[1] |
XIAO G H, ZHANG Y Z. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science, 2020, 25(2): 121-123.
doi: S1360-1385(19)30309-7
pmid: 31843370
|
[2] |
刘佳熠. 小麦根系性状相关基因TaEXPA5和TaDGL1的克隆及其优异单倍型发掘[D]. 杨凌: 西北农林科技大学, 2021.
|
|
LIU J Y. Cloning of genes related to root traits of wheat, TaEXPA5 and TaDGL1, and exploration of their excellent haplotypes[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
|
[3] |
MAQBOOL S, HASSAN M A, XIA X C, YORK L M, RASHEED A, HE Z H. Root system architecture in cereals: Progress, challenges and perspective. The Plant Journal, 2022, 110(1): 23-42.
doi: 10.1111/tpj.v110.1
|
[4] |
ZHANG Y Z, HE P, MA X F, YANG Z R, PANG C Y, YU J N, WANG G D, FRIML J, XIAO G H. Auxin-mediated statolith production for root gravitropism. The New Phytologist, 2019, 224(2): 761-774.
doi: 10.1111/nph.v224.2
|
[5] |
霍治军. 不同抗旱类型冬小麦根系特征及其与产量的关系研究. 江西农业学报, 2015, 27(7):22-24.
|
|
HUO Z J. Study on root system characteristic and its relationship with yield of winter wheat varieties with different types of resistance to drought. Acta Agriculturae Jiangxi, 2015, 27(7): 22-24. (in Chinese)
|
[6] |
苗青霞. 干旱胁迫对陕西省旱地冬小麦根系特征、生理特性及产量的影响研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
MIAO Q X. Effects of drought stress on root properties, physiological characteristics, and grain yield of dryland winter wheat of Shaanxi Province[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
|
[7] |
王脉. 小麦苗期根系性状优异位点挖掘及其对植株氮素利用效率的影响[D]. 杨凌: 西北农林科技大学, 2023.
|
|
WANG M. Exploring of excellent sites of wheat root traits at seedling stage and its effect on plant nitrogen use efficiency[D]. Yangling: Northwest A & F University, 2023. (in Chinese)
|
[8] |
陈黄鑫. 小麦根系性状位点的鉴定及其育种潜力评价[D]. 雅安: 四川农业大学, 2023.
|
|
CHEN H X. Identification and breeding potential evaluation of loci for root-related traits in wheat[D]. Yaan: Sichuan Agricultural University, 2023. (in Chinese)
|
[9] |
刘洋, 王克森, 刘秀坤, 王利彬, 王灿国, 郭军, 程敦公, 穆平, 刘建军, 李豪圣, 赵振东, 曹新有, 张玉梅. 小麦幼苗根系相关性状QTL定位与分析. 山东农业科学, 2021, 53(3): 1-9.
|
|
LIU Y, WANG K S, LIU X K, WANG L B, WANG C G, GUO J, CHENG D G, MU P, LIU J J, LI H S, ZHAO Z D, CAO X Y, ZHANG Y M. QTL mapping and analysis of root related traits in wheat seedlings. Shandong Agricultural Sciences, 2021, 53(3): 1-9. (in Chinese)
|
[10] |
|
|
ZHANG Y Z, WANG Y Z, GAO R X, LIU Y F. Research progress on root system architecture and drought resistance in wheat. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645. doi: 10.3864/j.issn.0578-1752.2024.09.002. (in Chinese)
|
[11] |
胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016, 36(2): 182-189.
|
|
HU W M, WANG S Y, FAN G Q, LIU Y J, ZHENG W, WANG Q S, MA H L. Analysis on the drought resistance and screening of drought resistance appraisal indexes of wheat cultivars in seedling stage in southwest area. Journal of Triticeae Crops, 2016, 36(2): 182-189. (in Chinese)
|
[12] |
REBETZKE G J, RICHARDS R A, FETTELL N A, LONG M, CONDON A G, FORRESTER R I, BOTWRIGHT T L. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research, 2007, 100(1): 10-23.
doi: 10.1016/j.fcr.2006.05.001
|
[13] |
宁东贤, 王小璐, 赵玉坤, 杨秀丽, 马岗, 杨丽萍, 李楠. 旱地小麦不同播深条件下胚芽鞘长度与产量的关联性. 山西农业科学, 2018, 46(2): 203-206.
|
|
NING D X, WANG X L, ZHAO Y K, YANG X L, MA G, YANG L P, LI N. Study on the correlation between the coleoptile length and yield under different sowing depth conditions in dryland wheat. Journal of Shanxi Agricultural Sciences, 2018, 46(2): 203-206. (in Chinese)
|
[14] |
MOHAN A, SCHILLINGER W F, GILL K S. Wheat seedling emergence from deep planting depths and its relationship with coleoptile length. PLoS ONE, 2013, 8(9): e73314.
