中国农业科学 ›› 2020, Vol. 53 ›› Issue (18): 3729-3740.doi: 10.3864/j.issn.0578-1752.2020.18.009
李婧妤1,2(),李倩2,3,武雪萍2,吴会军2(
),宋霄君2,张永清1(
),刘晓彤2,丁维婷2,张孟妮2,郑凤君2
收稿日期:
2020-04-29
接受日期:
2020-07-09
出版日期:
2020-09-16
发布日期:
2020-09-25
通讯作者:
吴会军,张永清
作者简介:
李婧妤,E-mail: 基金资助:
LI JingYu1,2(),LI Qian2,3,WU XuePing2,WU HuiJun2(
),SONG XiaoJun2,ZHANG YongQing1(
),LIU XiaoTong2,DING WeiTing2,ZHANG MengNi2,ZHENG FengJun2
Received:
2020-04-29
Accepted:
2020-07-09
Online:
2020-09-16
Published:
2020-09-25
Contact:
HuiJun WU,YongQing ZHANG
摘要:
【目的】分析耕作对土壤碳储量的影响,明确我国东北、华北地区的科学耕作方式,为区域优化耕作模式、改善土壤提供依据。【方法】基于吉林公主岭(GZL)、山西寿阳(SSY)、河北廊坊(HLF)、山西临汾(SLF)4个长期定位试验,选择传统耕作(CT)、免耕(NT)两个耕作处理,分析耕作对有机碳影响的区域差异。【结果】(1)免耕对土壤容重和紧实度影响存在区域性差异,显著提高了东北冷凉区黏质黑土(公主岭)和华北砂质潮土(廊坊)的土壤容重和紧实度,土壤容重分别增加了12.1%、0.7%,但降低了黄土高原东部粉砂壤质黄土(临汾)和砂壤质褐土(寿阳)的土壤容重和紧实度,土壤容重分别降低了1.5%、8.2%。(2)公主岭试验点0、10 kPa土壤体积含水量处理间差异显著,免耕较传统耕作分别提高了40.4%、30.1%;寿阳试验点0、10、500 kPa下免耕较传统耕作土壤体积含水量分别降低了6.4%、4.3%、5.9%,350 kPa下提高了2.1%;廊坊试验点10、350、500 kPa免耕下土壤体积含水量分别提高了0.6%、5.6%、2.6%;临汾试验点0和10 kPa免耕下土壤体积含水量分别降低了7.1%、5.5%,350 和500 kPa土壤体积含水量分别提高了2.9%、8.9%。(3)在4个区域,免耕显著提高了0—10 cm表层土壤有机碳储量,其中公主岭增加最显著,提高了45.4%;但免耕对0—80 cm土层总有机碳储量影响存在区域性差异,公主岭提高了7.2%,寿阳、廊坊、临汾分别降低了26.8%、31.3%、23.5%。(4)土壤有机碳与饱和含水量呈极显著正相关关系,而与年均温、年降水、紧实度具有显著负相关关系,有机碳储量受气候因子、持水能力、紧实度的影响显著。【结论】由于我国东北和华北地区气候、作物类型、土壤性质等不同,免耕对土壤有机碳储量影响存在区域性差异,可以显著提高各区域表层土壤有机碳储量,但仅提高了东北冷凉区黏质黑土(公主岭)土壤总有机碳储量。总体来说,免耕保护性耕作技术是提高表层有机碳储量的有效途径。
李婧妤,李倩,武雪萍,吴会军,宋霄君,张永清,刘晓彤,丁维婷,张孟妮,郑凤君. 免耕对农田土壤持水特性和有机碳储量影响的区域差异[J]. 中国农业科学, 2020, 53(18): 3729-3740.
LI JingYu,LI Qian,WU XuePing,WU HuiJun,SONG XiaoJun,ZHANG YongQing,LIU XiaoTong,DING WeiTing,ZHANG MengNi,ZHENG FengJun. Regional Variation in the Effects of No-Till on Soil Water Retention and Organic Carbon Pool[J]. Scientia Agricultura Sinica, 2020, 53(18): 3729-3740.
