中国农业科学 ›› 2022, Vol. 55 ›› Issue (15): 2899-2910.doi: 10.3864/j.issn.0578-1752.2022.15.003
张晨曦1(),田明慧1,杨硕1,杜嘉琪1,何堂庆1,仇云鹏2,张学林1(
)
收稿日期:
2021-10-25
接受日期:
2022-03-29
出版日期:
2022-08-01
发布日期:
2022-08-02
联系方式:
张晨曦,E-mail: zcx960321@163.com。
基金资助:
ZHANG ChenXi1(),TIAN MingHui1,YANG Shuo1,DU JiaQi1,HE TangQing1,QIU YunPeng2,ZHANG XueLin1(
)
Received:
2021-10-25
Accepted:
2022-03-29
Published:
2022-08-01
Online:
2022-08-02
摘要:
【目的】明确酸性土壤中丛枝菌根真菌(arbuscular mycorrhizae fungi,AMF)菌剂多样性在玉米籽粒产量和磷、钾养分吸收方面的作用,能够为农田微生物肥料配施、养分利用率提高等方面提供理论依据。【方法】2019和2020年玉米生育期,选用4种不同种丛枝菌根真菌类型(摩西斗管囊霉Funneliformis mosseae,A;扭形球囊霉Glomus tortuosum,B;地表球囊霉Glomus versiforme,C;地斗管囊霉Funneliformis geosporum,D),设置不接菌处理(CK),接种单一AMF菌剂、2种AMF混合菌剂、3种AMF混合菌剂和4种AMF混合菌剂共16个处理,研究玉米籽粒产量、植株各器官生物量及其磷、钾累积量对不同菌剂类型以及菌剂多样性的响应。【结果】与对照相比,两个试验年度所有接菌处理均能增加玉米籽粒产量及其磷、钾累积量,其中接种A、B、C、D 4种单一菌剂处理的玉米籽粒产量均值分别增加57.9%,26.9%,40.5%和32.9%;磷累积量增加77.8%,48.2%,26.2%和75.8%;钾累积量增加85.5%,62.1%,59.0%和63.5%。随AMF菌剂多样性增加,两个试验年度玉米籽粒产量呈增加趋势,表现为4种混合菌剂>3种混合菌剂>2种混合菌剂>单一菌剂,其中4种混合菌剂处理籽粒产量比单一菌剂处理均值高12.3%;籽粒磷累积量表现为2种混合菌剂>4种混合菌剂>3种混合菌剂>单一菌剂,其中2种混合菌剂处理籽粒磷累积量比单一菌剂高23.2%;但AMF菌剂多样性处理之间玉米籽粒钾累积量差异不显著。【结论】在酸性土壤条件下玉米接种不同类型丛枝菌根真菌均能显著增加籽粒产量及其磷、钾累积量,其中Funneliformis mosseae改善玉米籽粒产量及其磷钾累积量的作用最佳。丛枝菌根真菌菌剂多样性增加能显著提高玉米籽粒产量和磷累积量,其中4种混合菌剂处理的增产效果较好,而2种混合菌剂处理的养分吸收积累量较高。生产上应根据高产优质不同目的,选择接种合适的丛枝菌根真菌类型并进行菌剂之间合理的搭配。
张晨曦, 田明慧, 杨硕, 杜嘉琪, 何堂庆, 仇云鹏, 张学林. 酸性土壤中丛枝菌根真菌菌剂多样性对玉米产量及其磷钾吸收的影响[J]. 中国农业科学, 2022, 55(15): 2899-2910.
ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil[J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
表1
不同处理菌剂多样性的组成"
丛枝菌根真菌菌剂多样性 AMF inoculant diversities | 处理 Treatment | 种类 Species |
---|---|---|
0 | CK | – |
1 | A | Funneliformis mosseae |
B | Glomus tortuosum | |
C | Glomus versiforme | |
D | Funneliformis geosporum | |
2 | A+B | Funneliformis mosseae, Glomus tortuosum |
A+C | Funneliformis mosseae, Glomus versiforme | |
A+D | Funneliformis mosseae, Funneliformis geosporum | |
B+C | Glomus tortuosum, Glomus versiforme | |
B+D | Glomus tortuosum, Funneliformis geosporum | |
C+D | Glomus versiforme, Funneliformis geosporum | |
3 | A+B+C | Funneliformis mosseae, Glomus tortuosum, Glomus versiforme |
A+B+D | Funneliformis mosseae, Glomus tortuosum, Funneliformis geosporum | |
A+C+D | Funneliformis mosseae, Glomus versiforme, Funneliformis geosporum | |
B+C+D | Glomus tortuosum, Glomus versiforme, Funneliformis geosporum | |
4 | A+B+C+D | Funneliformis mosseae, Glomus tortuosum, Glomus versiforme, Funneliformis geosporum |
表2
2019和2020年不同AMF处理对玉米籽粒、茎、叶、其他和根生物量的影响"
处理 Treatment | 籽粒 Grain (g/plant) | 茎 Stem (g/plant) | 叶 Leaf (g/plant) | 其他 Other parts (g/plant) | 根 Root (g/plant) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
CK | 57.9±1.5k | 74.0±0.2b | 65.1±0.2b | 74.5±1.3d | 35.5±0.4c | 45.9±0.2e | 23.9±1.2b | 27.7±3.0b | 24.9±0.3a | 30.5±0.9b |
A | 110.5±1.8a | 97.8±1.6a | 70.3±0.1ab | 79.1±0.4cd | 40.7±0.6abc | 56.0±0.2a | 24.6±0.2ab | 33.7±2.8ab | 25.7±1.0a | 40.6±0.8a |
B | 81.6±3.4ij | 93.6±2.1ab | 69.1±2.4ab | 80.5±2.5bcd | 37.3±2.7bc | 51.8±0.5bcd | 25.8±0.5ab | 31.7±1.3ab | 25.3±0.9a | 40.4±0.1a |
C | 82.9±1.0ij | 84.4±7.3ab | 73.2±4.3ab | 87.5±4.7abc | 42.8±1.4ab | 52.4±0.6bc | 27.7±0.6ab | 32.9±2.2ab | 25.5±0.9a | 38.6±1.9a |
D | 96.0±1.7cdef | 89.4±8.3ab | 71.4±1.8ab | 83.7±4.9bcd | 42.1±1.0ab | 48.8±0.4de | 24.8±1.0ab | 32.4±1.2ab | 25.1±1.4a | 38.1±2.7a |
A+B | 101.8±0.1bcd | 86.8±7.8ab | 73.4±1.8ab | 91.0±1.6ab | 41.6±0.5ab | 51.5±1.6bcd | 27.5±0.5ab | 32.3±2.1ab | 26.1±0.8a | 37.8±3.8a |
A+C | 87.7±2.3fghi | 95.7±5.3ab | 66.5±1.7ab | 81.8±2.7bcd | 41.9±0.9ab | 51.4±1.0bcd | 28.0±1.3ab | 29.2±1.8ab | 25.6±0.4a | 42.4±1.9a |
A+D | 106.6±0.9ab | 92.7±1.8ab | 70.4±2.2ab | 88.1±3.3abc | 44.5±4.1a | 52.1±1.4bcd | 29.2±1.3a | 32.1±2.3ab | 25.3±0.9a | 41.4±3.8a |
B+C | 85.3±1.4ghij | 91.3±3.0ab | 75.3±1.1ab | 83.0±3.7bcd | 41.4±1.3abc | 49.5±0.9cd | 29.0±0.8ab | 34.2±2.2ab | 26.1±0.4a | 40.6±2.1a |
B+D | 78.6±4.7j | 102.4±9.6a | 76.5±8.2a | 87.8±3.4abc | 40.2±1.1abc | 53.6±1.5ab | 26.2±1.8ab | 35.6±2.7a | 26.3±0.6a | 39.8±3.3a |
C+D | 85.6±5.8ghij | 98.0±7.4a | 71.5±2.8ab | 89.1±5.2abc | 38.7±1.2abc | 52.5±0.6bc | 25.4±2.2ab | 33.5±2.2ab | 25.2±0.8a | 45.5±1.6a |
