, WANG J, HE Y, YANG G, HE G . Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE, 2012,7:e52439. |
[33] | LIU C, FUKUMOTO T, MATSUMOTO T, GENA P, FRASCARIA D, KANEKO T, KATSUHARA M, ZHONG S, SUN X, ZHU Y, IWASAKI I, DING X, CALAMITA G, KITAGAWA Y . Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiology and Biochemistry, 2013,63:151-158. |
[34] | HU W, YUAN Q, WANG Y, CAI R, DENG X, WANG J, ZHOU S, CHEN M, CHEN L, HUANG C, MA Z, YANG G, HE G . Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant & Cell Physiology, 2012,53:2127-2141. |
[35] | SREEDHARAN S, SHEKHAWAT U K, GANAPATHI T R . Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol Journal, 2013,11:942-952. |
[36] | ALAVILLI H, AWASTHI J P, ROUT G R, SAHOO L, LEE B H, PANDA S K . Overexpression of a barley aquaporin gene, HvPIP2;5 confers salt and osmotic stress tolerance in yeast and plants. Frontiers in Plant Science, 2016,7:1566. |
[37] | ZHOU L, ZHOU J, XIONG Y, LIU C, WANG J, WANG G, CAI Y . Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis. PLoS ONE, 2018,13:e0198639. |
[38] | MARTINEZ-BALLESTA MDEL C, BASTIAS E, ZHU C, SCHAFFNER A R, GONZALEZ-MORO B, GONZALEZ-MURUA C, CARVAJAL M . Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H +-ATPase, in relation to water and nutrient uptake . Physiology Plant, 2008,132:479-490. |
[39] | NELSON B K, CAI X, NEBENFUHR A . A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal, 2007,51:1126-1136. |
[40] | BART R, CHERN M, PARK C J, BARTLEY L, RONALD P C . A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods, 2006,2:13. |
[41] | CHAUMONT F, BARRIEU F, HERMAN E M, CHRISPEELS M J . Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiology, 1998,117:1143-1152. |
[42] | BOURSIAC Y, CHEN S, LUU D T, SORIEUL M, VAN DEN DRIES N, MAUREL C . Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology, 2005,139:790-805. |
[43] | MARTINEZ-BALLESTA M C, APARICIO F, PALLAS V, MARTINEZ V, CARVAJAL M . Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. Journal of Plant Physiology, 2003,160:689-697. |
[44] | MARULANDA A, AZCON R, CHAUMONT F, RUIZ-LOZANO J M, AROCA R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta, 2010,232:533-543. |
[45] | MURIES B, FAIZE M, CARVAJAL M , MARTINEZ-BALLESTA MDEL C. Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. Molecular BioSystems, 2011,7:1322-1335. |
[46] | SADE N, GEBRETSADIK M, SELIGMANN R, SCHWARTZ A, WALLACH R, MOSHELION M . The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiology, 2010,152:245-254. |
[47] | MAUREL C, BOURSIAC Y, LUU D T, SANTONI V, SHAHZAD Z, VERDOUCQ L . Aquaporins in plants. Physiology Review, 2015,95:1321-1358. |
[48] | AHARON R, SHAHAK Y, WININGER S, BENDOV R, KAPULNIK Y, GALILI G . Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. The Plant Cell, 2003,15:439-447. |
[49] | KATSUHARA M, KOSHIO K, SHIBASAKA M, HAYASHI Y, HAYAKAWA T, KASAMO K . Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant & Cell Physiology, 2003,44:1378-1383. |
[50] | YAMAGUCHI-SHINOZAKI K, SHINOZAKI K . A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994,6:251-264. |
[51] | SHI H, ISHITANI M, KIM C, ZHU J K . The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na +/H + antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:6896-6901. |
[52] | LIU J, ZHU J K . A calcium sensor homolog required for plant salt tolerance. Science, 1998,280:1943-1945. |
[53] | HALFTER U, ISHITANI M, ZHU J K . The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium- inding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America, 2000,97:3735-3740. |
[54] | QIU Q S, GUO Y, DIETRICH M A, SCHUMAKER K S, ZHU J K . Regulation of SOS1, a plasma membrane Na +/H + exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 2002,99:8436-8441. |
[55] | APSE M P, AHARON G S, SNEDDEN W A, BLUMWALD E . Salt tolerance conferred by overexpression of a vacuolar Na +/H + antiport in Arabidopsis. Science, 1999,285:1256-1258. |
[56] | QIU Q S, GUO Y, QUINTERO F J, PARDO J M, SCHUMAKER K S, ZHU J K . Regulation of vacuolar Na +/H + exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. The Journal of Biological Chemistry, 2004,279:207-215. |
[57] | SHI H, LEE B H, WU S J, ZHU J K . Overexpression of a plasma membrane Na +/H + antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003,21:81-85. |
[58] | YANG Q, CHEN Z Z, ZHOU X F, YIN H B, LI X, XIN X F, HONG X H, ZHU J K, GONG Z . Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2009,2:22-31. |
[59] | ZHUO C, WANG T, GUO Z, LU S . Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants. BMC Plant Biology, 2016,16:138. |
[1] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[4] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[5] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[6] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[9] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[10] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[11] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[12] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[13] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[14] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[15] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
|