[1] |
赵海燕, 张文千, 邹旭恺, 张强, 沈子琦, 梅平. 气候变化背景下中国农业干旱时空变化特征分析. 中国农业气象, 2021, 42(1): 69-79.
|
|
ZHAO H Y, ZHANG W Q, ZOU X K, ZHANG Q, SHEN Z Q, MEI P. Temporal and spatial characteristics of drought in China under climate change. Chinese Journal of Agrometeorology, 2021, 42(1): 69-79. (in Chinese)
|
[2] |
XIAO G H, ZHANG Y Z. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science, 2020, 25(2): 121-123.
doi: S1360-1385(19)30309-7
pmid: 31843370
|
[3] |
|
|
WEN W L, GUO X Y, ZHAO C J, WANG C Y, XIAO B X. Crop roots configuration and visualization: A review. Scientia Agricultura Sinica, 2015, 48(3): 436-448. doi: 10.3864/j.issn.0578-1752.2015.03.04. (in Chinese)
|
[4] |
|
|
LI L, LI C N, MAO X G, WANG J Y, JING R L. Advances and perspectives of approaches to phenotyping crop root system. Scientia Agricultura Sinica, 2022, 55(3): 425-437. doi: 10.3864/j.issn.0578-1752.2022.03.001. (in Chinese)
|
[5] |
SATO E M, HIJAZI H, BENNETT M J, VISSENBERG K, SWARUP R. New insights into root gravitropic signalling. Journal of Experimental Botany, 2015, 66(8): 2155-2165.
doi: 10.1093/jxb/eru515
pmid: 25547917
|
[6] |
MAQBOOL S, HASSAN M A, XIA X C, YORK L M, RASHEED A, HE Z H. Root system architecture in cereals: Progress, challenges and perspective. The Plant Journal, 2022, 110(1): 23-42.
doi: 10.1111/tpj.v110.1
|
[7] |
ZHANG Y Z, HE P, MA X F, YANG Z R, PANG C Y, YU J N, WANG G D, FRIML J, XIAO G H. Auxin-mediated statolith production for root gravitropism. The New Phytologist, 2019, 224(2): 761-774.
doi: 10.1111/nph.v224.2
|
[8] |
BABA A I, MIR M Y, RIYAZUDDIN R, CSÉPLŐ Á, RIGÓ G, FEHÉR A. Plants in microgravity: Molecular and technological perspectives. International Journal of Molecular Sciences, 2022, 23(18): 10548.
doi: 10.3390/ijms231810548
|
[9] |
MORITA M T, TASAKA M. Gravity sensing and signaling. Current Opinion in Plant Biology, 2004, 7(6): 712-718.
pmid: 15491921
|
[10] |
SU S H, GIBBS N M, JANCEWICZ A L, MASSON P H. Molecular mechanisms of root gravitropism. Current Biology, 2017, 27(17): R964-R972.
|
[11] |
ZHANG Y Z, XIAO G H, WANG X J, ZHANG X X, FRIML J. Evolution of fast root gravitropism in seed plants. Nature Communications, 2019, 10: 3480.
doi: 10.1038/s41467-019-11471-8
pmid: 31375675
|
[12] |
WAIDMANN S, RUIZ ROSQUETE M, SCHÖLLER M, SARKEL E, LINDNER H, LARUE T, PETŘÍK I, DÜNSER K, MARTOPAWIRO S, SASIDHARAN R, NOVAK O, WABNIK K, DINNENY J R, KLEINE-VEHN J. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nature Communications, 2019, 10(1): 3540.
doi: 10.1038/s41467-019-11483-4
pmid: 31387989
|
[13] |
OGURA T, GOESCHL C, FILIAULT D, MIREA M, SLOVAK R, WOLHRAB B, SATBHAI S B, BUSCH W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178(2): 400-412, e16.
doi: 10.1016/j.cell.2019.06.021
|
[14] |
KITOMI Y, HANZAWA E, KUYA N, INOUE H, HARA N, KAWAI S, KANNO N, ENDO M, SUGIMOTO K, YAMAZAKI T, SAKAMOTO S, SENTOKU N, WU J Z, KANNO H, MITSUDA N, TORIYAMA K, SATO T, UGA Y. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21242-21250.