A+B+C | 98.3±2.2bcde | 91.0±1.9ab | 72.4±3.0ab | 94.5±2.5a | 41.0±1.6abc | 52.9±1.2abc | 26.6±3.1ab | 31.4±1.3ab | 25.4±0.2a | 41.3±2.3a |
A+B+D | 93.5±2.6defg | 99.4±9.4a | 72.0±0.8ab | 85.2±1.1abc | 42.8±0.9ab | 51.7±1.1bcd | 27.2±1.5ab | 31.7±3.1ab | 27.1±1.1a | 43.1±0.9a |
A+C+D | 92.0±1.5efgh | 92.6±11.2ab | 69.3±3.3ab | 87.2±3.3abc | 40.2±2.7abc | 51.2±1.8bcd | 27.3±1.6ab | 29.6±2.0ab | 24.7±0.2a | 40.5±3.1a |
B+C+D | 83.9±2.8hij | 96.6±9.0a | 68.8±3.3ab | 88.0±3.0abc | 42.1±2.1ab | 51.6±1.5bcd | 26.6±2.2ab | 30.4±1.2ab | 25.6±1.2a | 40.9±2.7a |
A+B+C+D | 103.0±3.7abc | 103.7±2.3a | 70.6±1.6ab | 86.5±0.5abc | 40.9±0.5abc | 49.8±0.7cd | 28.5±1.0ab | 29.6±2.5ab | 24.9±0.6a | 40.7±1.3a |
表3
2019和2020年不同AMF处理对玉米籽粒、茎、叶、其他和根磷累积量的影响"
处理 Treatment | 籽粒 Grain (mg/plant) | 茎 Stem (mg/plant) | 叶 Leaf (mg/plant) | 其他 Other parts (mg/plant) | 根 Root (mg/plant) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
CK | 251.2±5.7i | 312.6±2.8c | 124.3±2.0b | 178.8±1.6ghi | 83.0±1.4e | 131.7±1.6h | 74.7±5.2d | 101.5±12.6b | 52.2±1.4e | 79.3±3.2f |
A | 506.1±7.2cd | 496.2±7.0ab | 162.2±13.1a | 212.2±4.1defg | 113.4±4.4d | 215.4±7.0ab | 76.9±1.3cd | 123.7±7.9ab | 54.5±2.8e | 104.9±3.2e |
B | 493.2±20.6cdef | 497.8±10.1ab | 164.4±11.1a | 155.0±8.0i | 148.1±10.2ab | 201.5±5.0bcde | 92.0±3.9abcd | 119.7±5.6ab | 68.7±4.3d | 120.0±3.4de |
C | 410.4±3.9gh | 425.5±46.5bc | 150.1±7.1ab | 215.5±9.3def | 117.9±2.5cd | 164.2±5.3g | 94.0±1.6abcd | 120.9±7.3ab | 77.0±4.0cd | 125.9±2.8cde |
D | 370.1±10.3h | 341.6±30.2c | 171.6±6.3a | 167.1±15.3hi | 142.4±2.5abc | 184.4±2.9defg | 92.9±6.5abcd | 128.6±5.1ab | 73.3±4.7cd | 124.4±8.7de |
A+B | 637.2±8.9a | 561.4±45.7ab | 166.7±3.5a | 243.8±10.2abcd | 136.7±3.5abc | 189.4±9.1def | 98.3±7.2abc | 117.9±7.3ab | 79.3±5.0bcd | 133.1±13.2abcde |
A+C | 500.1±17.2cde | 564.3±55.9ab | 145.5±4.9ab | 198.3±11.3efgh | 140.3±3.0abcd | 192.4±3.6cdef | 99.6±4.1ab | 112.2±6.8ab | 76.3±5.3cd | 130.3±8.4bcde |
A+D | 589.3±4.0ab | 525.3±6.0ab | 178.2±5.3a | 188.8±2.3fghi | 166.8±21.5a | 203.5±7.6bcd | 109.4±2.6a | 128.6±11.3ab | 68.6±1.1d | 123.7±15.1de |
B+C | 517.8±6.8cd | 571.1±23.6ab | 159.1±4.4a | 199.4±10.4efgh | 126.4±3.3abc | 187.4±7.7def | 108.7±3.3a | 134.8±7.4a | 69.7±1.1d | 119.3±6.1de |
B+D | 458.0±2.9defg | 619.3±92.6a | 172.6±25.2a | 233.2±19.2bcde | 134.9±2.7abc | 212.3±11.1abc | 92.2±6.5abcd | 134.8±11.2a | 70.1±1.4d | 110.3±8.1e |
C+D | 422.6±39.1fgh | 576.8±56.3ab | 176.5±10.0a | 265.0±16.7ab | 133.7±11.0abc | 180.3±4.1efg | 94.2±9.6abcd | 132.2±12.0ab | 76.0±2.7cd | 120.2±2.3de |
A+B+C | 512.8±27.6cd | 483.7±33.3ab | 176.2±9.2a | 242.4±9.2abcd | 126.3±4.0abc | 202.6±2.2bcd | 106.5±13.9a | 133.3±7.5a | 97.4±4.8a | 160.8±12.4a |