|
[15] |
杨倩, 袁飞敏, 王海庆, 陈志国, 刘德梅. 西北旱地农家小麦品种抗旱生理机制探究. 分子植物育种, 2018, 16(18): 6105-6111.
|
|
YANG Q, YUAN F M, WANG H Q, CHEN Z G, LIU D M. Preliminary study on physiological mechanism of drought resistance of wheat varieties in northwest dryland. Molecular Plant Breeding, 2018, 16(18): 6105-6111. (in Chinese)
|
[16] |
周全, 路秋梅, 赵张晨, 武宸冉, 符笑歌, 赵玉娇, 韩勇, 蔺怀龙, 陈微林, 牟丽明, 李兴茂, 王长海, 胡银岗, 陈亮. 244份春小麦苗期抗旱性的鉴定. 中国农业科学, 2024, 57(9): 1646-1657. doi: 10.3864/j.issn.0578-1752.2024.09.003.
|
|
ZHOU Q, LU Q M, ZHAO Z C, WU C R, FU X G, ZHAO Y J, HAN Y, LIN H L, CHEN W L, MOU L M, LI X M, WANG C H, HU Y G, CHEN L. Identification of drought resistance of 244 spring wheat varieties at seedling stage. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657. doi: 10.3864/j.issn.0578-1752.2024.09.003. (in Chinese)
|
[17] |
MAO H D, LI S M, CHEN B, JIAN C, MEI F M, ZHANG Y F, LI F F, CHEN N, LI T, DU L Y, DING L, WANG Z X, CHENG X X, WANG X J, KANG Z S. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, 2022, 15(2): 276-292.
doi: 10.1016/j.molp.2021.11.007
|
[18] |
MAO H D, LI S M, WANG Z X, CHENG X X, LI F F, MEI F M, CHEN N, KANG Z S. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. Plant Biotechnology Journal, 2020, 18(4): 1078-1092.
doi: 10.1111/pbi.13277
pmid: 31617659
|
[19] |
MEI F M, CHEN B, DU L Y, LI S M, ZHU D H, CHEN N, ZHANG Y F, LI F F, WANG Z X, CHENG X X, DING L, KANG Z S, MAO H D. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. The Plant Cell, 2022, 34(11): 4472-4494.
doi: 10.1093/plcell/koac248
pmid: 35959993
|
[20] |
|
|
ZHANG Y, SHI T R, CAO R, PAN W Q, SONG W N, WANG L, NIE X J. Genome-wide association study of drought tolerance at seedling stage in ICARDA-introduced wheat. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673. doi: 10.3864/j.issn.0578-1752.2024.09.004. (in Chinese)
|
[21] |
QIN W L, WANG J, MA L F, WANG F L, HU N Y, YANG X Y, XIAO Y Y, ZHANG Y H, SUN Z C, WANG Z M, YU K. UAV-based multi-temporal thermal imaging to evaluate wheat drought resistance in different deficit irrigation regimes. Remote Sensing, 2022, 14(21): 5608.
doi: 10.3390/rs14215608
|
[22] |
孟雨, 温鹏飞, 丁志强, 田文仲, 张学品, 贺利, 段剑钊, 刘万代, 冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价. 中国农业科学, 2022, 55(13): 2538-2551. doi: 10.3864/j.issn.0578-1752.2022.13.005.
|
|
MENG Y, WEN P F, DING Z Q G, TIAN W Z, ZHANG X P, HE L, DUAN J Z, LIU W D, FENG W. Identification and evaluation of drought resistance of wheat varieties based on thermal infrared image. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551. doi: 10.3864/j.issn.0578-1752.2022.13.005. (in Chinese)
|
[23] |
DAS S, CHRISTOPHER J, ROY CHOUDHURY M, APAN A, CHAPMAN S, MENZIES N W, DANG Y P. Evaluation of drought tolerance of wheat genotypes in rain-fed sodic soil environments using high-resolution UAV remote sensing techniques. Biosystems Engineering, 2022, 217: 68-82.
doi: 10.1016/j.biosystemseng.2022.03.004
|
[24] |
燕雯, 金秀良, 李龙, 徐子涵, 苏悦, 张跃强, 景蕊莲, 毛新国, 孙黛珍. 基于无人机多源影像数据的灌浆期人工合成小麦抗旱性评价. 中国农业科学, 2024, 57(9): 1674-1686. doi: 10.3864/j.issn.0578-1752.2024.09.005.
|
|
YAN W, JIN X L, LI L, XU Z H, SU Y, ZHANG Y Q, JING R L, MAO X G, SUN D Z. Drought resistance evaluation of synthetic wheat at grain filling using UAV-based multi-source imagery data. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686. doi: 10.3864/j.issn.0578-1752.2024.09.005. (in Chinese)
|