中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2485-2499.doi: 10.3864/j.issn.0578-1752.2022.13.001
李婷(),董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全(
),徐淑兔(
)
收稿日期:
2022-01-23
接受日期:
2022-03-07
出版日期:
2022-07-01
发布日期:
2022-07-08
联系方式:
李婷,E-mail: ltstime@163.com。
基金资助:
LI Ting(),DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan(
),XU ShuTu(
)
Received:
2022-01-23
Accepted:
2022-03-07
Published:
2022-07-01
Online:
2022-07-08
摘要:
【目的】玉米穗部性状是产量的重要构成因子,利用全基因组关联分析(genome-wide association study,GWAS)方法解析玉米杂交种穗部性状的遗传基础、挖掘与穗部性状相关的位点,为功能基因克隆和高产玉米品种培育提供参考。【方法】选用115份来源于陕A群和陕B群的优良玉米自交系和4份国内骨干作为亲本,以基于NCⅡ遗传交配设计获得的442份玉米杂交种为材料构建关联群体,调查2个环境中群体材料的穗长、穗粗、穗行数等8个穗部性状;利用tGBS技术检测亲本基因型,推测出F1杂交种的19 461个高质量SNP,结合杂交种表型和基因型开展基于加性、显性及上位性模型的穗部性状的全基因组关联分析,并利用公共数据库中玉米穗发育相关组织的转录组数据和基因的注释信息预测候选基因。【结果】表型数据分析结果显示,试验群体的8个穗部性状均符合正态分布,表型变异为3.78%—45.25%。方差分析表明,8个穗部性状的环境效应和基因型效应均呈现极显著水平(P<0.001),广义遗传力为54.15%—68.89%。同时玉米杂交种穗部性状间呈现显著正相关或显著负相关。利用加性和显性模型分别检测到16个和3个显著SNP,上位性模型检测到79个上位性位点。3种模型检测的显著位点累积解释各性状38.21%—60.69%的表型变异,其中,加性模型检测到的显著SNP累积解释的表型变异为0.00—41.26%,上位性模型检测到的位点累积解释的表型变异为15.18%—45.36%。基于加性和显性模型检测的显著SNP的效应分析发现多数位点呈现加性和部分显性效应,仅2个为超显性。进一步分析发现,7个单SNP和5个上位性位点能够解释5%以上的表型变异。根据SNP的位置以及基因的表达信息预测了17个候选基因。【结论】玉米杂交种穗部性状主要受加性、上位性效应影响,显性效应影响较小;加性和显性模型检测的SNP主要表现为加性和部分显性效应,可通过聚合有利等位基因改良目标性状。
李婷,董远,张君,冯志前,王亚鹏,郝引川,张兴华,薛吉全,徐淑兔. 玉米杂交种穗部性状的全基因组关联分析[J]. 中国农业科学, 2022, 55(13): 2485-2499.
LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids[J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
表1
不同环境下玉米穗部性状的描述统计分析"
环境 Environment | 性状 Trait | 均值 Mean | 最小值 Minimum | 最大值 Maximum | 标准差 SD | 变异系数 CV (%) | 偏度 Skew | 峰度 Kurtosis |
---|---|---|---|---|---|---|---|---|
杨凌Yangling | 穗长EL (cm) | 14.46 | 10.85 | 18.78 | 1.27 | 8.81 | 0.22 | 0.34 |
结实长FL (cm) | 12.94 | 9.29 | 18.44 | 1.53 | 11.82 | 0.39 | 0.18 | |
穗行数ERN | 15.14 | 12.00 | 18.80 | 1.08 | 7.13 | 0.12 | 0.03 | |
行粒数KNR | 27.16 | 18.20 | 36.20 | 2.97 | 10.94 | 0.06 | -0.06 | |
穗粗ED (cm) | 4.33 | 3.72 | 4.91 | 0.21 | 4.79 | 0.25 | -0.06 | |
秃尖长BTL (cm) | 1.52 | 0.02 | 4.42 | 0.69 | 45.25 | 0.63 | 0.86 | |
结实率SSR (%) | 89.36 | 70.11 | 99.86 | 4.92 | 5.50 | -0.52 | 0.26 | |
穗粒数KNE | 410.73 | 254.80 | 576.92 | 49.85 | 12.14 | 0.11 | -0.01 | |
榆林Yulin | 穗长EL (cm) | 16.57 | 13.15 | 20.50 | 1.23 | 7.41 | 0.13 | 0.10 |
结实长FL (cm) | 15.20 | 11.05 | 19.14 | 1.39 | 9.16 | 0.01 | 0.10 | |
穗行数ERN | 17.29 | 14.00 | 21.80 | 1.32 | 7.66 | 0.08 | -0.18 | |
行粒数KNR | 33.03 | 24.70 | 41.50 | 2.67 | 8.07 | 0.07 | 0.12 | |
穗粗ED (cm) | 4.65 | 4.13 | 5.40 | 0.21 | 4.50 | 0.27 | 0.35 | |
秃尖长BTL (cm) | 1.38 | 0.07 | 3.15 | 0.55 | 39.90 | 0.31 | 0.07 | |
结实率SSR (%) | 91.66 | 80.39 | 99.56 | 3.47 | 3.78 | -0.39 | 0.13 | |
穗粒数KNE | 570.30 | 420.32 | 748.80 | 58.25 | 10.21 | 0.03 | -0.12 | |
最佳线性无偏估计BLUE | 穗长EL (cm) | 15.52 | 13.00 | 18.78 | 1.06 | 6.84 | 0.29 | 0.06 |
结实长FL (cm) | 14.08 | 10.95 | 18.36 | 1.26 | 8.92 | 0.32 | -0.01 | |
穗行数ERN | 16.21 | 13.10 | 19.52 | 1.03 | 6.38 | -0.07 | -0.09 | |
行粒数KNR | 30.13 | 22.50 | 37.15 | 2.37 | 7.86 | 0.17 | 0.03 | |
穗粗ED (cm) | 4.49 | 4.05 | 5.05 | 0.17 | 3.88 | 0.23 | 0.25 | |
秃尖长BTL (cm) | 1.45 | 0.19 | 3.35 | 0.51 | 35.13 | 0.40 | 0.16 | |
结实率SSR (%) | 90.49 | 77.65 | 98.84 | 3.49 | 3.86 | -0.40 | 0.07 | |
穗粒数KNE | 490.97 | 347.00 | 619.70 | 45.57 | 9.28 | 0.08 | -0.20 |
表2
玉米杂交种群体穗部性状的方差分析"
性状 Trait | 基因型×环境 Line×Environment | 基因型 Line | 环境 Environment | 广义遗传力 H2 (%) |
---|---|---|---|---|
穗长EL (cm) | 0.32*** | 0.64*** | 2.28*** | 60.45 |
结实长FL (cm) | 0.36*** | 0.99*** | 2.59*** | 65.78 |
穗长数ERN | 0.18*** | 0.71*** | 2.34*** | 68.89 |
行粒数KNR | 1.13*** | 3.24*** | 17.39*** | 61.43 |
穗粗ED (cm) | 0.01*** | 0.02*** | 0.05*** | 57.71 |
秃尖长BTL (cm) | 0.04* | 0.13*** | 0.01*** | 54.15 |
结实率SSR (%) | 0.00* | 0.00*** | 0.00*** | 56.39 |
穗粒数KNE | 263.80* | 1280.50*** | 12878.90*** | 65.24 |
表3
加性和显性模型检测的表型解释率≥1%的显著SNP信息"
