中国农业科学 ›› 2025, Vol. 58 ›› Issue (19): 3857-3871.doi: 10.3864/j.issn.0578-1752.2025.19.005

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

基于多模态数据的小麦苗情综合评估研究

邵明超(), 安敬威, 刘博睿, 吴建双, 张琪, 姚霞, 程涛, 江冲亚, 曹卫星, 郑恒彪(), 朱艳()   

  1. 南京农业大学农学院/国家信息农业工程技术中心/智慧农业教育部工程研究中心/农业农村部农作物系统分析与决策重点实验室/江苏省信息农业重点实验室,南京 210095
  • 收稿日期:2025-03-25 接受日期:2025-07-23 出版日期:2025-10-01 发布日期:2025-10-10
  • 通信作者:
    郑恒彪,E-mail:
    朱艳,E-mail:
  • 联系方式: 邵明超,E-mail:2021201106@stu.njau.edu.cn。
  • 基金资助:
    国家重点研发计划(2022YFD2001102); 钟山育种实验室项目(ZSBBL-KY2023-05)

Comprehensive Assessment of Wheat Seedling Growth Status Based on Multimodal Data

SHAO MingChao(), AN JingWei, LIU BoRui, WU JianShuang, ZHANG Qi, YAO Xia, CHENG Tao, JIANG ChongYa, CAO WeiXing, ZHENG HengBiao(), ZHU Yan()   

  1. College of Agriculture, Nanjing Agricultural University/National Engineering and Technology Center for Information Agriculture/ Engineering Research Center of Smart Agriculture, Ministry of Education/Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs/Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095
  • Received:2025-03-25 Accepted:2025-07-23 Published:2025-10-01 Online:2025-10-10

摘要:

【目的】小麦苗情等级反映苗期生长状态和健康水平,是产量预测与田间管理的重要依据。传统依赖人工经验的苗情评估方法在大田应用中存在效率低、主观性强和难以推广的局限。本研究基于无人机搭载RGB传感器,结合地面实测农艺参数,探索融合多模态遥感特征的小麦苗情综合评估方法,为大尺度和跨区域监测提供技术路径。【方法】在江苏省通过设计多站点和多高度航测试验以采集无人机影像,并同步采集分蘖数、冠层覆盖度等农艺参数。基于植被指数和纹理特征提取作物光谱与结构信息,利用信息值(IV)与基尼系数(GINI)实现特征筛选,构建随机森林(RF)、极端梯度提升(XGBoost)和梯度提升决策树(GBDT)等多种机器学习模型,评估苗情等级的分类精度,并基于局部方差系数确定最优图像分辨率以提升应用的稳定性和跨区域适应性。【结果】增强型绿红差异指数(EXGR)对苗期冠层覆盖度的识别精度最优(像素精度(PA)=0.69,特异性(S)=0.83)。绿红比值指数(GRRI)与分蘖数呈现显著相关关系(R2=0.58,相对均方根误差(rRMSE)=0.28)。融合农艺参数与遥感特征的随机森林算法在苗情等级划分方法精度最高(PA=0.85,R=0.86),其中分蘖数和纹理信息(E_energy)对苗情等级划分贡献最大(IV>0.70),(35±5) m的飞行高度是获得高质量无人机数据的重要参考(local variance=0.17)。【结论】通过构建融合农艺参数与遥感特征的小麦苗情综合评估框架,证明便携式无人机RGB影像结合机器学习方法在跨区域苗情等级监测中的可行性和高效性。本方法可为区域尺度的苗情动态评估、种植管理策略制定及粮食安全保障提供数据支持与方法参考。

关键词: 苗情评估, 无人机RGB影像, 农艺参数, 随机森林, 多模态遥感特征, 小麦

Abstract:

【Objective】The seedling condition of wheat reflects the growth status and health level of the seedlings, which is an important basis for yield prediction and field management. Traditional seedling condition evaluation methods relying on manual expertise have limitations in large-scale field applications, such as low efficiency, strong subjectivity, and difficulty in generalization. This study used UAVs equipped with RGB sensors, combined with ground-measured agronomic parameters, to explore a comprehensive wheat seedling condition assessment method that integrated multimodal remote sensing features, so as to provide a technical pathway for large-scale and cross-regional monitoring.【Method】Multi-site and multi-altitude UAV flight tests were designed in Jiangsu Province to capture UAV imagery and to simultaneously collect agronomic parameters, such as tiller number and canopy coverage. Based on vegetation indices and texture features, crop spectral and structural information was extracted. Feature selection was performed using Information Value (IV) and GINI coefficients. Various machine learning models, including random forest (RF), extreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT), were developed to assess the classification accuracy of seedling condition. The optimal image resolution was determined based on the local variance coefficient to enhance the stability and cross-regional adaptability of the application.【Result】The enhanced green-red difference index (EXGR) showed the best accuracy in identifying canopy coverage during the seedling stage (Pixel Accuracy (PA)=0.69, Specificity (S)=0.83). The green-red ratio index (GRRI) exhibited a significant correlation with tiller number (R2=0.58, relative root mean square error (rRMSE)=0.28). The Random Forest algorithm, which integrates agronomic parameters and remote sensing features, achieved the highest accuracy in seedling condition grade classification (PA=0.85, R=0.86). Tiller number and texture information (E_energy) contributed the most to the seedling condition grade classification (IV>0.70). A flight altitude of (35±5) m was found to be an important reference for obtaining high-quality UAV data (local variance=0.17).【Conclusion】This study constructed a comprehensive wheat seedling condition assessment framework integrating agronomic parameters and remote sensing features, which demonstrated the feasibility and efficiency of portable UAV RGB imagery combined with machine learning methods for cross-regional seedling condition grade monitoring. This method could provide data support and methodological references for regional-scale dynamic seedling condition assessment, crop management strategy formulation, and food security assurance.

Key words: seedling condition assessment, UAV RGB imagery, agronomic parameters, random forest, multimodal remote sensing features, wheat