A+B+D | 490.1±50.5cdef | 496.2±67.0ab | 163.7±2.6a | 217.3±1.7cdef | 140.9±17.7abcd | 189.5±4.1def | 106.4±4.4a | 131.9±12.0ab | 72.2±3.1cd | 157.5±5.9ab |
A+C+D | 605.6±17.7a | 621.4±65.2a | 175.4±12.9a | 271.7±15.7a | 121.3±2.3abc | 184.3±10.9defg | 107.8±7.0a | 120.5±8.7ab | 80.6±1.5bcd | 141.9±10.7abcd |
B+C+D | 431.0±18.7efgh | 503.8±49.3ab | 167.5±5.5a | 253.1±10.8abc | 128.6±6.1abc | 228.4±7.3a | 84.0±9.8bcd | 112.9±8.9ab | 89.7±6.6ab | 153.7±14.3abc |
A+B+C+D | 532.5±36.3bc | 546.0±39.2ab | 160.5±8.8a | 231.5±11.1bcde | 126.7±2.8abc | 173.7±1.7fg | 101.4±5.0ab | 114.5±11.2ab | 84.7±4.2bc | 152.8±4.0abc |
表4
2019和2020年不同AMF处理对玉米籽粒、茎、叶、其他和根钾累积量的影响"
处理 Treatment | 籽粒 Grain (mg/plant) | 茎 Stem (mg/plant) | 叶 Leaf (mg/plant) | 其他 Other parts (mg/plant) | 根 Root (mg/plant ) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
CK | 183.8±8.8f | 248.1±16.7d | 218.0±15.1g | 274.7±12.8f | 144.3±3.8c | 222.5±10.2e | 80.0±4.3c | 100.8±13.6d | 68.0±4.2c | 87.1±4.3e |
A | 429.7±14.9a | 371.5±16.1abc | 273.5±17.0defg | 361.1±12.5e | 190.8±8.7ab | 330.9±0.7a | 82.5±1.9c | 131.3±7.4abcd | 74.6±5.0bc | 124.5±2.9cd |
B | 316.8±8.6cde | 389.3±15.1abc | 339.2±28.6abcd | 424.7±23.5bcde | 200.1±15.4ab | 280.2±9.5cd | 96.7±4.0bc | 124.1±7.3abcd | 94.7±7.1ab | 148.9±4.4abcd |
C | 307.2±16.1de | 393.0±41.0abc | 391.4±22.2a | 472.0±48.7abcd | 198.6±9.5ab | 275.1±7.4cd | 119.2±2.6ab | 151.2±7.9a | 85.6±9.7abc | 115.4±10.0de |
D | 347.1±4.3bcd | 339.6±31.7c | 289.4±19.0cdef | 420.1±8.3bcde | 200.0±17.8ab | 278.0±6.3cd | 94.6±9.4bc | 128.8±5.8abcd | 89.5±9.9abc | 148.7±7.3abcd |
A+B | 368.7±9.1b | 371.0±39.4abc | 331.6±18.6abcde | 471.8±16.5abcd | 217.1±2.4a | 303.4±9.3abc | 118.4±1.9ab | 149.2±13.6ab | 87.4±6.7abc | 131.4±19.8bcd |
A+C | 308.9±5.4de | 341.5±21.4c | 338.1±3.1abcde | 482.4±32.2abc | 210.5±5.1ab | 290.6±11.8bcd | 125.9±5.2a | 141.4±8.8abc | 83.2±3.6abc | 141.1±1.5abcd |
A+D | 357.6±12.2bc | 352.1±16.3abc | 271.3±9.6efg | 409.5±20.1cde | 206.8±25.1ab | 280.4±12.7cd | 113.5±4.5ab | 139.1±12.9abc | 85.0±6.6abc | 148.4±11.6abcd |
B+C | 347.2±18.6bcd | 443.3±31.8a | 331.9±22.7abcde | 385.0±9.5e | 212.2±9.3ab | 286.0±10.5bcd | 113.1±10.2ab | 129.9±8.4abcd | 97.4±1.8a | 158.6±5.1abc |
B+D | 284.7±17.9e | 435.0±34.6ab | 350.8±32.6abc | 465.5±11.9abcd | 198.8±5.2ab | 294.3±9.9bc | 100.9±11.2abc | 135.3±10.2abcd | 98.3±8.6a | 154.0±7.6abc |
C+D | 277.9±9.7e | 369.3±10.2abc | 369.4±12.4ab | 535.4±35.7a | 173.7±9.0bc | 275.0±16.0cd | 95.8±11.7bc | 131.7±14.7abcd | 89.3±3.8abc | 168.2±16.8a |
A+B+C | 372.1±22.1b | 441.0±12.1a | 313.6±19.1bcde | 485.7±12.9ab | 218.2±11.0a | 317.0±2.9ab | 95.3±16.2bc | 122.3±6.2abcd | 92.7±3.7ab | 157.5±16.1abc |