表1
4个试验地点基本信息"
地点 Site | 试验起始年 Experiment starting year | 年均气温 Annual average temperature (℃) | 年均降水 Annual precipitation (mm) | 作物 Crop | 土壤类型 Soil type | 土壤颗粒组成 Soil particle composition (%) | ||
---|---|---|---|---|---|---|---|---|
黏粒 (0-0.002 mm) Clay | 粉粒 (0.002-0.05 mm) Silt | 砂粒 (0.05-2 mm) Sand | ||||||
吉林公主(GZL) Gongzhuling, Jilin | 1990 | 5.6 | 594.8 | 春玉米 Spring corn | 黑土 Black soil | 31.1 | 29.9 | 39.1 |
山西寿阳(SSY) Shouyang, Shanxi | 2003 | 7.4 | 461.8 | 春玉米 Spring corn | 褐土 Cinnamon soil | 5.6 | 63.9 | 30.5 |
河北廊坊(HLF) Langfang, Hebei | 2009 | 11.9 | 550.0 | 冬小麦-夏玉米 Winter wheat- summer corn | 潮土 Fluvo-aquic soil | 4.1 | 51.4 | 44.5 |
山西临汾(SLF) Linfen, Shanxi | 1992 | 10.7 | 555.0 | 冬小麦 Winter wheat | 黄绵土 Loessal soil | 5.2 | 73.9 | 20.9 |
表2
不同耕作处理下0—10 cm土层容重和孔隙度"
试验点 Site | 处理 Treatment | 容重 Bulk density (g·cm-3) | 孔隙度 Total porosity (%) |
---|---|---|---|
吉林公主岭(GZL) Gongzhuling, Jilin | CT | 1.33 ± 0.03b | 0.49 ± 0.01a |
NT | 1.49 ± 0.13a | 0.44 ± 0.05b | |
山西寿阳(SSY) Shouyang, Shanxi | CT | 1.46 ± 0.02a | 0.45 ± 0.01b |
NT | 1.34 ± 0.07b | 0.49 ± 0.03a | |
河北廊坊(HLF) Langfang, Hebei | CT | 1.46 ± 0.06a | 0.45 ± 0.02a |
NT | 1.47 ± 0.01a | 0.44 ± 0.01a | |
山西临汾(SLF) Linfen, Shanxi | CT | 1.38 ± 0.10a | 0.47 ± 0.04a |
NT | 1.36 ± 0.06a | 0.49 ± 0.02a |
表3
不同耕作下土壤水分特征曲线Van-Genuchten模型参数拟合值"
试验点 Site | 处理 Treatment | 拟合参数值Fitting parameter value | 相关系数 Correlation coefficient, R2 | |||
---|---|---|---|---|---|---|
θs | θr | α | n | |||
吉林公主岭(GZL) Gongzhuling, Jilin | CT | 27.25 | 0.000048 | 0.01240 | 1.2942 | 0.9835 |
NT | 38.21 | 0.000090 | 0.11683 | 1.2028 | 0.9864 | |
山西寿阳(SSY) Shouyang, Shanxi | CT | 39.08 | 0.000853 | 0.03930 | 1.4887 | 0.9958 |
NT | 37.14 | 0.000130 | 0.03026 | 1.4947 | 0.9923 | |
河北廊坊(HLF) Langfang, Hebei | CT | 31.14 | 0.000002 | 0.04490 | 1.4784 | 0.9924 |
NT | 30.96 | 0.000005 | 0.04155 | 1.3655 | 0.9848 | |
山西临汾(SLF) Linfen, Shanxi | CT | 35.88 | 0.000457 | 0.05522 | 1.3415 | 0.9936 |
NT | 34.06 | 0.000713 | 0.04422 | 1.3097 | 0.9832 |
表4
不同耕作处理下土壤有机碳储量"
试验点 | 处理 | 有机碳储量 Organic carbon storage (t·hm-2) | |||||
---|---|---|---|---|---|---|---|
Site | Treatment | 0-10 cm | 比CT提高 | 10-20 cm | 比CT提高 | 20-40 cm | 比CT提高 |
Increased than | Increased than | Increased than | |||||
CT (%) | CT (%) | CT (%) | |||||
吉林公主(GZL) | CT | 19.04 ± 0.96b | 15.59 ± 0.56b | 23.21 ± 0.02a | |||
Gongzhuling, Jilin | NT | 27.69 ± 1.52a | 45.4 | 24.71 ± 0.19a | 58.5 | 19.37 ± 0.72b | -16.5 |
山西寿阳(SSY) | CT | 28.41 ± 1.19b | 27.12 ± 0.42b | 56.55 ± 4.89a | |||
