中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2485-2499.doi: 10.3864/j.issn.0578-1752.2022.13.001
李婷(),董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全(
),徐淑兔(
)
收稿日期:
2022-01-23
接受日期:
2022-03-07
出版日期:
2022-07-01
发布日期:
2022-07-08
通讯作者:
薛吉全,徐淑兔
作者简介:
李婷,E-mail: 基金资助:
LI Ting(),DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan(
),XU ShuTu(
)
Received:
2022-01-23
Accepted:
2022-03-07
Online:
2022-07-01
Published:
2022-07-08
Contact:
JiQuan XUE,ShuTu XU
摘要:
【目的】玉米穗部性状是产量的重要构成因子,利用全基因组关联分析(genome-wide association study,GWAS)方法解析玉米杂交种穗部性状的遗传基础、挖掘与穗部性状相关的位点,为功能基因克隆和高产玉米品种培育提供参考。【方法】选用115份来源于陕A群和陕B群的优良玉米自交系和4份国内骨干作为亲本,以基于NCⅡ遗传交配设计获得的442份玉米杂交种为材料构建关联群体,调查2个环境中群体材料的穗长、穗粗、穗行数等8个穗部性状;利用tGBS技术检测亲本基因型,推测出F1杂交种的19 461个高质量SNP,结合杂交种表型和基因型开展基于加性、显性及上位性模型的穗部性状的全基因组关联分析,并利用公共数据库中玉米穗发育相关组织的转录组数据和基因的注释信息预测候选基因。【结果】表型数据分析结果显示,试验群体的8个穗部性状均符合正态分布,表型变异为3.78%—45.25%。方差分析表明,8个穗部性状的环境效应和基因型效应均呈现极显著水平(P<0.001),广义遗传力为54.15%—68.89%。同时玉米杂交种穗部性状间呈现显著正相关或显著负相关。利用加性和显性模型分别检测到16个和3个显著SNP,上位性模型检测到79个上位性位点。3种模型检测的显著位点累积解释各性状38.21%—60.69%的表型变异,其中,加性模型检测到的显著SNP累积解释的表型变异为0.00—41.26%,上位性模型检测到的位点累积解释的表型变异为15.18%—45.36%。基于加性和显性模型检测的显著SNP的效应分析发现多数位点呈现加性和部分显性效应,仅2个为超显性。进一步分析发现,7个单SNP和5个上位性位点能够解释5%以上的表型变异。根据SNP的位置以及基因的表达信息预测了17个候选基因。【结论】玉米杂交种穗部性状主要受加性、上位性效应影响,显性效应影响较小;加性和显性模型检测的SNP主要表现为加性和部分显性效应,可通过聚合有利等位基因改良目标性状。
李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499.
LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids[J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
表1
不同环境下玉米穗部性状的描述统计分析"
环境 Environment | 性状 Trait | 均值 Mean | 最小值 Minimum | 最大值 Maximum | 标准差 SD | 变异系数 CV (%) | 偏度 Skew | 峰度 Kurtosis |
---|---|---|---|---|---|---|---|---|
杨凌Yangling | 穗长EL (cm) | 14.46 | 10.85 | 18.78 | 1.27 | 8.81 | 0.22 | 0.34 |
结实长FL (cm) | 12.94 | 9.29 | 18.44 | 1.53 | 11.82 | 0.39 | 0.18 | |
穗行数ERN | 15.14 | 12.00 | 18.80 | 1.08 | 7.13 | 0.12 | 0.03 | |
行粒数KNR | 27.16 | 18.20 | 36.20 | 2.97 | 10.94 | 0.06 | -0.06 | |
穗粗ED (cm) | 4.33 | 3.72 | 4.91 | 0.21 | 4.79 | 0.25 | -0.06 | |
秃尖长BTL (cm) | 1.52 | 0.02 | 4.42 | 0.69 | 45.25 | 0.63 | 0.86 | |
结实率SSR (%) | 89.36 | 70.11 | 99.86 | 4.92 | 5.50 | -0.52 | 0.26 | |
穗粒数KNE | 410.73 | 254.80 | 576.92 | 49.85 | 12.14 | 0.11 | -0.01 | |