编号 Number | 标记 SNP | 染色体 Chromosome | 位置 Position (bp) | 基因型 Genotype | 有利等位基因 Favorable allele | 性状 Trait | P值 <BOLD>P</BOLD> value | 模型 Model | 表型解释率 PVE (%) |
---|---|---|---|---|---|---|---|---|---|
? SNP_1 | Chr.6:142154022 | 6 | 142154022 | A/T | AA*** | EL | 3.06E-05 | Add | 21.69 |
AA*** | FL | 9.52E-06 | Add | 18.79 | |||||
AA*** | KNR | 2.75E-06 | Add | 16.88 | |||||
SNP_2 | Chr.7:10328617 | 7 | 10328617 | T/C | \ | EL | 5.71E-05 | Add | 1.97 |
? SNP_3 | Chr.7:136117199 | 7 | 136117199 | C/A | AA*** | EL | 6.55E-07 | Add | 2.78 |
AA*** | FL | 4.30E-05 | Add | 6.81 | |||||
SNP_4 | Chr.7:139654593 | 7 | 139654593 | G/A | AA*** | EL | 8.53E-05 | Add | 1.77 |
? SNP_5 | Chr.9:103073562 | 9 | 103073562 | C/T | CC*** | EL | 4.69E-05 | Add | 7.29 |
CC*** | FL | 3.22E-05 | Add | 9.24 | |||||
? SNP_6 | Chr.1:31507749 | 1 | 31507749 | A/T | TT*** | FL | 9.54E-06 | Add | 3.92 |
TT*** | SSR | 2.20E-05 | Add | 3.35 | |||||
SNP_7 | Chr.9:103896805 | 9 | 103896805 | G/A | AA*** | FL | 1.73E-05 | Add | 1.17 |
? SNP_8 | Chr.9:142603978 | 9 | 142603978 | C/T | CC*** | FL | 6.76E-05 | Add | 1.33 |
CC*** | KNR | 8.59E-05 | Add | 1.85 | |||||
SNP_9 | Chr.1:63127746 | 1 | 63127746 | C/T | \ | ERN | 7.29E-05 | Add | 5.08 |
SNP_10 | Chr.3:140533299 | 3 | 140533299 | T/G | \ | ERN | 9.24E-05 | Add | 22.21 |
SNP_11 | Chr.5:217554704 | 5 | 217554704 | A/G | AA*** | ERN | 5.95E-05 | Add | 3.38 |
SNP_12 | Chr.3:24937775 | 3 | 24937775 | C/T | TT*** | ED | 4.39E-05 | Add | 14.61 |
SNP_13 | Chr.4:17756435 | 4 | 17756435 | T/C | \ | ED | 5.18E-05 | Add | 3.52 |
SNP_14 | Chr.6:33388399 | 6 | 33388399 | C/T | TT*** | ED | 1.33E-05 | Add | 4.42 |
SNP_15 | Chr.6:71642919 | 6 | 71642919 | A/G | \ | ED | 2.15E-05 | Add | 1.92 |
SNP_16 | Chr.5:77126549 | 5 | 77126549 | G/C | GG*** | KNE | 9.17E-05 | Add | 8.61 |
SNP_17 | Chr.7:174762752 | 7 | 174762752 | T/C | CT*** | ED | 1.95E-05 | Dom | 1.48 |
SNP_18 | Chr.1:5822204 | 1 | 5822204 | C/T | TT*** | BTL | 1.02E-04 | Dom | 1.46 |
SNP_19 | Chr.4:243712772 | 4 | 243712772 | T/C | TT* | KNE | 8.85E-06 | Dom | 1.78 |
表4
候选基因预测"
序号 Number | 标记 SNP marker | 类型 Type | 性状 Trait | 候选基因 Candidate gene | 表型解释率 PVE (%) | 注释 Annotation |
---|---|---|---|---|---|---|
SNP_1 | Chr.6: 142154022 | 外显子Exon | EL,FL,KNR | ●Zm00001d037925 | 21.69 | ASF/SF2样pre-mRNA剪接因子SRP31 ASF/SF2-like pre-mRNA splicing factor SRP31 |
SNP_3 | Chr.7: 136117199 | 内含子Intron | EL,FL | ●Zm00001d020902 | 6.81 | 推测的DUF1664结构域家族蛋白 Putative DUF1664 domain family protein |