Shouyang, Shanxi | NT | 31.81 ± 0.52a | 11.9 | 29.62 ± 0.14a | 9.2 | 24.49 ± 1.66b | -56.7 |
河北廊坊(HLF) | CT | 10.56 ± 0.63b | 9.06 ± 0.32a | 12.14 ± 2.48a | |||
Langfang, Hebei | NT | 12.99 ± 0.99a | 23.1 | 7.66 ± 0.69b | -15.5 | 4.96 ± 1.16b | -59.1 |
山西临汾(SLF) | CT | 12.02 ± 0.67b | 10.07 ± 0.58a | 12.32 ± 2.67a | |||
Linfen, Shanxi | NT | 15.29 ± 0.62a | 27.2 | 8.25 ± 0.33b | -18.1 | 6.26 ± 1.12b | -49.2 |
试验点 | 处理 | 有机碳储量 Organic carbon storage(t·hm-2) | |||||
Site | Treatment | 40-60 cm | 比CT提高 | 60-80 cm | 比CT提高 | 0-80 cm | 比CT提高 |
Increased than | Increased than | Increased than | |||||
CT (%) | CT (%) | CT (%) | |||||
吉林公主(GZL) | CT | 16.87 ± 0.28a | 8.61 ± 0.36a | 83.33 ± 0.89b | |||
Gongzhuling, Jilin | NT | 11.07 ± 1.79b | -34.4 | 6.24 ± 0.81b | -27.5 | 89.32 ± 0.21a | 7.2 |
山西寿阳(SSY) | CT | 28.68 ± 0.28a | 11.69 ± 0.69a | 154.09 ± 3.57a | |||
Shouyang, Shanxi | NT | 20.97 ± 0.14b | -26.9 | 5.92 ± 0.09b | -49.4 | 112.84 ± 1.81b | -26.8 |
河北廊坊(HLF) | CT | 3.04 ± 0.31a | 3.36 ± 1.96a | 39.85 ± 1.75a | |||
Langfang, Hebei | NT | 1.45 ± 0.55b | -52.3 | 0.85 ± 0.14b | -74.7 | 27.37 ± 2.81b | -31.3 |
山西临汾(SLF) | CT | 9.18 ± 2.06a | 7.28 ± 1.32a | 50.22 ± 4.06a | |||
Linfen, Shanxi | NT | 4.65 ± 0.29b | -49.3 | 3.71 ± 0.17b | -49.1 | 38.42 ± 0.45b | -23.5 |
表5
气候因子、土壤因子与土壤有机碳储量的Pearson相关系数"
年均温 Annual average temperature | 年降水 Annual precipitation | 容重 Bulk density | 黏粒含量 Clay | 粉粒含量 Silt | 砂粒含量 Sand | 饱和含水量Saturated moisture | 紧实度 Penetrometer resistance | 有机碳储量 Organic C storage | |
---|---|---|---|---|---|---|---|---|---|
年均温 Annual average temperature | 1 | ||||||||
年降水Annual precipitation | 0.126 | 1 | |||||||
容重Bulk density | 0.149 | 0.106 | 1 | ||||||
黏粒含量Clay | -0.132 | 0.101 | -0.389 | 1 | |||||
粉粒含量Silt | -0.368 | 0.023 | -0.321 | 0.902** | 1 | ||||
砂粒含量Sand | 0.337 | -0.035 | 0.335 | -0.928** | -0.998** | 1 | |||
饱和含水量 Saturated moisture | -0.381 | -0.589** | -0.524** | 0.381 | 0.317 | -0.315 | 1 | ||
紧实度 Penetrometer resistance | -0.337 | 0.298 | 0.084 | -0.308 | -0.544** | 0.538** | -0.154 | 1 | |
有机碳储量 Organic C storage | -0.731** | -0.708** | -0.88 | 0.46 | 0.218 | -0.194 | 0.627** | -0.538* | 1 |
[1] | 王绍强, 周成虎, 李克让, 朱松丽, 黄方红. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000,55(50):533-544. |
WANG S Q, ZHOU C H, LI K R, ZHU S L, HUANG F H. Analysis of soil organic carbon pool and spatial distribution in China. Acta Geographica Sinica, 2000,55(50):533-544. (in Chinese) | |
[2] |
BATJES N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 1996,47(2):151-163.