榆林Yulin | 穗长EL (cm) | 16.57 | 13.15 | 20.50 | 1.23 | 7.41 | 0.13 | 0.10 |
结实长FL (cm) | 15.20 | 11.05 | 19.14 | 1.39 | 9.16 | 0.01 | 0.10 | |
穗行数ERN | 17.29 | 14.00 | 21.80 | 1.32 | 7.66 | 0.08 | -0.18 | |
行粒数KNR | 33.03 | 24.70 | 41.50 | 2.67 | 8.07 | 0.07 | 0.12 | |
穗粗ED (cm) | 4.65 | 4.13 | 5.40 | 0.21 | 4.50 | 0.27 | 0.35 | |
秃尖长BTL (cm) | 1.38 | 0.07 | 3.15 | 0.55 | 39.90 | 0.31 | 0.07 | |
结实率SSR (%) | 91.66 | 80.39 | 99.56 | 3.47 | 3.78 | -0.39 | 0.13 | |
穗粒数KNE | 570.30 | 420.32 | 748.80 | 58.25 | 10.21 | 0.03 | -0.12 | |
最佳线性无偏估计BLUE | 穗长EL (cm) | 15.52 | 13.00 | 18.78 | 1.06 | 6.84 | 0.29 | 0.06 |
结实长FL (cm) | 14.08 | 10.95 | 18.36 | 1.26 | 8.92 | 0.32 | -0.01 | |
穗行数ERN | 16.21 | 13.10 | 19.52 | 1.03 | 6.38 | -0.07 | -0.09 | |
行粒数KNR | 30.13 | 22.50 | 37.15 | 2.37 | 7.86 | 0.17 | 0.03 | |
穗粗ED (cm) | 4.49 | 4.05 | 5.05 | 0.17 | 3.88 | 0.23 | 0.25 | |
秃尖长BTL (cm) | 1.45 | 0.19 | 3.35 | 0.51 | 35.13 | 0.40 | 0.16 | |
结实率SSR (%) | 90.49 | 77.65 | 98.84 | 3.49 | 3.86 | -0.40 | 0.07 | |
穗粒数KNE | 490.97 | 347.00 | 619.70 | 45.57 | 9.28 | 0.08 | -0.20 |
表2
玉米杂交种群体穗部性状的方差分析"
性状 Trait | 基因型×环境 Line×Environment | 基因型 Line | 环境 Environment | 广义遗传力 H2 (%) |
---|---|---|---|---|
穗长EL (cm) | 0.32*** | 0.64*** | 2.28*** | 60.45 |
结实长FL (cm) | 0.36*** | 0.99*** | 2.59*** | 65.78 |
穗长数ERN | 0.18*** | 0.71*** | 2.34*** | 68.89 |
行粒数KNR | 1.13*** | 3.24*** | 17.39*** | 61.43 |
穗粗ED (cm) | 0.01*** | 0.02*** | 0.05*** | 57.71 |
秃尖长BTL (cm) | 0.04* | 0.13*** | 0.01*** | 54.15 |
结实率SSR (%) | 0.00* | 0.00*** | 0.00*** | 56.39 |
穗粒数KNE | 263.80* | 1280.50*** | 12878.90*** | 65.24 |
表3
加性和显性模型检测的表型解释率≥1%的显著SNP信息"
编号 Number | 标记 SNP | 染色体 Chromosome | 位置 Position (bp) | 基因型 Genotype | 有利等位基因 Favorable allele | 性状 Trait | P值 <BOLD>P</BOLD> value | 模型 Model | 表型解释率 PVE (%) |
---|---|---|---|---|---|---|---|---|---|
? SNP_1 | Chr.6:142154022 | 6 | 142154022 | A/T | AA*** | EL | 3.06E-05 | Add | 21.69 |
AA*** | FL | 9.52E-06 | Add | 18.79 | |||||
AA*** | KNR | 2.75E-06 | Add | 16.88 | |||||
SNP_2 | Chr.7:10328617 | 7 | 10328617 | T/C | \ | EL | 5.71E-05 | Add | 1.97 |
? SNP_3 | Chr.7:136117199 | 7 | 136117199 | C/A | AA*** | EL | 6.55E-07 | Add | 2.78 |