A+B+D | 362.3±12.9bc | 343.0±32.4c | 311.5±8.1bcde | 408.2±24.4de | 190.1±3.7ab | 256.6±11.2d | 103.4±3.4abc | 125.9±4.4abcd | 93.4±9.8ab | 159.7±9.3abc |
A+C+D | 308.1±3.1de | 361.9±41.9abc | 274.7±38.3defg | 382.6±16.1e | 180.1±15.3abc | 278.2±15.4cd | 101.4±3.4abc | 115.8±8.8bcd | 87.9±7.2abc | 159.1±15.8abc |
B+C+D | 289.7±24.2e | 354.1±26.6abc | 234.2±10.6fg | 404.7±14.9de | 212.1±19.0ab | 277.1±5.0cd | 93.5±4.1bc | 112.0±6.8cd | 93.4±3.9ab | 151.4±9.2abc |
A+B+C+D | 373.4±22.1b | 345.5±6.3bc | 325.1±2.6bcde | 458.7±9.8bcd | 217.8±2.9a | 299.3±10.2abc | 114.2±8.5ab | 127.1±16.8abcd | 98.5±2.2a | 163.7±4.8ab |
[1] | CHANG S H, SHU H Y, TONG Y P, QIN G Y, LI B, LI Z S. Isolation, function and expression analysis of two wheat phosphate transporter genes. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(10): 1779-1785. |
[2] | GARCIA K, ZIMMERMANN S D. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 2014, 5: 337. |
[3] |
WANG Y, WU W H. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013, 64: 451-476.
doi: 10.1146/annurev-arplant-050312-120153 |
[4] |
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(19): 1008-1010.
doi: 10.1126/science.1182570 |
[5] |
HUANG P, ZHANG J B, ZHU A N, ZHANG C Z. Acid and alkali buffer capacity of typical fluvor-aquic soil in Huang-Huai-Hai Plain. Agricultural Science in China, 2009, 8(11): 1378-1383.
doi: 10.1016/S1671-2927(08)60350-8 |
[6] | 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018, 51(17): 3315-3324. |
WANG Q F, JIANG X, MA M C, GUAN D W, ZHAO B S, WEI D, CAO F M, LI L, LI J. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of northeast China. Scientia Agricultura Sinica, 2018, 51(17): 3315-3324. (in Chinese) | |
[7] |
YAN Z N, MA T, GUO S X, LIU R J, LI M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 2021, 280: 109933.
doi: 10.1016/j.scienta.2021.109933 |
[8] |
HU J L, LIN X G, WANG J H, DAI J, CUI X C, CHEN R R, ZHANG J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry, 2009, 41(12): 2460-2465.
doi: 10.1016/j.soilbio.2009.09.002 |
[9] |
张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47(8): 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050 |
ZHANG X L, LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, ZHOU Y N, HAO X F, YANG Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agronomica Sinica, 2021, 47(8): 1603-1615. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03050 |
|
[10] |
COUTINHO E S, BEIROZ W, BARBOSA M, XAVIER J H D, FERNANDES G W. Arbuscular mycorrhizal fungi in the rhizosphere of saplings used in the restoration of the rupestrian grassland. Ecological Restoration, 2019, 37(3): 152-162.