|
[15] |
UGA Y, OKUNO K, YANO M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 2011, 62(8): 2485-2494.
doi: 10.1093/jxb/erq429
pmid: 21212298
|
[16] |
UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J Z, MATSUMOTO T, TAKAI T, OKUNO K, YANO M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9): 1097-1102.
doi: 10.1038/ng.2725
|
[17] |
FENG X J, JIA L, CAI Y T, GUAN H R, ZHENG D, ZHANG W X, XIONG H, ZHOU H M, WEN Y, HU Y, ZHANG X M, WANG Q J, WU F K, XU J, LU Y L. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnology Journal, 2022, 20(11): 2077-2088.
doi: 10.1111/pbi.v20.11
|
[18] |
TAKEDA H, TSUKAYA H. Analysis of gravitropic response in 133 cultivars of Japanese wheat (Triticum aestivum L.). Plant and Cell Physiology, 2005, 46(2): 375-381.
doi: 10.1093/pcp/pci023
|
[19] |
FRIEDLI C N, ABIVEN S, FOSSATI D, HUND A. Modern wheat semi-dwarfs root deep on demand: Response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica, 2019, 215(4): 1-15.
doi: 10.1007/s10681-018-2319-8
|
[20] |
CHRISTOPHER J, CHRISTOPHER M, JENNINGS R, JONES S, FLETCHER S, BORRELL A, MANSCHADI A M, JORDAN D, MACE E, HAMMER G. QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 2013, 126(6): 1563-1574.
doi: 10.1007/s00122-013-2074-0
pmid: 23525632
|
[21] |
BORRILL P, HARRINGTON S A, UAUY C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. The Plant Journal, 2019, 97(1): 56-72.
doi: 10.1111/tpj.14150
pmid: 30407665
|
[22] |
YAN L, LOUKOIANOV A, TRANQUILLI G, HELGUERA M, FAHIMA T, DUBCOVSKY J. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 6263-6268.
|
[23] |
COCKRAM J, JONES H, LEIGH F J, O'SULLIVAN D, POWELL W, LAURIE D A, GREENLAND A J. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. Journal of Experimental Botany, 2007, 58(6): 1231-1244.
doi: 10.1093/jxb/erm042
pmid: 17420173
|
[24] |
VOSS-FELS K P, SNOWDON R J, HICKEY L T. Designer roots for future crops. Trends in Plant Science, 2018, 23(11): 957-960.
doi: 10.1016/j.tplants.2018.08.004
|
[25] |
VOSS-FELS K P, ROBINSON H, MUDGE S R, RICHARD C, NEWMAN S, WITTKOP B, STAHL A, FRIEDT W, FRISCH M, GABUR I, MILLER-COOPER A, CAMPBELL B C, KELLY A, FOX G, CHRISTOPHER J, CHRISTOPHER M, CHENU K, FRANCKOWIAK J, MACE E S, BORRELL A K, EAGLES H, JORDAN D R, BOTELLA J R, HAMMER G, GODWIN I D, TREVASKIS B, SNOWDON R J, HICKEY L T. VERNALIZATION1 modulates root system architecture in wheat and barley. Molecular Plant, 2018, 11(1): 226-229.
doi: 10.1016/j.molp.2017.10.005
|
[26] |
KIRSCHNER G K, ROSIGNOLI S, GUO L, VARDANEGA I, IMANI J, ALTMÜLLER J, MILNER S G, BALZANO R, NAGEL K A, PFLUGFELDER D, FORESTAN C, BOVINA R, KOLLER R, STÖCKER T G, MASCHER M, SIMMONDS J, UAUY C, SCHOOF H, TUBEROSA R, SALVI S, HOCHHOLDINGER F. ENHANCED GRAVITROPISM 2 encodes a STERILE ALPHA MOTIF-containing protein that controls root growth angle in barley and wheat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35): e2101526118.