doi: 10.1111/ejs.1996.47.issue-2 |
[3] |
LIU E, CHEN B, YAN C, ZHANG Y, MEI X, WANG J. Seasonal changes and vertical distributions of soil organic carbon pools under conventional and No-till practices on Loess Plateau in China. Soil Science Society of America Journal, 2015,79:517-526.
doi: 10.2136/sssaj2014.02.0069 |
[4] | WANG H, WANG S, ZHANG Y, WANG X, WANG R, LI J. Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China. Land Degradation & Development, 2018,29:2880-2887. |
[5] |
PUGET P, LAL R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research, 2004 80(1):201-213.
doi: 10.1016/j.still.2004.03.018 |
[6] | DOLAN M S, CLAPP C E, ALLMARAS R R. Soil organic carbon and nitrogen in a Minnesota soil a related to tillage, residue and nitrogen management. Soil & Tillage Research, 2006 89:221-231. |
[7] | 田效琴, 田佳乔, 李卓, 刘永红. 保护性耕作下西南黄壤坡地的土壤结构效应. 中国农学通报, 2017,33(14):62-68. |
TIAN X Q, TIAN J Q, LI Z, LIU Y H. Soil structure effects of sloping land in the yellow soil of Southwest China under Conservation tillage. Chinese Agricultural Science Bulletin, 2017,33(14):62-68. (in Chinese) | |
[8] |
MARQUEZ C O, GARCIA V J, CAMBARDELA C A. Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 2004,68(3):725-735.
doi: 10.2136/sssaj2004.7250 |
[9] | 孙国峰, 张海林, 徐尚起, 崔思远, 汤文光, 陈阜. 轮耕对双季稻田土壤结构及水贮量的影响. 农业工程学报, 2010(9):66-71. |
SUN G F, ZHANG H L, XU S Q, CUI S Y, TANG W G, CHEN F. Effects of rotary cultivation on soil structure and water storage in double cropping paddy fields. Transactions of Chinese Society of Agricultural Engineering, 2010(9):66-71. (in Chinese) | |
[10] | 罗珠珠, 黄高宝, 张国盛. 保护性耕作对黄土高原旱地表土容重和水分入渗的影响. 干旱地区农业研究, 2005(4):7-11. |
LUO Z Z, HUANG G B, ZHANG G S. Effects of conservation tillage on bulk density and water infiltration of dry surface soils in the Loess Plateau. Agricultural Research in the Arid Areas, 2005(4):7-11. (in Chinese) | |
[11] | 刘孝义, 周桂琴, 依艳丽, 刘春梅. 东北地区几种主要土壤持水特性研究. 沈阳农学院学报, 1985,16(2):31-37. |
LIU X Y, ZHOU G Q, YI Y L, LIU C M. Study on water holding characteristics of several major soils in Northeast China. Journal of Shenyang Agricultural College, 1985,16(2):31-37. (in Chinese) | |
[12] | 魏燕华, 赵鑫, 翟云龙, 张二鹏, 陈阜, 张海林. 耕作方式对华北农田土壤固碳效应的影响. 农业工程学报, 2013,29(17):87-95. |
WEI Y H, ZHAO X, ZHAI Y L, ZHANG E P, CHEN F, ZHANG H L. Effects of tillage methods on soil carbon sequestration in North China farmland. Transactions of Chinese Society of Agricultural Engineering, 2013,29(17):87-95. (in Chinese) | |
[13] | 田慎重, 王瑜, 宁堂原, 董晓霞, 董亮, 郑东峰, 郭洪海. 转变耕作方式对长期旋免耕农田土壤有机碳库的影响. 农业工程学报, 2016,32(17):98-105. |
TIAN S Z, WANG Y, NING T Y, DONG X X, DONG L, ZHENG D F, GUO H H. Effects of shifting tillage methods on soil organic carbon pool in long-term spin-no-till farmland. Transactions of Chinese Society of Agricultural Engineering, 2016,32(17):98-105. (in Chinese) | |
[14] | 王旭东, 张霞, 王彦丽, 李军. 不同耕作方式对黄土高原黑垆土有机碳库组成的影响. 农业机械学报, 2017,48(11):29-23. |
WANG X D, ZHANG X, WANG Y L, LI J. Effects of different tillage methods on the composition of organic carbon pools in black loess soil on the Loess Plateau. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(11):29-23. (in Chinese) | |
[15] | 张国盛, Chan K Y, Li G D, Heenan D P. 长期保护性耕作方式对农田表层土壤性质的影响. 生态学报, 2008,28(6):2722-2728. |
ZHANG G S, CHAN K Y, LI G D, HEENAN D P. Effects of long-term protective tillage methods on soil properties of topsoil. Acta Ecologica Sinica, 2008,28(6):2722-2728. (in Chinese) | |
[16] |
GAO L L, WANG B S, LI S P, WU H J, WU X P, LIANG G P, GONG D Z, ZHANG X M, CAI D X, AURORE D. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China. Catena, 2019,173:38-47.