SNP_5 | Chr.9: 103073562 | 基因间区Intergenic | EL,FL | Zm00001d046716 | 9.24 | RNA结合(RRM/RBD/RNP基序)家族蛋白 RNA-binding (RRM/RBD/RNP motifs) family protein |
SNP_9 | Chr.1: 63127746 | 内含子Intron | ERN | ●Zm00001d029226 | 5.08 | 菱形蛋白19 Rhomboid-like protein 19 |
SNP_10 | Chr.3: 140533299 | 基因间区Intergenic | ERN | Zm00001d041847 | 22.21 | SWI/SNF复合亚单位SWI3C-like SWI/SNF complex subunit SWI3C-like |
SNP_12 | Chr.3: 24937775 | 基因间区Intergenic | ED | Zm00001d040051 | 14.61 | ARM重复超家族蛋白 ARM repeat superfamily protein |
SNP_16 | Chr.5: 77126549 | 下游Downstream | KNE | ●Zm00001d015153 | 8.61 | BZIP转录因子160 BZIP transcription factor 160 |
Pair_21 | Chr.1: 258346354 Chr.5: 219936403 | 外显子Exon 基因间区Intergenic | ERN | Zm00001d033309 Zm00001d018394 | 7.34 | 蛋白质多效性调节基因座1 Protein pleiotropic regulatory locus 1 DBP转录因子2 DBP-transcription factor 2 |
Pair_28 | Chr.1: 269687016 Chr.4: 17283434 | 内含子Intron 内含子Intron | KNR | ●Zm00001d033652 ●Zm00001d049135 | 5.38 | 推测的LRR受体样丝氨酸/苏氨酸蛋白 Putative LRR receptor-like serine/threonine-protein kinase 推测的bZIP转录因子超家族蛋白 Putative bZIP transcription factor superfamily protein |
Pair_46 | Chr.1: 61044255 Chr.9: 156420734 | 非翻译区UTR3 外显子Exon | BTL | ●Zm00001d029177 Zm00001d048438 | 6.52 | 核仁GTP结合蛋白2 Nucleolar GTP-binding protein 2 表皮模式因子样蛋白4 Epidermal patterning factor-like protein 4 |
Pair_50 | Chr.1: 7694515 Chr.4: 14565656 | 内含子Intron 上游Upstream | BTL | ●Zm00001d027536 Zm00001d049060 | 5.20 | 丝氨酸乙酰转移酶4 Serine acetyltransferase4 非特征蛋白质 Uncharacterized protein |
Pair_63 | Chr.5: 88161699 Chr.6: 153042725 | 上游Upstream 下游Downstream | SSR | ●Zm00001d015395 ●Zm00001d038274 | 16.32 | 脲酶辅助蛋白D Urease accessory protein D 四三肽重复序列(TPR)样超家族蛋白 Tetratricopeptide repeat (TPR) like superfamily protein |
[1] | 赵久然, 郭景伦, 郭强, 尉德明, 肖必祥, 卢柏山. 玉米不同品种基因型穗粒数及其构成因素相关分析的研究. 北京农业科学, 1997, 15(6): 1-2. |
ZHAO J R, GUO J L, GUO Q, WEI D M, XIAO B X, LU B S. Correlation analysis of grain number per ear and its components in different genotypes of maize. Beijing Agriculture Sciences, 1997, 15(6): 1-2. (in Chinese) | |
[2] | 何坤辉, 常立国, 李亚楠, 渠建洲, 崔婷婷, 徐淑兔, 薛吉全, 刘建超. 供氮和不供氮条件下玉米穗部性状的QTL定位. 植物营养与肥料学报, 2017, 23(1): 91-100. |
HE K H, CHANG L G, LI Y N, QU J Z, CUI T T, XU S T, XUE J Q, LIU J C. QTL mapping of ear traits of maize with and without N input. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 91-100. (in Chinese) | |
[3] |
张焕欣, 翁建峰, 张晓聪, 刘昌林, 雍洪军, 郝转芳, 李新海. 玉米穗行数全基因组关联分析. 作物学报, 2014, 40(1): 1-6.