|
[27] |
FUSI R, ROSIGNOLI S, LOU H Y, SANGIORGI G, BOVINA R, PATTEM J K, BORKAR A N, LOMBARDI M, FORESTAN C, MILNER S G, DAVIS J L, LALE A, KIRSCHNER G K, SWARUP R, TASSINARI A, PANDEY B K, YORK L M, ATKINSON B S, STURROCK C J, MOONEY S J, HOCHHOLDINGER F, TUCKER M R, HIMMELBACH A, STEIN N, MASCHER M, NAGEL K A, DE GARA L, SIMMONDS J, UAUY C, TUBEROSA R, LYNCH J P, YAKUBOV G E, BENNETT M J, BHOSALE R, SALVI S. Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31): e2201350119.
|
[28] |
TAKAHASHI N, YAMAZAKI Y, KOBAYASHI A, HIGASHITANI A, TAKAHASHI H. Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiology, 2003, 132(2): 805-810.
doi: 10.1104/pp.018853
|
[29] |
IWATA S, MIYAZAWA Y, FUJII N, TAKAHASHI H. MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. Annals of Botany, 2013, 112(1): 103-114.
doi: 10.1093/aob/mct098
|
[30] |
EAPEN D, MARTÍNEZ-GUADARRAMA J, HERNÁNDEZ- BRUNO O, FLORES L, NIETO-SOTELO J, CASSAB G I. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. Plant Science, 2017, 265: 87-99.
doi: 10.1016/j.plantsci.2017.09.016
|
[31] |
OBER E S, ALAHMAD S, COCKRAM J, FORESTAN C, HICKEY L T, KANT J, MACCAFERRI M, MARR E, MILNER M, PINTO F, RAMBLA C, REYNOLDS M, SALVI S, SCIARA G, SNOWDON R J, THOMELIN P, TUBEROSA R, UAUY C, VOSS-FELS K P, WALLINGTON E, WATT M. Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134(6): 1645-1662.
doi: 10.1007/s00122-021-03819-w
pmid: 33900415
|
[32] |
OYANAGI A, TAKAHASHI H, SUGE H. Interactions between hydrotropism and gravitropism in the primary seminal roots of Triticum eastivum L.. Annals of Botany, 1995, 75(3): 229-235.
doi: 10.1006/anbo.1995.1016
|
[33] |
KOBAYASHI A, TAKAHASHI A, KAKIMOTO Y, MIYAZAWA Y, FUJII N, HIGASHITANI A, TAKAHASHI H. A gene essential for hydrotropism in roots. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4724-4729.
|
[34] |
LI Y, YUAN W, LI L C, DAI H, DANG X L, MIAO R, BALUŠKA F, KRONZUCKER H J, LU C M, ZHANG J H, XU W F. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. Journal of Experimental Botany, 2020, 71(22): 7316-7330.
doi: 10.1093/jxb/eraa409
|
[35] |
BACHER H, MONTAGU A, HERRMANN I, WALIA H, SCHWARTZ N, PELEG Z. Stress-induced deeper rooting introgression enhances wheat yield under terminal drought. Journal of Experimental Botany, 2023: erad059.
|
[36] |
GABAY G, WANG H C, ZHANG J L, MORICONI J I, BURGUENER G F, GUALANO L D, HOWELL T, LUKASZEWSKI A, STASKAWICZ B, CHO M J, TANAKA J, FAHIMA T, KE H Y, DEHESH K, ZHANG G L, GOU J Y, HAMBERG M, SANTA-MARÍA G E, DUBCOVSKY J. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature Communications, 2023, 14(1): 539.
doi: 10.1038/s41467-023-36248-y
|
[37] |
LIU G Z, LI X L, JIN S X, LIU X Y, ZHU L F, NIE Y C, ZHANG X L. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 2014, 9(1): e86895.
|
[38] |
JEONG J S, KIM Y S, REDILLAS M C, JANG G, JUNG H, BANG S W, CHOI Y D, HA S H, REUZEAU C, KIM J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Journal of Plant Biotechnology, 2013, 11(1): 101-114.
|
[39] |
XUE G P, BOWER N I, MCINTYRE C L, RIDING G A, KAZAN K, SHORTER R. TaNAC69from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Functional Plant Biology, 2006, 33(1): 43-57.
doi: 10.1071/FP05161
|
[40] |
WANG Y, MA N N, QIU S C. ZOU H Y, ZANG G C, KANG Z H, WANG G X, HUANG J L. Regulation of the α-expansin gene OsEXPA8 expression affects root system architecture in transgenic rice plants. Molecular Breeding, 2014, 34(1): 47-57.