AA*** | FL | 4.30E-05 | Add | 6.81 | |||||
SNP_4 | Chr.7:139654593 | 7 | 139654593 | G/A | AA*** | EL | 8.53E-05 | Add | 1.77 |
? SNP_5 | Chr.9:103073562 | 9 | 103073562 | C/T | CC*** | EL | 4.69E-05 | Add | 7.29 |
CC*** | FL | 3.22E-05 | Add | 9.24 | |||||
? SNP_6 | Chr.1:31507749 | 1 | 31507749 | A/T | TT*** | FL | 9.54E-06 | Add | 3.92 |
TT*** | SSR | 2.20E-05 | Add | 3.35 | |||||
SNP_7 | Chr.9:103896805 | 9 | 103896805 | G/A | AA*** | FL | 1.73E-05 | Add | 1.17 |
? SNP_8 | Chr.9:142603978 | 9 | 142603978 | C/T | CC*** | FL | 6.76E-05 | Add | 1.33 |
CC*** | KNR | 8.59E-05 | Add | 1.85 | |||||
SNP_9 | Chr.1:63127746 | 1 | 63127746 | C/T | \ | ERN | 7.29E-05 | Add | 5.08 |
SNP_10 | Chr.3:140533299 | 3 | 140533299 | T/G | \ | ERN | 9.24E-05 | Add | 22.21 |
SNP_11 | Chr.5:217554704 | 5 | 217554704 | A/G | AA*** | ERN | 5.95E-05 | Add | 3.38 |
SNP_12 | Chr.3:24937775 | 3 | 24937775 | C/T | TT*** | ED | 4.39E-05 | Add | 14.61 |
SNP_13 | Chr.4:17756435 | 4 | 17756435 | T/C | \ | ED | 5.18E-05 | Add | 3.52 |
SNP_14 | Chr.6:33388399 | 6 | 33388399 | C/T | TT*** | ED | 1.33E-05 | Add | 4.42 |
SNP_15 | Chr.6:71642919 | 6 | 71642919 | A/G | \ | ED | 2.15E-05 | Add | 1.92 |
SNP_16 | Chr.5:77126549 | 5 | 77126549 | G/C | GG*** | KNE | 9.17E-05 | Add | 8.61 |
SNP_17 | Chr.7:174762752 | 7 | 174762752 | T/C | CT*** | ED | 1.95E-05 | Dom | 1.48 |
SNP_18 | Chr.1:5822204 | 1 | 5822204 | C/T | TT*** | BTL | 1.02E-04 | Dom | 1.46 |
SNP_19 | Chr.4:243712772 | 4 | 243712772 | T/C | TT* | KNE | 8.85E-06 | Dom | 1.78 |
表4
候选基因预测"
序号 Number | 标记 SNP marker | 类型 Type | 性状 Trait | 候选基因 Candidate gene | 表型解释率 PVE (%) | 注释 Annotation |
---|---|---|---|---|---|---|
SNP_1 | Chr.6: 142154022 | 外显子Exon | EL,FL,KNR | ●Zm00001d037925 | 21.69 | ASF/SF2样pre-mRNA剪接因子SRP31 ASF/SF2-like pre-mRNA splicing factor SRP31 |
SNP_3 | Chr.7: 136117199 | 内含子Intron | EL,FL | ●Zm00001d020902 | 6.81 | 推测的DUF1664结构域家族蛋白 Putative DUF1664 domain family protein |
SNP_5 | Chr.9: 103073562 | 基因间区Intergenic | EL,FL | Zm00001d046716 | 9.24 | RNA结合(RRM/RBD/RNP基序)家族蛋白 RNA-binding (RRM/RBD/RNP motifs) family protein |
SNP_9 | Chr.1: 63127746 | 内含子Intron | ERN | ●Zm00001d029226 | 5.08 | 菱形蛋白19 Rhomboid-like protein 19 |