doi: 10.1016/j.catena.2018.09.043 |
[17] |
LOGSDN S D, KARLEN D L. Bulk density as a soil quality indicator during conversion to no-tillage. Soil and Tillage Research, 2004,78:143-149.
doi: 10.1016/j.still.2004.02.003 |
[18] | 李亚杰, 唐江华, 苏丽丽, 张永强, 彭姜龙, 徐文修. 耕作方式对土壤含水量及夏大豆生长的影响. 新疆农业科学, 2015,52(4) : 621-627. |
LI Y J, TANG J H, SU L L, ZHANG Y Q, PENG J L, XU W X. Effects of tillage methods on soil moisture and content and summer soybean growth. Xinjiang Agricultural Science, 2015,52(4):621-627. (in Chinese) | |
[19] | 苏丽丽, 徐文修, 李亚杰, 唐江华, 王娜, 罗家祥. 耕作方式对干旱绿洲滴灌复播大豆农田土壤有机碳的影响. 农业工程学报, 2016,32(4):150-156. |
SU L L, XU W X, LI Y J, TANG J H, WANG N, LUO J X. Effects of tillage methods on soil organic carbon in soybean farmland with Drip Irrigation in Arid Oasis. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(4):150-156. (in Chinese) | |
[20] | 侯雪坤. 不同耕作方式下土壤耕层理化性状和生物学特性时空分布研究[D]. 哈尔滨: 黑龙江八一农垦大学, 2010. |
HOU X K. Temporal and spatial distribution of physical and chemical properties and biological characteristics of soil plow layer under different tillage methods[D]. Harbin: Heilongjiang August First Land Reclamation University, 2010. (in Chinese) | |
[21] | 王恩姮, 柴亚凡, 陈祥伟. 大机械作业对黑土区耕地土壤结构性特征的影响. 应用生态学报, 2008,19(2):351-356. |
WANG E X, CHAI Y F, CHEN X W. Effects of large mechanical operations on soil structural characteristics of cultivated land in black soil areas. Chinese Journal of Applied Ecology, 2008,1927(2):351-356. (in Chinese) | |
[22] | 雷志栋, 杨诗秀, 谢森传. 土壤水动力学, 北京: 清华大学出版社, 1988: 18-24. |
LEI Z D, YANG S X, XIE S C. Soil Hydrodynamics. Beijing: Tsinghua University Press, 1988: 18-24. (in Chinese) | |
[23] | 邵明安, 王全九, 黄明斌. 土壤物理学, 北京: 高等教育出版社, 2006: 67-74. |
SHAO M A, WANG Q J, HUANG M B. Soil Physics. Beijing: Higher Education Press, 2006: 67-74. (in Chinese) | |
[24] | 王小华, 贾克力, 刘景辉, 李立军. Van Genuchten模型在土壤水分特征曲线拟合分析中的应用. 干旱地区农业研究, 2009,27(2):179-183. |
WANG X H, JIA K L, LIU J H, LI L J. Application of Van Genuchten model to soil moisture characteristic curve fitting analysis. Agricultural Research in the Arid Areas, 2009,27(2):179-183. (in Chinese) | |
[25] |
MRABET R, SABER N, EI-BRAHLI A, LAHLOU S, BESSAM F. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil and Tillage Research, 2001,57:225-235.
doi: 10.1016/S0167-1987(00)00180-X |
[26] | BAKER J M, OCHSNER T E, VENTEREA R T, GRIFFIS T J. Tillage and soil carbon sequestration: what do we really know? Agriculture, Ecosystems & Environment, 2007,118:1-5. |
[27] | 胡宁, 娄翼来, 梁雷. 保护性耕作对土壤有机碳、氮储量的影响. 生态环境学报, 2010,19(1):223-226. |
HU N, LOU Y L, LIANG L. The effect of conservation tillage on soil organic carbon and nitrogen storage. Journal of Eco-Environment, 2010,19(1):223-226. (in Chinese) | |
[28] |
WEST T O, POST W M. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal, 2002,66:1930-1946.