doi: 10.3724/SP.J.1006.2014.00001 |
ZHANG H X, WENG J F, ZHANG X C, LIU C L, YONG H J, HAO Z F, LI X H. Genome-wide association analysis of kernel row number in maize. Acta Agronomica Sinica, 2014, 40(1): 1-6. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00001 |
|
[4] |
吴律, 代力强, 董青松, 施婷婷, 王丕武. 玉米行粒数的全基因组关联分析. 作物学报, 2017, 43(10): 1559-1564.
doi: 10.3724/SP.J.1006.2017.01559 |
WU L, DAI L Q, DONG Q S, SHI T T, WANG P W. Genome-wide association analysis of kernel number per row in maize. Acta Agronomica Sinica, 2017, 43(10): 1559-1564. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01559 |
|
[5] |
马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析. 作物学报, 2021, 47(7): 1228-1238.
doi: 10.3724/SP.J.1006.2021.03048 |
MA J, CAO Y Y, LI H Y. Genome-wide association study of ear cob diameter in maize. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. (in Chinese)
doi: 10.3724/SP.J.1006.2021.03048 |
|
[6] |
YANG L, LI T, TIAN X K, YANG B B, LAO Y H, WANG Y H, ZHANG X H, XUE J Q, XU S T. Genome-wide association study (GWAS) reveals genetic basis of ear-related traits in maize. Euphytica, 2020, 216(11): 1-13.
doi: 10.1007/s10681-019-2539-6 |
[7] | 钱佳翼, 柳俊, 方圆, 杜勇成, 杨天天, 李鹏程, 杨泽峰, 徐辰武. 玉米穗型和粒型性状的GWAS及其关联位点驯化和改良分析. 玉米科学, 2020, 28(6): 45-51. |
QIAN J Y, LIU J, FANG Y, DU Y C, YANG T T, LI P C, YANG Z F, XU C W. Genome-wide association study on ear-and kernel-related traits in maize and the analysis of domestication and improvement of the associated loci. Journal of Maize Sciences, 2020, 28(6): 45-51. (in Chinese) | |
[8] |
XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095-1110.
doi: 10.1111/nph.13814 |
[9] | 殷芳冰, 王成, 龙艳, 董振营, 万向元. 玉米雌穗性状遗传分析与形成机制. 中国生物工程杂志, 2022, 41(12): 30-46. |
YIN F B, WANG C, LONG Y, DONG Z Y, WAN X Y. Genetic architecture and formation mechanism of female ear traits in maize. China Biotechnology, 2022, 41(12): 30-46. (in Chinese) | |
[10] |
LI M F, ZHONG W S, YANG F, ZHANG Z X. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant and Cell Physiology, 2018, 59(3): 448-457.
doi: 10.1093/pcp/pcy022 |
[11] |
CHUCK G S, BROWN P J, MEELEY R, HAKE S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences of the USA, 2014, 111(52): 18775-18780.
doi: 10.1073/pnas.1407401112 |
[12] |
JIA H T, LI M F, LI W Y, LIU L, JIAN Y N, YANG Z X, SHEN X M, NING Q, DU Y F, ZHAO R, JACKSON D, YANG X H, ZHANG Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 1-11.
doi: 10.1038/s41467-019-13993-7 |
[13] |
NING Q, JIAN Y N, DU Y F, LI Y F, SHEN X M, JIA H T, ZHAO R, ZHAN J M, YANG F, JACKSON D, LIU L, ZHANG Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 1-10.
doi: 10.1038/s41467-020-20314-w |
[14] |
WANG J, LIN Z L, ZHANG X, LIU H Q, ZHOU L N, ZHONG S Y, LI Y, ZHU C, LIN Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist, 2019, 223(3): 1634-1646.