SNP_10 | Chr.3: 140533299 | 基因间区Intergenic | ERN | Zm00001d041847 | 22.21 | SWI/SNF复合亚单位SWI3C-like SWI/SNF complex subunit SWI3C-like |
SNP_12 | Chr.3: 24937775 | 基因间区Intergenic | ED | Zm00001d040051 | 14.61 | ARM重复超家族蛋白 ARM repeat superfamily protein |
SNP_16 | Chr.5: 77126549 | 下游Downstream | KNE | ●Zm00001d015153 | 8.61 | BZIP转录因子160 BZIP transcription factor 160 |
Pair_21 | Chr.1: 258346354 Chr.5: 219936403 | 外显子Exon 基因间区Intergenic | ERN | Zm00001d033309 Zm00001d018394 | 7.34 | 蛋白质多效性调节基因座1 Protein pleiotropic regulatory locus 1 DBP转录因子2 DBP-transcription factor 2 |
Pair_28 | Chr.1: 269687016 Chr.4: 17283434 | 内含子Intron 内含子Intron | KNR | ●Zm00001d033652 ●Zm00001d049135 | 5.38 | 推测的LRR受体样丝氨酸/苏氨酸蛋白 Putative LRR receptor-like serine/threonine-protein kinase 推测的bZIP转录因子超家族蛋白 Putative bZIP transcription factor superfamily protein |
Pair_46 | Chr.1: 61044255 Chr.9: 156420734 | 非翻译区UTR3 外显子Exon | BTL | ●Zm00001d029177 Zm00001d048438 | 6.52 | 核仁GTP结合蛋白2 Nucleolar GTP-binding protein 2 表皮模式因子样蛋白4 Epidermal patterning factor-like protein 4 |
Pair_50 | Chr.1: 7694515 Chr.4: 14565656 | 内含子Intron 上游Upstream | BTL | ●Zm00001d027536 Zm00001d049060 | 5.20 | 丝氨酸乙酰转移酶4 Serine acetyltransferase4 非特征蛋白质 Uncharacterized protein |
Pair_63 | Chr.5: 88161699 Chr.6: 153042725 | 上游Upstream 下游Downstream | SSR | ●Zm00001d015395 ●Zm00001d038274 | 16.32 | 脲酶辅助蛋白D Urease accessory protein D 四三肽重复序列(TPR)样超家族蛋白 Tetratricopeptide repeat (TPR) like superfamily protein |
[1] | 赵久然, 郭景伦, 郭强, 尉德明, 肖必祥, 卢柏山. 玉米不同品种基因型穗粒数及其构成因素相关分析的研究. 北京农业科学, 1997, 15(6): 1-2. |
ZHAO J R, GUO J L, GUO Q, WEI D M, XIAO B X, LU B S. Correlation analysis of grain number per ear and its components in different genotypes of maize. Beijing Agriculture Sciences, 1997, 15(6): 1-2. (in Chinese) | |
[2] | 何坤辉, 常立国, 李亚楠, 渠建洲, 崔婷婷, 徐淑兔, 薛吉全, 刘建超. 供氮和不供氮条件下玉米穗部性状的QTL定位. 植物营养与肥料学报, 2017, 23(1): 91-100. |
HE K H, CHANG L G, LI Y N, QU J Z, CUI T T, XU S T, XUE J Q, LIU J C. QTL mapping of ear traits of maize with and without N input. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 91-100. (in Chinese) | |
[3] |
张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40(1): 1-6.