doi: 10.1007/s11032-014-0016-4
|
[41] |
YANG J J, ZHANG G Q, AN J, LI Q X, CHEN Y H, ZHAO X Y, WU J J, WANG Y, HAO Q Q, WANG W Q, WANG W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Science, 2020, 298: 110596.
doi: 10.1016/j.plantsci.2020.110596
|
[42] |
OROSA-PUENTE B, LEFTLEY N, VON WANGENHEIM D, BANDA J, SRIVASTAVA A K, HILL K, TRUSKINA J, BHOSALE R, MORRIS E, SRIVASTAVA M, KÜMPERS B, GOH T, FUKAKI H, VERMEER J E M, VERNOUX T, DINNENY J R, FRENCH A P, BISHOPP A, SADANANDOM A, BENNETT M J. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362(6421): 1407-1410.
doi: 10.1126/science.aau3956
|
[43] |
ZHAN A, SCHNEIDER H, LYNCH J P. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 2015, 168(4): 1603-1615.
doi: 10.1104/pp.15.00187
pmid: 26077764
|
[44] |
WANG H F, HU Z R, HUANG K, HAN Y, ZHAO A J, HAN H M, SONG L, FAN C F, LI R, XIN M M, PENG H R, YAO Y Y, SUN Q X, NI Z F. Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. The Plant Journal, 2018, 95(6): 976-987.
doi: 10.1111/tpj.14005
pmid: 29932270
|
[45] |
PLACIDO D F, SANDHU J, SATO S J, NERSESIAN N, QUACH T, CLEMENTE T E, STASWICK P E, WALIA H. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 2020, 18(9): 1955-1968.
doi: 10.1111/pbi.13355
pmid: 32031318
|
[46] |
MARIN M, FEENEY D S, BROWN L K, NAVEED M, RUIZ S, KOEBERNICK N, BENGOUGH A G, HALLETT P D, ROOSE T, PUÉRTOLAS J, DODD I C, GEORGE T S. Significance of root hairs for plant performance under contrasting field conditions and water deficit. Annals of Botany, 2021, 128(1): 1-16.
doi: 10.1093/aob/mcaa181
pmid: 33038211
|
[47] |
DOLAN L. Root hair development in grasses and cereals (Poaceae). Current Opinion in Genetics and Development, 2017, 45: 76-81.
doi: 10.1016/j.gde.2017.03.009
|
[48] |
HOCHHOLDINGER F, YU P, MARCON C. Genetic control of root system development in maize. Trends in Plant Science, 2018, 23(1): 79-88.
doi: S1360-1385(17)30239-X
pmid: 29170008
|
[49] |
HAN Y, XIN M M, HUANG K, XU Y Y, LIU Z S, HU Z R, YAO Y Y, PENG H R, NI Z F, SUN Q X. Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. The New Phytologist, 2016, 209(2): 721-732.
doi: 10.1111/nph.2016.209.issue-2
|
[50] |
ZHANG X M, MI Y, MAO H D, LIU S X, CHEN L M, QIN F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 2020, 18(5): 1271-1283.
doi: 10.1111/pbi.v18.5
|
[51] |
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.
doi: 10.1093/aob/mcz041
pmid: 31329816
|
[52] |
LIU X L, LI R Z, CHANG X P, JING R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013, 189(1): 51-66.
doi: 10.1007/s10681-012-0690-4
|
[53] |
WALLER S, WILDER S L, SCHUELLER M J, HOUSH A B, FERRIERI R A. Quantifying plant-borne carbon assimilation by root-associating bacteria. Microorganisms, 2020, 8(5): 700.
doi: 10.3390/microorganisms8050700
|
[54] |
|
|
ZHAO C J, LU S L, GUO X Y, XIAO B X, WEN W L. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. doi: 10.3864/j.issn.0578-1752.2010.10.007. (in Chinese)
|
[55] |
MAJDI H. Root sampling methods - Applications and limitations of the minirhizotron technique. Plant and Soil, 1996, 185(2): 255-258.
doi: 10.1007/BF02257530
|
[56] |
崔喜红, 陈晋, 关琳琳. 探地雷达技术在植物根系探测研究中的应用. 地球科学进展, 2009, 24(6): 606-611.