doi: 10.1111/nph.15890 |
[15] |
BOMMERT P, NAGASAWA N S, JACKSON D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013, 45(3): 334-337.
doi: 10.1038/ng.2534 |
[16] |
KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis 1. Crop Science, 1985, 25(1): 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[17] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.
doi: 10.1093/nar/8.19.4321 |
[18] |
LI T, QU J Z, WANG Y H, CHANG L G, HE K H, GUO D W, ZHANG X H, XU S T, XUE J Q. Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genetics, 2018, 19(1): 1-12.
doi: 10.1186/s12863-017-0594-3 |
[19] |
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, De BAKKER P I, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
doi: 10.1086/519795 |
[20] |
BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308 |
[21] |
JIANG Y, SCHMIDT R H, ZHAO Y S, REIF J C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nature Genetics, 2017, 49(12): 1741-1746.
doi: 10.1038/ng.3974 |
[22] |
GAO X Y, STARMER J, MARTIN E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 2008, 32(4): 361-369.
doi: 10.1002/gepi.20310 |
[23] | HUANG X H, YANG S H, GONG J Y, ZHAO Y, FENG Q, GONG H, LI W J, ZHAN Q L, CHENG B Y, XIA J H, CHEN N, HAO Z N, LIU K Y, ZHU C R, HUANG T, ZHAO Q, ZHANG L, FAN D L, ZHOU C C, LU Y Q, WENG Q J, WANG Z X, LI J Y, HAN B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 1-9. |
[24] | WANG K, LI M, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164-e164. |
[25] | 黄远樟, 刘来福. 作物数量遗传学基础——六、配合力: 不完全双列杂交. 遗传, 1980(2): 43-46. |
HUANG Y Z, LIU L F. The basis of quantitative genetics in crops: Ⅵ. Combining ability: Incomplete diallel cross. Hereditas, 1980(2): 43-46. (in Chinese) | |
[26] | 刘文童, 监立强, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米穗部性状及其一般配合力的关联分析. 植物遗传资源学报, 2020, 21(3): 706-715. |
LIU W T, JIAN L Q, GUO J J, ZHAO Y F, HUANG Y Q, CHEN J T, ZHU L Y. Association analysis of ear-related traits and their general combining ability in maize. Journal of Plant Genetic Resources, 2020, 21(3): 706-715. (in Chinese) | |
[27] |
CHEN J X, ZHOU H, XIE W B, XIA D, GAO G J, ZHANG Q L, WANG G W, LIAN X M, XIAO J H, HE Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17(11): 2211-2222.
doi: 10.1111/pbi.13134 |
[28] |
LI G L, DONG Y, ZHAO Y S, TIAN X K, WÜRSCHUM T, XUE J Q, CHEN S J, REIF J C, XU S T, LIU W X. Genome-wide prediction in a hybrid maize population adapted to Northwest China. The Crop Journal, 2020, 8(5): 830-842.
doi: 10.1016/j.cj.2020.04.006 |
[29] | SHULL G H. The composition of a field of maize. Journal of Heredity, 1908(1): 296-301. |
[30] | 王晖. 玉米全基因组关联分析多杂种群体的构建及其杂种优势和配合力的遗传分析[D]. 北京: 中国农业科学院, 2017. |
WANG H. Development of a maize multiple-hybrid population for genome-wide association studies and genetic analysis of heterosis and combining ability[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[31] |
LIU H J, WANG Q, CHEN M J, DING Y H, YANG X R, LIU J, LI X H, ZHOU C C, TIAN Q L, LU Y Q, FAN D L, SHI J P, ZHANG L, KANG C B, SUN M F, LI F Y, WU Y J, ZHANG Y Z, LIU B S, ZHAO X Y, FENG Q, YANG J L, HAN B, LAI J S, ZHANG X S, HUANG X H. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 2020, 18(1): 185-194.