doi: 10.3724/SP.J.1006.2014.00001 |
ZHANG H X, WENG J F, ZHANG X C, LIU C L, YONG H J, HAO Z F, LI X H. Genome-wide association analysis of kernel row number in maize. Acta Agronomica Sinica, 2014, 40(1): 1-6. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00001 |
|
[4] |
吴律, 代力强, 董青松, 施婷婷, 王丕武. 玉米行粒数的全基因组关联分析. 作物学报, 2017, 43(10): 1559-1564.
doi: 10.3724/SP.J.1006.2017.01559 |
WU L, DAI L Q, DONG Q S, SHI T T, WANG P W. Genome-wide association analysis of kernel number per row in maize. Acta Agronomica Sinica, 2017, 43(10): 1559-1564. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01559 |
|
[5] |
马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析. 作物学报, 2021, 47(7): 1228-1238.
doi: 10.3724/SP.J.1006.2021.03048 |
MA J, CAO Y Y, LI H Y. Genome-wide association study of ear cob diameter in maize. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03048 |
|
[6] |
YANG L, LI T, TIAN X K, YANG B B, LAO Y H, WANG Y H, ZHANG X H, XUE J Q, XU S T. Genome-wide association study (GWAS) reveals genetic basis of ear-related traits in maize. Euphytica, 2020, 216(11): 1-13.
doi: 10.1007/s10681-019-2539-6 |
[7] | 钱佳翼, 柳俊, 方圆, 杜勇成, 杨天天, 李鹏程, 杨泽峰, 徐辰武. 玉米穗型和粒型性状的GWAS及其关联位点驯化和改良分析. 玉米科学, 2020, 28(6): 45-51. |
QIAN J Y, LIU J, FANG Y, DU Y C, YANG T T, LI P C, YANG Z F, XU C W. Genome-wide association study on ear-and kernel-related traits in maize and the analysis of domestication and improvement of the associated loci. Journal of Maize Sciences, 2020, 28(6): 45-51. (in Chinese) | |
[8] |
XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095-1110.
doi: 10.1111/nph.13814 |
[9] | 殷芳冰, 王成, 龙艳, 董振营, 万向元. 玉米雌穗性状遗传分析与形成机制. 中国生物工程杂志, 2022, 41(12): 30-46. |
YIN F B, WANG C, LONG Y, DONG Z Y, WAN X Y. Genetic architecture and formation mechanism of female ear traits in maize. China Biotechnology, 2022, 41(12): 30-46. (in Chinese) | |
[10] |
LI M F, ZHONG W S, YANG F, ZHANG Z X. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant and Cell Physiology, 2018, 59(3): 448-457.
doi: 10.1093/pcp/pcy022 |
[11] |
CHUCK G S, BROWN P J, MEELEY R, HAKE S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences of the USA, 2014, 111(52): 18775-18780.
doi: 10.1073/pnas.1407401112 |
[12] |
JIA H T, LI M F, LI W Y, LIU L, JIAN Y N, YANG Z X, SHEN X M, NING Q, DU Y F, ZHAO R, JACKSON D, YANG X H, ZHANG Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 1-11.
doi: 10.1038/s41467-019-13993-7 |
[13] |
NING Q, JIAN Y N, DU Y F, LI Y F, SHEN X M, JIA H T, ZHAO R, ZHAN J M, YANG F, JACKSON D, LIU L, ZHANG Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w |
[14] |
WANG J, LIN Z L, ZHANG X, LIU H Q, ZHOU L N, ZHONG S Y, LI Y, ZHU C, LIN Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist, 2019, 223(3): 1634-1646.
doi: 10.1111/nph.15890 |
[15] |
BOMMERT P, NAGASAWA N S, JACKSON D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013, 45(3): 334-337.