doi: 10.11867/j.issn.1001-8166.2009.06.0606
|
|
CUI X H, CHEN J, GUAN L L. The application of ground penetrating radar to plant root system detection. Advances in Earth Science, 2009, 24(6): 606-611. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2009.06.0606
|
[57] |
SCHULZ H, POSTMA J A, VAN DUSSCHOTEN D, SCHARR H, BEHNKE S. Plant root system analysis from MRI images. Communications in Computer and Information Science, 2013(359): 411-425.
|
[58] |
STINGACIU L, SCHULZ H, POHLMEIER A, BEHNKE S, ZILKEN H, JAVAUX M, VEREECKEN H. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone Journal, 2013, 12(1): 1-9.
|
[59] |
BEKKERING C S, HUANG J, TIAN L. Image-based, organ-level plant phenotyping for wheat improvement. Agronomy, 2020, 10(9): 1287.
doi: 10.3390/agronomy10091287
|
[60] |
TAKAHASHI H, PRADAL C. Root phenotyping: Important and minimum information required for root modeling in crop plants. Breeding Science, 2021, 71(1): 109-116.
doi: 10.1270/jsbbs.20126
pmid: 33762880
|
[61] |
LOBET G, PAGÈS L, DRAYE X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 2011, 157(1): 29-39.
doi: 10.1104/pp.111.179895
pmid: 21771915
|
[62] |
PANG W, CROW W T, LUC J E, MCSORLEY R, GIBLIN-DAVIS R M, KENWORTHY K E, KRUSE J K. Comparison of water displacement and WINRHIZO software for plant root parameter assessment. Plant Disease, 2011, 95(10): 1308-1310.
doi: 10.1094/PDIS-01-11-0026
pmid: 30731688
|
[63] |
POUND M P, FRENCH A P, ATKINSON J A, WELLS D M, BENNETT M J, PRIDMORE T. RootNav: Navigating images of complex root architectures. Plant Physiology, 2013, 162(4): 1802-1814.
doi: 10.1104/pp.113.221531
pmid: 23766367
|
[64] |
BORIANNE P, SUBSOL G, FALLAVIER F, DARDOU A, AUDEBERT A. GT-RootS: An integrated software for automated root system measurement from high-throughput phenotyping platform images. Computers and Electronics in Agriculture, 2018, 150: 328-342.
doi: 10.1016/j.compag.2018.05.003
|
[65] |
CLARK R T, MACCURDY R B, JUNG J K, SHAFF J E, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. Three- dimensional root phenotyping with a novel imaging and software platform. Plant Physiology, 2011, 156(2): 455-465.
doi: 10.1104/pp.110.169102
|
[66] |
MAIRHOFER S, ZAPPALA S, TRACY S R, STURROCK C, BENNETT M, MOONEY S J, PRIDMORE T. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158(2): 561-569.
doi: 10.1104/pp.111.186221
pmid: 22190339
|
[67] |
VAN DUSSCHOTEN D, METZNER R, KOCHS J, POSTMA J A, PFLUGFELDER D, BÜEHLER J, SCHURR U, JAHNKE S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 2016, 170(3): 1176-1188.
doi: 10.1104/pp.15.01388
pmid: 26729797
|
[68] |
LI C N, LI L, REYNOLDS M P, WANG J Y, CHANG X P, MAO X G, JING R L. Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany, 2021, 72(14): 5117-5133.
doi: 10.1093/jxb/erab124
|
[69] |
STEELE K A, PRICE A H, WITCOMBE J R, SHRESTHA R, SINGH B N, GIBBONS J M, VIRK D S. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theoretical and Applied Genetics, 2013, 126(1): 101-108.
doi: 10.1007/s00122-012-1963-y
pmid: 22968512
|
[70] |
ZHAO H, MA T, WANG X, DENG Y, MA H, ZHANG R, ZHAO J. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant Cell and Environment, 2015, 38(11): 2208-2222.
doi: 10.1111/pce.v38.11
|
[71] |
BENNETT M J, MARCHANT A, GREEN H G, MAY S T, WARD S P, MILLNER P A, WALKER A R, SCHULZ B, FELDMANN K A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science, 1996, 273(5277): 948-950.
doi: 10.1126/science.273.5277.948
|