doi: 10.1111/pbi.13186 |
[32] |
LU M, XIE C X, LI X H, HAO Z F, LI M S, WENG J F, ZHANG D G, BAI L, ZHANG S H. Mapping of quantitative trait loci for kernel row number in maize across seven environments. Molecular Breeding, 2011, 28(2): 143-152.
doi: 10.1007/s11032-010-9468-3 |
[33] |
LIU L, DU Y F, HUO D G, WANG M, SHEN X M, YUE B, QIU F Z, ZHENG Y L, YAN J B, ZHANG Z X. Genetic architecture of maize kernel row number and whole genome prediction. Theoretical and Applied Genetics, 2015, 128(11): 2243-2254.
doi: 10.1007/s00122-015-2581-2 |
[34] |
XIAO Y J, JIANG S Q, CHENG Q, WANG X Q, YAN J, ZHANG R Y, QIAO F, MA C, LUO J Y, LI W Q, LIU H J, YANG W Y, SONG W H, MENG Y J, WARBURTON M L, ZHAO J R, WANG X F, YAN J B. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 1-29.
doi: 10.1186/s13059-020-02207-9 |
[35] |
YAN J B, TANG H, HUANG Y Q, ZHENG Y L, LI J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149(1): 121-131.
doi: 10.1007/s10681-005-9060-9 |
[36] | MA J, CAO Y Y. Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction. Frontiers in Plant Science, 2021, 12: 1377. |
[37] |
XUE S, BRADBURY P J, CASSTEVENS T, HOLLAND J B. Genetic architecture of domestication-related traits in maize. Genetics, 2016, 204(1): 99-113.
doi: 10.1534/genetics.116.191106 |
[38] |
LI T, QU J Z, TIAN X K, LAO Y H, WEI N N, WANG Y H, HAO Y C, ZHANG X H, XUE J Q, XU S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Frontiers in Genetics, 2020, 11: 747.
doi: 10.3389/fgene.2020.00747 |
[39] |
XU C, ZHANG H, SUN J, GUO Z, ZOU C, LI W, XIE C, HUANG C, XU R, LIAO H, WANG J X, XU X J, WANG S H, XU Y B. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131(8): 1699-1714.
doi: 10.1007/s00122-018-3108-4 |
[40] |
WANG Z J, YUAN T T, YUAN C, NIU Y Q, SUN D Y, CUI S J. LFR, which encodes a novel nuclear-localized Armadillo-repeat protein, affects multiple developmental processes in the aerial organs in Arabidopsis. Plant Molecular Biology, 2009, 69(1): 121-131.
doi: 10.1007/s11103-008-9411-8 |
[41] |
YU X M, JIANG L L, WU R, MENG X C, ZHANG A, LI N, XIA Q, QI X, PANG J S, XU Z Y, LIU B. The core subunit of a chromatin-remodeling complex, ZmCHB101, plays essential roles in maize growth and development. Scientific Reports, 2016, 6(1): 1-13.
doi: 10.1038/s41598-016-0001-8 |
[42] |
PAUTLER M, EVELAND A L, LARUE T, YANG F, WEEKS R, LUNDE C, JE B I, MEELEY R, KOMATSU M, VOLLBRECHT E, SAKAI H, JACKSON D. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015, 27(1): 104-120.
doi: 10.1105/tpc.114.132506 |
[43] |
NI S, LI Z Z, YING J, ZHANG J C, CHEN H Q. Decreased Spikelets 4 encoding a novel tetratricopeptide repeat domain-containing protein is involved in DNA repair and spikelet number determination in rice. Genes, 2019, 10(3): 214.
doi: 10.3390/genes10030214 |
[44] |
GAO H R, GORDON-KAMM W J, LYZNIK L A. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene, 2004, 339: 25-37.
doi: 10.1016/j.gene.2004.06.047 |
[45] |
van BUEREN E L, BACKES G, De VRIEND H, ØSTERGÅRD H. The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica, 2010, 175(1): 51-64.
