中国农业科学 ›› 2022, Vol. 55 ›› Issue (14): 2709-2725.doi: 10.3864/j.issn.0578-1752.2022.14.003
高仁才(),陈松鹤,马宏亮,莫飘,柳伟伟,肖云,张雪,樊高琼()
收稿日期:
2021-10-21
接受日期:
2022-04-15
出版日期:
2022-07-16
发布日期:
2022-07-26
联系方式:
高仁才,E-mail: 986916455@qq.com。
基金资助:
GAO RenCai(),CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong()
Received:
2021-10-21
Accepted:
2022-04-15
Published:
2022-07-16
Online:
2022-07-26
摘要:
【目的】冬春干旱频发和氮的过度施用限制了西南丘陵旱地雨养农业区小麦的产量与可持续发展,探讨秋闲期秸秆覆盖与氮肥减施对旱地小麦根系分布、产量及水氮吸收利用的影响,为优化四川旱地小麦耕作制度和绿色高质高效生产提供依据。【方法】试验于2016–2018年在四川省仁寿县四川农业大学试验基地进行,采用裂区设计,在夏玉米收获后,以秋闲期秸秆粉碎覆盖(SM)和不覆盖(NM)为主区,以不施氮(N0:0)、减氮(RN:120 kg N·hm-2)和常规施氮(CN:180 kg N·hm-2)为裂区,研究分析土壤含水量、根长、根系分布、小麦产量、耗水量(ET)、水分利用效率(WUE)和氮素利用情况。【结果】与不覆盖相比,秋闲期秸秆覆盖显著提高播种至孕穗期0—10 cm和10—20 cm土层含水量及播种时与拔节期0―100cm土层土壤贮水量,秸秆覆盖的保墒效应可持续至孕穗开花阶段;覆盖显著促进小麦拔节期和开花期耕层根系生长,尤其是0—10 cm土层根系直径增加、根长密度显著提高;覆盖下小麦总耗水量、WUE、氮素吸收量、播种至拔节期氮素积累速率、拔节至开花期氮素积累速率、氮素籽粒生产效率(NUEg)、氮肥农学效率(AEN)和氮肥偏生产力(NPFP)两年均值较不覆盖分别提高11.4%、71.8%、73.1%、119.0%、100.0%、3.6%、264.7%和78.2%;覆盖下氮肥回收效率(REN)较不覆盖增加44.4个百分点。覆盖后冬小麦有效穗数、穗粒数和产量两年均值较不覆盖分别提高31.8%、44.4%和92.9%。秸秆覆盖效应大于施氮量效应。与常规施氮量相比,减氮处理未显著降低0—10 cm土层根长密度、耗水量、水分利用效率与籽粒产量;覆盖结合减氮显著提高群体氮素籽粒生产效率、氮肥农学效率、氮肥偏生产力和氮肥回收效率。【结论】秋闲期秸秆覆盖提高播种至拔节期土壤水分含量和储量,促进拔节期小麦根系在表层土壤中的生长,进而促进氮素吸收利用、提高冬小麦产量与水肥利用效率;秋闲期覆盖结合120 kg·hm-2施氮量是适宜四川旱地冬小麦的减氮增效高产栽培技术模式。
高仁才, 陈松鹤, 马宏亮, 莫飘, 柳伟伟, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与减氮优化根系分布提高冬小麦产量及水氮利用效率[J]. 中国农业科学, 2022, 55(14): 2709-2725.