doi: 10.3368/er.37.3.152 |
[11] |
DOROSTKAR V, AFYUNI M, KHOSHGOFTARMANESH A H, MOSADDEGHI M R, REJALI F. Subcritical soil hydrophobicity in the presence of native and exotic arbuscular mycorrhizal species at different soil salinity levels. Archives of Agronomy and Soil Science, 2016, 62(3): 429-443.
doi: 10.1080/03650340.2015.1051471 |
[12] |
ZHANG L, XU M G, LIU Y, ZHANG F S, HODGE A, FENG G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist, 2016, 210(3): 1022-1032.
doi: 10.1111/nph.13838 |
[13] |
KALDORF M, KUHN A J, SCHRÖDER W H, HILDEBRANDT U, BOTHE H. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 1999, 154(5): 718-728.
doi: 10.1016/S0176-1617(99)80250-8 |
[14] |
ESTRADA B, AROCA R, MAATHUIS F J M, BAREA J M, RUIZ-LOZANO J M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell and Environment, 2013, 36(10): 1771-1782.
doi: 10.1111/pce.12082 |
[15] |
WANG X X, HOFFLAND E, FENG G, KUYPER T W. Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures. Journal of Applied Ecology, 2020, 57(11): 2203-2211.
doi: 10.1111/1365-2664.13739 |
[16] |
LIU S J, XU J, HUANG H, ZHU J N, TANG J J, CHEN X. Changes in the mycorrhizal fungal community in host roots over five host generations under low and high phosphorus conditions. Plant and Soil, 2020, 456(1/2): 27-41.
doi: 10.1007/s11104-020-04694-y |
[17] |
DOBO B, ASEFA F, ASFAW Z. Diversity and abundance of arbuscular mycorrhizal fungi under different plant and soil properties in Sidama, southern Ethiopia. Agroforestry Systems, 2018, 92(1): 91-101.
doi: 10.1007/s10457-016-0017-x |
[18] | AKAY A, YORGANCILAR M, ATALAY E. Effects of different types of mycorrhiza on the development and the elemental content of lupin (lupinus albus L.). Journal of Elementology, 2016, 21(2): 327-335. |
[19] |
ZHU X Q, WANG C Y, CHEN H, TANG M. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica, 2014, 52(2): 247-252.
doi: 10.1007/s11099-014-0031-z |
[20] |
SMITH F A, JAKOBSEN I, SMITH S E. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist, 2000, 147(2): 357-366.
doi: 10.1046/j.1469-8137.2000.00695.x |
[21] |
JOHNSON D, VANDENKOORNHUYSE P J, LEAKE J R, GILBERT L, BOOTH R E, GRIME J P, YOUNG P W, READ D J. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161(2): 503-515.
doi: 10.1046/j.1469-8137.2003.00938.x |
[22] |
JANSA J, SMITH F A, SMITH S E. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 2008, 177(3): 779-789.
doi: 10.1111/j.1469-8137.2007.02294.x |
[23] |
CHEN S C, ZHAO H J, ZOU C C, LI Y S, CHEN Y F, WANG Z H, JIANG Y, LIU A R, ZHAO P Y, WANG M M, AHAMMED G J. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 2017, 8: 2516.
doi: 10.3389/fmicb.2017.02516 |
[24] |
EDATHIL T T, MANIAN S, UDAIYAN K. Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agriculture, Ecosystems and Environment, 1996, 59(1/2): 63-68.
doi: 10.1016/0167-8809(96)01040-7 |
[25] |
DAFT M J, HOGARTH B G. Competitive interactions amongst four species of Glomus on maize and onion. Transactions of the British Mycological Society, 1983, 80(2): 339-345.
doi: 10.1016/S0007-1536(83)80019-9 |
[26] |
KÖHL L, VAN DER HEIJDEN M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biology and Biochemistry, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019 |
[27] | XU H W, LU Y, TONG S Y. Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emirates Journal of Food and Agriculture, 2018, 30(3): 199-204. |
[28] |
COSME M, WURST S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology and Biochemistry, 2013, 57: 436-443.