doi: 10.1007/s10681-010-0169-0 |
[1] | 张颖, 石婷瑞, 曹瑞, 潘文秋, 宋卫宁, 王利, 聂小军. ICARDA引进-小麦苗期抗旱性的全基因组关联分析[J]. 中国农业科学, 2024, 57(9): 1658-1673. |
[2] | 范虹, 殷文, 胡发龙, 樊志龙, 赵财, 于爱忠, 何蔚, 孙亚丽, 王凤, 柴强. 绿洲灌区密植对氮肥减量玉米产量的补偿潜力[J]. 中国农业科学, 2024, 57(9): 1709-1721. |
[3] | 许娜, 唐颖, 徐正进, 孙健, 徐铨. 籼粳杂种不育的遗传分析和候选基因鉴定[J]. 中国农业科学, 2024, 57(8): 1417-1429. |
[4] | 王程泽, 张燕, 付伟, 贾京哲, 董金皋, 申珅, 郝志敏. 玉米ACO基因家族生物信息学及表达模式分析[J]. 中国农业科学, 2024, 57(7): 1308-1318. |
[5] | 倪书辉, 史东梅, 盘礼东, 叶青, 伍俊豪. 紫色土坡耕地耕层持水抗旱性能及生产力对侵蚀程度的响应[J]. 中国农业科学, 2024, 57(7): 1350-1362. |
[6] | 赵真坚, 王凯, 陈栋, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 基因组和DNA甲基化组联合分析筛选猪肉质性状关键基因[J]. 中国农业科学, 2024, 57(7): 1394-1406. |
[7] | 高晨曦, 郝陆洋, 胡悦, 李永祥, 张登峰, 李春辉, 宋燕春, 石云素, 王天宇, 黎裕, 刘旭洋. 干旱条件下玉米转座子插入关联的表观调控分析[J]. 中国农业科学, 2024, 57(6): 1034-1048. |
[8] | 张博文, 赵丽雯, 徐璐, 李盼, 曾凡力, 孟亚南, 董金皋. 玉米大斑病菌细胞周期蛋白依赖性激酶结构亚基StCks1鉴定及其基因功能分析[J]. 中国农业科学, 2024, 57(5): 900-908. |
[9] | 王语, 张渝鹏, 朱冠亚, 廖航烯, 侯文峰, 高强, 王寅. 局部供氮对干旱胁迫下玉米苗期生长发育和水氮利用的影响[J]. 中国农业科学, 2024, 57(5): 919-934. |
[10] | 高尚洁, 刘杏认, 李迎春, 柳晓婉. 施用生物炭和秸秆还田对农田温室气体排放及增温潜势的影响[J]. 中国农业科学, 2024, 57(5): 935-949. |
[11] | 李乾川, 许世卫, 张永恩, 庄家煜, 李灯华, 刘保花, 朱之洵, 刘浩. 基于气象因素的玉米单产堆栈集成学习建模与预测[J]. 中国农业科学, 2024, 57(4): 679-697. |
[12] | 张必东, 林泓, 朱思颖, 李忠成, 庄慧, 李云峰. 水稻颖壳异常突变体ah1的鉴定与候选基因分析[J]. 中国农业科学, 2024, 57(3): 429-441. |
[13] | 石德杨, 李艳红, 王飞飞, 夏德君, 矫岩林, 孙妮娜, 赵健. 高密度下扩行缩株对夏玉米干物质与养分积累、转运的调控效应[J]. 中国农业科学, 2024, 57(23): 4658-4672. |
[14] | 曹文茁, 于振文, 张永丽, 张振, 石玉, 王永军. 不同施氮量下黑土地春玉米籽粒淀粉积累动态及产量形成差异[J]. 中国农业科学, 2024, 57(22): 4431-4443. |
[15] | 董奎军, 张亦涛, 刘瀚文, 张继宗, 王伟军, 温延臣, 雷秋良, 文宏达. 玉米大豆间作减量施氮对当季作物农艺性状、经济效益和后茬小麦产量的影响[J]. 中国农业科学, 2024, 57(22): 4495-4506. |
|