[1] |
JOBBÁGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436.
|
[2] |
LIU C, LU M, CUI J, LI B, FANG C M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology, 2014, 20(5): 1366-1381.
|
[3] |
LEE J H, LEE J G, JEONG S T, GWON H S, KIM P J, KIM G W. Straw recycling in rice paddy: Trade-off between greenhouse gas emission and soil carbon stock increase. Soil and Tillage Research, 2020, 199: 104598.
|
[4] |
郭伟, 周云鹏, 陈美淇, 李丹丹, 王青霞, 周谈坛, 赵炳梓. 秸秆与有机无机肥配施对潮土关键微生物及小麦产量的影响. 土壤学报. 2024. https://link.cnki.net/urlid/32.1119.p.20231013.0850.002.
|
|
GUO W, ZHOU Y P, CHEN M Q, LI D D, WANG Q X, ZHOU T T, ZHAO B Z. Effects of Combined application of straw and organic- inorganic fertilizers on key microorganisms and wheat yield in fluvo-aquic soil. Acta Pedologica Sinica. 2024. https://link.cnki.net/urlid/32.1119.p.20231013.0850.002. (in Chinese)
|
[5] |
岳娅, 薛海清, 冯茜, 苗欢, 苗淑杰, 乔云发. CO2浓度增加和秸秆还田对黑土团聚体有机碳的影响. 农业环境科学学报, 2023, 42(4): 943-950.
|
|
YUE Y, XUE H Q, FENG Q, MIAO H, MIAO S J, QIAO Y F. Effects of atmospheric CO2 enrichment and straw return on aggregate organic carbon in black soil. Journal of Agro-Environment Science, 2023, 42(4): 943-950. (in Chinese)
|
[6] |
韩笑. 农田管理措施对土壤碳库和温室气体排放的影响[D]. 北京: 中国农业大学, 2018.
|
|
HAN X. Effects of agricultural practices on soil carbon stocks and greenhouse gas emissions[D]. Beijing: China Agricultural University, 2018. (in Chinese)
|
[7] |
|
|
GONG Y, XU Y T, PAN Y J, GUO S J. Effects of climate-smart agricultural measures on soil organic carbon content of farmland in China: A meta-analysis. Journal of Agricultural Resources and Environment. https://doi.org/10.13254/j.jare.2023.0152. (in Chinese)
|
[8] |
GU B, SCHMITT J, CHEN Z, LIANG L, MCCARTHY J F. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science & Technology, 1994, 28(1): 38-46.
|
[9] |
MUELLER K E, EISSENSTAT D M, HOBBIE S E, OLEKSYN J, JAGODZINSKI A M, REICH P B, CHADWICK O A, CHOROVER J. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 2012, 111(1): 601-614.
|
[10] |
万丹, 王伯仁, 张璐, 张婷, 陈玖斌, 余光辉, 韩亚峰, 黄巧云. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应. 中国生态农业学报(中英文), 2022, 30(4): 694-701.
|
|
WAN D, WANG B R, ZHANG L, ZHANG T, CHEN J B, YU G H, HAN Y F, HUANG Q Y. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil. Chinese Journal of Eco-Agriculture, 2022, 30(4): 694-701. (in Chinese)
|
[11] |
WAN D, YE T H, LU Y, CHEN W L, CAI P, HUANG Q Y. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils. European Journal of Soil Science, 2019, 70(6): 1153-1163.
|
[12] |
万丹. 铁氧化物和钙离子对土壤有机碳的固定及有机质对Pb形态转化的影响[D]. 武汉: 华中农业大学, 2019.
|
|
WAN D. Stabilization of soil organic carbon by iron oxides and calcium ions and the effect of organic matter on the fraction of Pb[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
|
[13] |
KAISER K, GUGGENBERGER G. Mineral surfaces and soil organic matter. European Journal of Soil Science, 2003, 54(2): 219-236.
|
[14] |
MELTON E D, SWANNER E D, BEHRENS S, SCHMIDT C, KAPPLER A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12(12): 797-808.
|
[15] |
RASMUSSEN C, SOUTHARD R J, HORWATH W R. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Global Change Biology, 2006, 12(5): 834-847.
|
[16] |
SAIDY A R, SMERNIK R J, BALDOCK J A, KAISER K, SANDERMAN J, MACDONALD L M. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma, 2012, 173/174: 104-110.
|
[17] |
POULIN B A, RYAN J N, AIKEN G R. Effects of iron on optical properties of dissolved organic matter. Environmental Science & Technology, 2014, 48(17): 10098-10106.
|
[18] |
DILLING J, KAISER K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. Water Research, 2002, 36(20): 5037-5044.
|
[19] |
WANG Y Y, WANG H, HE J S, FENG X J. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 2017, 8: 15972.
|
[20] |
XUE B, HUANG L, HUANG Y N, ALI KUBAR K, LI X K, LU J W. Straw management influences the stabilization of organic carbon by Fe (oxyhydr) oxides in soil aggregates. Geoderma, 2020, 358: 113987.