doi: 10.1016/j.soilbio.2012.09.024 |
[29] |
WANG G Z, YE C C, ZHANG J L, KOZIOL L, BEVER J D, LI X L. Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. Journal of Plant Interactions, 2019, 14(1): 10-20.
doi: 10.1080/17429145.2018.1550218 |
[30] |
SAWERS R J H, SVANE S F, QUAN C, GRØNLUND M, WOZNIAK B, GEBRESELASSIE M N, GONZÁLEZ-MUÑOZ E, CHÁVEZ MONTES R A, BAXTER I, GOUDET J, JAKOBSEN I, PASZKOWSKI U. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214(2): 632-643.
doi: 10.1111/nph.14403 |
[31] |
KUMAR A, SURI V K, CHOUDHARY A K, YADAV A, KAPOOR R, SANDAL S, DASS A. Growth behavior, nutrient harvest index, and soil fertility in okra-pea cropping system as influenced by AM fungi, applied phosphorus, and irrigation regimes in Himalayan acidic alfisol. Communications in Soil Science and Plant Analysis, 2015, 46(17): 2212-2233.
doi: 10.1080/00103624.2015.1069323 |
[32] |
LIU M H, SUN J, LI Y, XIAO Y. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere, 2017, 167: 204-211.
doi: 10.1016/j.chemosphere.2016.09.145 |
[33] |
HART M M, READER R J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 2002, 153(2): 335-344.
doi: 10.1046/j.0028-646X.2001.00312.x |
[34] |
NEWSHAM K K, FITTER A H, WATKINSON A R. Multi- functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 1995, 10(10): 407-411.
doi: 10.1016/S0169-5347(00)89157-0 |
[35] | XU H W, LU Y, ZHU X C. Effects of arbuscular mycorrhiza on osmotic adjustment and photosynthetic physiology of maize seedlings in black soils region of northeast China. Brazilian Archives of Biology and Technology, 2016, 59: e16160392. |
[36] |
CHAN W F, LI H, WU F Y, WU S C, WONG M H. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 2013, 262: 1116-1122.
doi: 10.1016/j.jhazmat.2012.08.020 |
[37] |
PARVIN S, VAN GEEL M, YEASMIN T, VERBRUGGEN E, HONNAY O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 2020, 30(4): 431-444.
doi: 10.1007/s00572-020-00957-9 |
[38] |
ORTAS I, SARI N, AKPINAR C, YETISIR H. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae, 2011, 128(2): 92-98.
doi: 10.1016/j.scienta.2010.12.014 |
[39] |
BEVER J D. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244(1/2): 281-290.
doi: 10.1023/A:1020221609080 |
[40] |
PEARSON J N, JAKOBSEN I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytologist, 1993, 124: 489-494.
doi: 10.1111/j.1469-8137.1993.tb03840.x |
[41] |
GANGE A C, BROWN V K, APLIN D M. Ecological specificity of arbuscular mycorrhizae: Evidence from foliar- and seed-feeding insects. Ecology, 2005, 86(3): 603-611.
doi: 10.1890/04-0967 |
[42] | 僧珊珊. 气候变化对玉米生产的影响与应对措施模拟研究-以河南为例[D]. 中国农业科学院, 2019. |
SENG S S. Study on simulation of climatic factors on potential productivity and cultivation measures-A case study on Henan province[D]. Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[43] |
TAI A P K, VAL MARTIN M, HEALD C L. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 2014, 4(9): 817-821.
doi: 10.1038/nclimate2317 |
[44] | 杨平, 张丽娟, 赵艳霞, 姜蓝齐, 乔赛男, 张晓慧. 黄淮海地区夏玉米干旱风险评估与区划. 中国生态农业学报, 2015, 23(1): 110-118. |
YANG P, ZHANG L J, ZHAO Y X, JIANG L Q, QIAO S N, ZHANG X H. Risk assessment and zoning of drought for summer maize in the Huang-Huai-Hai region. Chinese Journal of Eco-Agriculture, 2015, 23(1): 110-118. (in Chinese) | |
[45] | TILMAN D, KNOPS J, WEDIN D, REICH P, RITCHIE M, SIEMANN E. The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277(5330): 1330-1332. |
[46] |
CROSSAY T, MAJOREL C, REDECKER D, GENSOUS S, MEDEVIELLE V, DURRIEU G, CAVALOC Y, AMIR H. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 2019, 29(4): 325-339.