doi: 10.2136/sssaj2002.1930 |
[29] | 李倩, 李晓秀, 吴会军, 宋霄君, 王碧胜, 武雪萍. 不同气候和施肥条件下保护性耕作对农田土壤碳氮储量的影响. 植物营养与肥料学报, 2018,24(6):1539-1549. |
LI Q, LI X X, WU H J, SONG X J, WANG B S, WU X P. Effects of conservation tillage on soil carbon and nitrogen storage in farmland under different climate and fertilization conditions. Journal of Plant Nutrition and Fertilizer, 2018,24(6):1539-1549. (in Chinese) | |
[30] | 李新举, 张志国, 邓基先, 刘辉友. 免耕对土壤生态环境的影响. 山东农业大学学报, 1998,29(4):520-526. |
LI X J, ZHANG Z G, DENG J X, LIU H Y. Effects of no-tillage on soil ecological environment. Journal of Shandong Agricultural University, 1998,29(4):520-526. (in Chinese) | |
[31] | MELERO S, LÓPEZ-GARRIDO R, MURILLO J M. et al. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil & Tillage Research, 2009,104:292-298. |
[32] | 李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 田云龙. 长期不同耕作措施对土壤团聚体特征及微生物多样性的影. 应用生态学报, 2014,25(8):2341-2348. |
LI J, WU H J, WU X P, CAI D X, YAO Y Q, LY J J, TIAN Y L. Effects of long-term different tillage measures on soil aggregates and microbial diversity. Chinese Journal of Applied Ecology, 2014,25(8):2341-2348. (in Chinese) | |
[33] | 严昌荣, 刘恩科, 何文清, 刘爽, 刘勤. 耕作措施对土壤有机碳和活性有机碳的影响. 中国土壤与肥料, 2010(6):58-63. |
YAN C R, LIU E K, HE W Q, LIU S, LIU Q. Effects of farming measures on soil organic carbon and active organic carbon. Soil and Fertilizer Sciences in China, 2010(6):58-63. (in Chinese) | |
[34] |
MUNKHOLML J, HECK R J, DEEN B. Long-term rotation and tillage effects on soil structure and crop yield. Soil and Tillage Research, 2013,127:85-91.
doi: 10.1016/j.still.2012.02.007 |
[35] | 梁爱珍, 张晓平, 杨学明, C. F. Drury. 耕作方式对耕层黑土有机碳库储量的短期影响. 中国农业科学, 2006,39(6):1287-1293. |
LIANG A Z, ZHANG X P, YANG X M, DRURY C F. Short-term effects of tillage methods on soil organic carbon storage in plow layer of black soil in Northeast China. Scientia Agricultura Sinica, 2006,39(6):1287-1293. (in Chinese) | |
[36] |
王碧胜, 蔡典雄, 武雪萍, 李景, 梁国鹏, 于维水, 王相玲, 杨毅宇, 王小彬. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610 |
WANG B S, CAI D X, WU X P, LI J, LIANG G P, YU W S, WANG X L, YANG Y Y, WANG X B. Effects of long-term conservation tillage on soil organic carbon and maize yield and water use. Journal of Plant Nutrition and Fertilizer, 2015,21(6):1455-1464. (in Chinese)
doi: 10.11674/zwyf.2015.0610 |
|
[37] | 宋霄君, 吴会军, 武雪萍, 李倩, 王碧胜, 李生平, 梁国鹏, 李景, 刘彩彩, 张孟妮. 长期保护性耕作可提高表层土壤碳氮含量和根际土壤酶活性. 植物营养与肥料学报, 2018,24(6):1588-1597. |
SONG X J, WU H J, WU X P, LI Q, WANG B S, LI S P, LIANG G P, LI J, LIU C C, ZHANG M N. Long-term conservation tillage can increase carbon and nitrogen content in surface soil and soil enzyme activities in rhizosphere. Journal of Plant Nutrition and Fertilizer, 2018,24(6):1588-1597. (in Chinese) | |
[38] |
STRONG D T, DE WEVER H, MERCKX R, RECOUS S. Spatial location of carbon decomposition in the soil pore system. European Journal of Soil Science, 2004,55(4):739-750.