|
[21] |
HUANG W J, HALL S J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nature Communications, 2017, 8: 1774.
|
[22] |
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
|
|
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
|
[23] |
段勋. 赤铁矿和褐煤添加对湿地土壤碳汇及细菌群落结构的影响[D]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2021.
|
|
DUAN X. Effect of wetlands soil organic carbon sink and bacterial community structure respond to hematite and lignite addition[D]. Beijing: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2021. (in Chinese)
|
[24] |
史吉平, 张夫道, 林葆. 长期定位施肥对土壤腐殖质理化性质的影响. 中国农业科学, 2002, 35(2): 174-180.
|
|
SHI J P, ZHANG F D, LIN B. Effects of long-term located fertilization on the physico-chemical property of soil humus. Scientia Agricultura Sinica, 2002, 35(2): 174-180. (in Chinese)
|
[25] |
GAO J K, LIANG C L, SHEN G Z, LÜ J L, WU H M. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere, 2017, 176: 108-116.
|
[26] |
MITCHELL B G, BRICAUD A, CARDER K, CLEVELAND J, FERRARI G, GOULD R, KAHRU M, KISHINO M, MASKE H, MOISAN T, MOORE L, NELSON N, PHINNEY D, REYNOLDS R, SOSIK H, STRAMSKI D, TASSAN S, TREES C, WEIDEMANN A, WIELAND J, VODACEK A. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. NASA Technical Memorandum, 2000: 125-153.
|
[27] |
PARFITT R L, CHILDS C W. Estimation of forms of Fe and Al-A review, and analysis of contrasting soils by dissolution and Mossbauer methods. Soil Research, 1988, 26(1): 121.
|
[28] |
KAISER K, ZECH W. Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction. Soil Science, 1996, 161(7): 452-458.
|
[29] |
WAGAI R, MAYER L M, KITAYAMA K, SHIRATO Y. Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis. Biogeochemistry, 2013, 112(1): 95-109.
|
[30] |
HECKMAN K, LAWRENCE C R, HARDEN J W. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma, 2018, 312: 24-35.
|
[31] |
REGELINK I C, VOEGELIN A, WENG L P, KOOPMANS G F, COMANS R N J. Characterization of colloidal Fe from soils using field-flow fractionation and Fe K-edge X-ray absorption spectroscopy. Environmental Science & Technology, 2014, 48(8): 4307-4316.
|
[32] |
宋旭昕, 刘同旭. 土壤铁矿物形态转化影响有机碳固定研究进展. 生态学报, 2021, 41(20): 7928-7938.
|
|
SONG X X, LIU T X. Effects of soil iron mineral transformation on organic carbon sequestration: A review. Acta Ecologica Sinica, 2021, 41(20): 7928-7938. (in Chinese)
|
[33] |
WENG L P, VAN RIEMSDIJK W H, KOOPAL L K, HIEMSTRA T. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. Journal of Colloid and Interface Science, 2006, 302(2): 442-457.
|
[34] |
HALL S J, BERHE A A, THOMPSON A. Order from disorder: Do soil organic matter composition and turnover co-vary with iron phase crystallinity? Biogeochemistry, 2018, 140(1): 93-110.
|
[35] |
COWARD E K, OHNO T, PLANTE A F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity. Environmental Science & Technology, 2018, 52(3): 1036-1044.
|
[36] |
HUANG X L, FENG C L, ZHAO G L, DING M, KANG W J, YU G H, RAN W, SHEN Q R. Carbon sequestration potential promoted by oxalate extractable iron oxides through organic fertilization. Soil Science Society of America Journal, 2017, 81(6): 1359-1370.
|
[37] |
李金烨, 陈洁, 吴建富, 倪国荣, 谢凯柳, 周春火, 荣勤雷, 赵小敏. 秸秆及其生物炭还田对水稻养分吸收分配和产量的影响. 江西农业大学学报, 2023, 45(5): 1118-1128.
|
|
LI J Y, CHEN J, WU J F, NI G R, XIE K L, ZHOU C H, RONG Q L, ZHAO X M. Effects of straw and its biochar returning on uptake and distribution of rice nutrients and rice yields. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(5): 1118-1128. (in Chinese)
|
[38] |
LIANG F, LI B Z, VOGT R D, MULDER J, SONG H, CHEN J S, GUO J H. Straw return exacerbates soil acidification in major Chinese croplands. Resources, Conservation and Recycling, 2023, 198: 107176.
|
[39] |
胡世文, 刘同旭, 李芳柏, 石振清. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展. 土壤学报, 2022, 59(1): 54-65.
|
|
HU S W, LIU T X, LI F B, SHI Z Q. The abiotic and biotic transformation processes of soil iron-bearing minerals and its interfacial reaction mechanisms of heavy metals: A review. Acta Pedologica Sinica, 2022, 59(1): 54-65. (in Chinese)
|
[40] |
CHEN C M, DYNES J J, WANG J, SPARKS D L. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology, 2014, 48(23): 13751-13759.
|