doi: 10.1007/s00572-019-00898-y |
[47] |
WALLER L P, HAHN P G, MARON J L, LEKBERG Y. Trait differences in responses to arbuscular mycorrhizal fungi are stronger and more consistent than fixed differences among populations of Asclepias speciosa. American Journal of Botany, 2018, 105(2): 207-214.
doi: 10.1002/ajb2.1038 |
[48] |
HART M M, FORSYTHE J, OSHOWSKI B, BÜCKING H, JANSA J, TOBY KIERS E. Hiding in a crowd-does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis, 2013, 59: 47-56.
doi: 10.1007/s13199-012-0197-8 |
[49] |
ENGELMOER D J P, BEHM J E, TOBY KIERS E. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Molecular Ecology, 2014, 23(6): 1584-1593.
doi: 10.1111/mec.12451 |
[50] |
JONES M D, SMITH S E. Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Canadian Journal of Botany, 2004, 82(8): 1089-1109.
doi: 10.1139/b04-110 |
[51] | ZHOU J C, CHAI X F, ZHANG L, GEORGE T S, WANG F, FENG G. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems, 2020, 5(6): e00929-20. |
[1] | 李金, 任立军, 李晓宇, 毕润学, 金鑫鑫, 虞娜, 张玉玲, 邹洪涛, 张玉龙. 不同秸秆还田方式对玉米农田土壤CO2排放量和碳平衡的影响[J]. 中国农业科学, 2023, 56(14): 2738-2750. |
[2] | 张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012. |
[3] | 孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083. |
[4] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[5] | 侯云鹏,王立春,李前,尹彩侠,秦裕波,王蒙,王永军,孔丽丽. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的 磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573-3584. |
[6] | 侯云鹏,孔丽丽,蔡红光,刘慧涛,高玉山,王永军,王立春. 东北半干旱区滴灌施肥条件下高产玉米干物质与 养分的积累分配特性[J]. 中国农业科学, 2019, 52(20): 3559-3572. |
[7] | 仇少君, 李宁, 何萍, 魏丹, 金梁, 赵士诚, 徐新朋, 周卫. 典型黑土春玉米化学肥料养分利用效率变化研究[J]. 中国农业科学, 2019, 52(16): 2824-2834. |
[8] | 孙艳梅,张前兵,苗晓茸,刘俊英,于磊,马春晖. 解磷细菌和丛枝菌根真菌对紫花苜蓿生产性能及地下生物量的影响[J]. 中国农业科学, 2019, 52(13): 2230-2242. |
[9] | 郭静,罗培宇,杨劲峰,李冬冬,黄月玥,韩晓日. 长期施肥对棕壤丛枝菌根真菌群落结构及其侵染的影响[J]. 中国农业科学, 2018, 51(24): 4677-4689. |
[10] | 王庆峰,姜昕,马鸣超,关大伟,赵百锁,魏丹,曹凤明,李力,李俊. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响[J]. 中国农业科学, 2018, 51(17): 3315-3324. |
[11] | 吴杨,贾志宽,边少锋,王永军. 不同方式周年覆盖对黄土高原玉米农田土壤水热的调控效应[J]. 中国农业科学, 2018, 51(15): 2872-2885. |
[12] | 王寅,郭聃,高强,李翠兰,焉莉,冯国忠,刘振刚,房杰. 吉林省不同生态区玉米施磷的增产效应差异[J]. 中国农业科学, 2017, 50(9): 1635-1645. |
[13] | 赵乾旭,史静,夏运生,张乃明,宁东卫,岳献荣,杨海宏. AMF与隔根对紫色土上玉米||大豆种间氮竞争的影响[J]. 中国农业科学, 2017, 50(14): 2696-2705. |
[14] | 谢军,赵亚南,陈轩敬,李丹萍,徐春丽,王珂,张跃强,石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率[J]. 中国农业科学, 2016, 49(20): 3934-3943. |
[15] | 张学林,徐 钧,安婷婷,侯小畔,李潮海. 不同氮肥水平下玉米根际土壤特性与产量的关系[J]. 中国农业科学, 2016, 49(14): 2687-2699. |
|