doi: 10.1111/ejs.2004.55.issue-4 |
[39] | 祖元刚, 李冉, 王文杰, 苏冬雪, 王莹, 邱岭. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性. 生态学报, 2011,31(18):5207-5216. |
ZU Y G, LI R, WANG W J, SU D X, WANG Y, QIU L. Correlation between soil organic carbon and inorganic carbon contents and soil physical and chemical properties in Northeast China. Acta Ecologica Sinica, 2011, 31(18):5207-5216. (in Chinese) | |
[40] | 王玉珏, 赵佳宁, 于洋, 张敬莉, 张钰舒, 冯金朝, 肖春旺. 不同纬度兴安落叶松林土壤碳氮含量特征及影响机制. 中央民族大学学报(自然科学版), 2020,29(2):13-20. |
WANG Y J, ZHAO J N, YU Y, ZHANG J L, ZHANG Y S, FENG J C, XIAO C W. Characteristics and influence mechanisms of soil carbon and nitrogen in larch forests of different latitudes. Journal of Central University for Nationalities (Natural Science Edition), 2020,29(2):13-20. (in Chinese) |
[1] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[2] | 吴俊,郭大千,李果,郭熙,钟亮,朱青,国佳欣,叶英聪. 基于CARS-BPNN的江西省土壤有机碳含量高光谱预测[J]. 中国农业科学, 2022, 55(19): 3738-3750. |
[3] | 王楚涵,刘菲,高健永,张慧芳,谢英荷,曹寒冰,谢钧宇. 减氮覆膜下土壤有机碳组分含量的变化特征[J]. 中国农业科学, 2022, 55(19): 3779-3790. |
[4] | 崔帅,刘烁然,王寅,夏晨真,焉莉,冯国忠,高强. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系[J]. 中国农业科学, 2022, 55(12): 2372-2383. |
[5] | 马立晓,李婧,邹智超,蔡岸冬,张爱平,李贵春,杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析[J]. 中国农业科学, 2021, 54(9): 1913-1925. |
[6] | 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607. |
[7] | 周永杰,谢军红,李玲玲,王林林,罗珠珠,王进斌. 长期少免耕与氮肥减量对全膜双垄沟播玉米产量及碳排放的调控作用[J]. 中国农业科学, 2021, 54(23): 5054-5067. |
[8] | 殷文,郭瑶,范虹,樊志龙,胡发龙,于爱忠,赵财,柴强. 西北干旱灌区不同地膜覆盖利用方式对玉米水分利用的影响[J]. 中国农业科学, 2021, 54(22): 4750-4760. |
[9] | 曹寒冰,谢钧宇,刘菲,高健永,王楚涵,王仁杰,谢英荷,李廷亮. 地膜覆盖麦田土壤有机碳矿化特征及其温度敏感性[J]. 中国农业科学, 2021, 54(21): 4611-4622. |
[10] | 董建新,宋文静,丛萍,李玉义,逄焕成,郑学博,王毅,王婧,况帅,徐艳丽. 旋耕配合秸秆颗粒还田对土壤物理特性的影响[J]. 中国农业科学, 2021, 54(13): 2789-2803. |
[11] | 郑凤君,王雪,李景,王碧胜,宋霄君,张孟妮,武雪萍,刘爽,席吉龙,张建诚,李永山. 免耕条件下施用有机肥对冬小麦土壤酶及活性有机碳的影响[J]. 中国农业科学, 2020, 53(6): 1202-1213. |
[12] | 高洪军,彭畅,张秀芝,李强,朱平,王立春. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和 固碳效率的影响[J]. 中国农业科学, 2020, 53(22): 4613-4622. |
[13] | 张维理,KOLBEH,张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331. |
[14] | 张维理,KOLBEH,张认连,冀宏杰. 农田土壤有机碳管理与有机质平衡算法[J]. 中国农业科学, 2020, 53(2): 332-345. |
[15] | 吴曹阳,梁诗涵,邱军,高金锋,高小丽,王鹏科,冯佰利,杨璞. 基于连续12年国家苦荞区域试验的中国苦荞品种选育现状分析[J]. 中国农业科学, 2020, 53(19): 3878-3892. |
|