doi: 10.1038/ng.2534 |
[16] |
KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis 1. Crop Science, 1985, 25(1): 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[17] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.
doi: 10.1093/nar/8.19.4321 |
[18] |
LI T, QU J Z, WANG Y H, CHANG L G, HE K H, GUO D W, ZHANG X H, XU S T, XUE J Q. Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genetics, 2018, 19(1): 1-12.
doi: 10.1186/s12863-017-0594-3 |
[19] |
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, De BAKKER P I, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
doi: 10.1086/519795 |
[20] |
BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308 |
[21] |
JIANG Y, SCHMIDT R H, ZHAO Y S, REIF J C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nature Genetics, 2017, 49(12): 1741-1746.
doi: 10.1038/ng.3974 |
[22] |
GAO X Y, STARMER J, MARTIN E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 2008, 32(4): 361-369.
doi: 10.1002/gepi.20310 |
[23] | HUANG X H, YANG S H, GONG J Y, ZHAO Y, FENG Q, GONG H, LI W J, ZHAN Q L, CHENG B Y, XIA J H, CHEN N, HAO Z N, LIU K Y, ZHU C R, HUANG T, ZHAO Q, ZHANG L, FAN D L, ZHOU C C, LU Y Q, WENG Q J, WANG Z X, LI J Y, HAN B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 1-9. |
[24] | WANG K, LI M, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164-e164. |
[25] | 黄远樟, 刘来福. 作物数量遗传学基础——六、配合力: 不完全双列杂交. 遗传, 1980(2): 43-46. |
HUANG Y Z, LIU L F. The basis of quantitative genetics in crops: Ⅵ. Combining ability: Incomplete diallel cross. Hereditas, 1980(2): 43-46. (in Chinese) | |
[26] | 刘文童, 监立强, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米穗部性状及其一般配合力的关联分析. 植物遗传资源学报, 2020, 21(3): 706-715. |
LIU W T, JIAN L Q, GUO J J, ZHAO Y F, HUANG Y Q, CHEN J T, ZHU L Y. Association analysis of ear-related traits and their general combining ability in maize. Journal of Plant Genetic Resources, 2020, 21(3): 706-715. (in Chinese) | |
[27] |
CHEN J X, ZHOU H, XIE W B, XIA D, GAO G J, ZHANG Q L, WANG G W, LIAN X M, XIAO J H, HE Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17(11): 2211-2222.
doi: 10.1111/pbi.13134 |
[28] |
LI G L, DONG Y, ZHAO Y S, TIAN X K, WÜRSCHUM T, XUE J Q, CHEN S J, REIF J C, XU S T, LIU W X. Genome-wide prediction in a hybrid maize population adapted to Northwest China. The Crop Journal, 2020, 8(5): 830-842.
doi: 10.1016/j.cj.2020.04.006 |
[29] | SHULL G H. The composition of a field of maize. Journal of Heredity, 1908(1): 296-301. |
[30] | 王晖. 玉米全基因组关联分析多杂种群体的构建及其杂种优势和配合力的遗传分析[D]. 北京: 中国农业科学院, 2017. |
WANG H. Development of a maize multiple-hybrid population for genome-wide association studies and genetic analysis of heterosis and combining ability[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[31] |
LIU H J, WANG Q, CHEN M J, DING Y H, YANG X R, LIU J, LI X H, ZHOU C C, TIAN Q L, LU Y Q, FAN D L, SHI J P, ZHANG L, KANG C B, SUN M F, LI F Y, WU Y J, ZHANG Y Z, LIU B S, ZHAO X Y, FENG Q, YANG J L, HAN B, LAI J S, ZHANG X S, HUANG X H. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 2020, 18(1): 185-194.
doi: 10.1111/pbi.13186 |
[32] |
LU M, XIE C X, LI X H, HAO Z F, LI M S, WENG J F, ZHANG D G, BAI L, ZHANG S H. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Molecular Breeding, 2011, 28(2): 143-152.
doi: 10.1007/s11032-010-9468-3 |
[33] |
LIU L, DU Y F, HUO D G, WANG M, SHEN X M, YUE B, QIU F Z, ZHENG Y L, YAN J B, ZHANG Z X. Genetic architecture of maize kernel row number and whole genome prediction. Theoretical and Applied Genetics, 2015, 128(11): 2243-2254.
doi: 10.1007/s00122-015-2581-2 |
[34] |
XIAO Y J, JIANG S Q, CHENG Q, WANG X Q, YAN J, ZHANG R Y, QIAO F, MA C, LUO J Y, LI W Q, LIU H J, YANG W Y, SONG W H, MENG Y J, WARBURTON M L, ZHAO J R, WANG X F, YAN J B. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 1-29.
doi: 10.1186/s13059-020-02207-9 |
[35] |
YAN J B, TANG H, HUANG Y Q, ZHENG Y L, LI J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149(1): 121-131.
doi: 10.1007/s10681-005-9060-9 |
[36] | MA J, CAO Y Y. Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction. Frontiers in Plant Science, 2021, 12: 1377. |
[37] |
XUE S, BRADBURY P J, CASSTEVENS T, HOLLAND J B. Genetic architecture of domestication-related traits in maize. Genetics, 2016, 204(1): 99-113.
doi: 10.1534/genetics.116.191106 |
[38] |
LI T, QU J Z, TIAN X K, LAO Y H, WEI N N, WANG Y H, HAO Y C, ZHANG X H, XUE J Q, XU S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Frontiers in Genetics, 2020, 11: 747.
doi: 10.3389/fgene.2020.00747 |
[39] |
XU C, ZHANG H, SUN J, GUO Z, ZOU C, LI W, XIE C, HUANG C, XU R, LIAO H, WANG J X, XU X J, WANG S H, XU Y B. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131(8): 1699-1714.
doi: 10.1007/s00122-018-3108-4 |
[40] |
WANG Z J, YUAN T T, YUAN C, NIU Y Q, SUN D Y, CUI S J. LFR, which encodes a novel nuclear-localized Armadillo-repeat protein, affects multiple developmental processes in the aerial organs in Arabidopsis. Plant Molecular Biology, 2009, 69(1): 121-131.
doi: 10.1007/s11103-008-9411-8 |
[41] |
YU X M, JIANG L L, WU R, MENG X C, ZHANG A, LI N, XIA Q, QI X, PANG J S, XU Z Y, LIU B. The core subunit of a chromatin-remodeling complex, ZmCHB101, plays essential roles in maize growth and development. Scientific Reports, 2016, 6(1): 1-13.
doi: 10.1038/s41598-016-0001-8 |
[42] |
PAUTLER M, EVELAND A L, LARUE T, YANG F, WEEKS R, LUNDE C, JE B I, MEELEY R, KOMATSU M, VOLLBRECHT E, SAKAI H, JACKSON D. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015, 27(1): 104-120.
doi: 10.1105/tpc.114.132506 |
[43] |
NI S, LI Z Z, YING J, ZHANG J C, CHEN H Q. Decreased Spikelets 4 encoding a novel tetratricopeptide repeat domain-containing protein is involved in DNA repair and spikelet number determination in rice. Genes, 2019, 10(3): 214.
doi: 10.3390/genes10030214 |
[44] |
GAO H R, GORDON-KAMM W J, LYZNIK L A. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene, 2004, 339: 25-37.
doi: 10.1016/j.gene.2004.06.047 |
[45] |
van BUEREN E L, BACKES G, De VRIEND H, ØSTERGÅRD H. The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica, 2010, 175(1): 51-64.
doi: 10.1007/s10681-010-0169-0 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[4] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[5] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[6] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[9] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[12] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[13] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[14] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[15] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
|