GAO RenCai, CHEN SongHe, MA HongLiang, MO Piao, LIU WeiWei, XIAO Yun, ZHANG Xue, FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution[J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
表1
试验区播前0—20 cm土层的土壤基础肥力"
年份 Year | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 有效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
2016-2017 | 7.62 | 17.46 | 1.03 | 0.59 | 18.90 | 93.35 | 11.27 | 153.91 |
2017-2018 | 7.69 | 16.17 | 1.04 | 0.56 | 21.07 | 84.52 | 12.38 | 174.87 |
表2
秋闲期秸秆覆盖与减氮对冬小麦氮素吸收量与积累速率的影响"
年份 Year | 处理 Treatment | 氮素吸收量 N accumulation amount (kg·hm-2) | 氮素积累速率 N accumulation rate (kg·hm-2·d-1) | |||||
---|---|---|---|---|---|---|---|---|
拔节期 Jointing | 开花期 Anthesis | 成熟期 Maturity | 播种—拔节期Sowing-jointing | 拔节—开花期Jointing-anthesis | 开花—成熟期Anthesis-maturity | |||
2016- 2017 | NM+N0 | 21.2e | 39.1e | 54.3e | 0.27e | 0.32b | 0.26c | |
NM+RN | 34.3d | 56.7d | 91.1d | 0.44d | 0.40b | 0.59a | ||
NM+CN | 36.3d | 59.6d | 97.3d | 0.47d | 0.42b | 0.65a | ||
均值Mean | 30.6 | 51.8 | 80.9 | 0.4 | 0.38 | 0.5 | ||
SM+N0 | 55.5c | 79.6c | 118c | 0.72c | 0.43b | 0.66a | ||
SM+RN | 74.6b | 119.7b | 144.9b | 0.97b | 0.81a | 0.43b | ||
SM+CN | 83.4a | 132.9a | 166.2a | 1.08a | 0.88a | 0.57a | ||
均值Mean | 71.2 | 107.6 | 143 | 0.92 | 0.71 | 0.56 | ||
F值F values | ||||||||
覆盖类型 M | 1599.2** | 497.7** | 2495.7** | 1626.4** | 580.9** | 32.2* | ||
施氮量 N levels | 118.6** | 116.2** | 170.9** | 117.4** | 21.3** | 5.9* | ||
覆盖类型×施氮量 M×N levels | 9.5** | 19.2* | 4.6* | 9.5** | 9.0** | 22.9** | ||
2017- 2018 | NM+N0 | 27.2e | 48.2e | 76.2e | 0.31e | 0.40c | 0.56b | |
NM+RN | 37.7d | 64.5d | 103.6d | 0.42d | 0.52bc | 0.85a | ||
NM+CN | 41.5d | 65.7d | 102.3d | 0.47d | 0.46c | 0.80a | ||
均值Mean | 35.5 | 59.5 | 94 | 0.4 | 0.46 | 0.74 | ||
SM+N0 | 57.6c | 92.4c | 132.3c | 0.65c | 0.67b | 0.87a | ||
SM+RN | 77.0b | 130.6b | 162.0b | 0.87b | 1.03a | 0.68ab | ||
SM+CN | 87.1a | 151.6a | 184.9a | 0.98a | 1.20a | 0.81a | ||
均值Mean | 73.9 | 124.9 | 159.7 | 0.83 | 0.97 | 0.79 | ||
F值F values | ||||||||
覆盖类型 M | 3806** | 5785.9** | 759.8** | 3579.1** | 1470.1** | ns | ||
施氮量 N levels | 45.7** | 131.6** | 102.2** | 45.6** | 12.4** | ns | ||
覆盖类型×施氮量 M×N levels | 5.3* | 35.1** | 13.2** | 5.3* | 7.0* | 11.4** |
表3
秋闲期秸秆覆盖与减氮对冬小麦产量与产量构成的影响"
年份 Year | 处理 Treatment | 有效穗数 Spike numbers (spike/m2) | 穗粒数 Grains per spike | 千粒重 1000-grain weight (g) | 产量 Grain yield (kg·hm-2) |
---|---|---|---|---|---|
2016-2017 | NM+N0 | 224.0b | 24.4d | 57.1a | 2553d |
NM+RN | 232.7b | 28.8c | 56.7ab | 3163c | |
NM+CN | 216.7b | 29.2c | 55.8c | 3178c | |
均值Mean | 224.5 | 27.5 | 56.5 | 2965 | |
SM+N0 | 306.6a | 38.6b | 56.1c | 6517b | |
SM+RN | 313.3a | 44.1a | 56.6b | 6712ab | |
SM+CN | 309.3a | 44.8a | 56.9ab | 7063a | |
均值Mean | 309.7 | 42.5 | 56.5 | 6764 | |
F值F values | |||||
覆盖类型 M | 396.7** | 221.5** | ns | 1051.0** | |
施氮量 N levels | Ns | 20.4** | 5.2* | 9.8** | |
覆盖类型×施氮量 M×N levels | Ns | ns | 41.5** | ns | |
2017-2108 | NM+N0 | 263.1b | 29.3c | 48.9d | 2800c |
NM+RN | 266.6b | 33.3c | 50.9b | 4457b | |
NM+CN | 262.2b | 33.3c | 51.9a | 4609b | |
均值Mean | 264 | 32 | 50.6 | 3955 | |
SM+N0 | 330.8a | 39.4b | 49.2d | 6340a | |
SM+RN | 332.6a | 44.8a | 50.3c | 6621a | |
SM+CN | 339.3a | 46.1a | 49.3d | 6801a | |
均值Mean | 334.2 | 43.4 | 49.6 | 6587 | |
F值F values | |||||
覆盖类型 M | 417.1** | 59.3* | 201.8** | 3179.3** | |
施氮量 N levels | Ns | 10.8** | 74.6** | 18.3** | |
覆盖类型×施氮量 M×N levels | Ns | ns | 50.3** | 7.5* |
表4
秋闲期秸秆覆盖与减氮对冬小麦水氮利用效率的影响"
年份 Year | 处理 Treatment | 水分利用效率 WUE (kg·hm-2·mm-1) | 氮素籽粒 生产效率 NUEg (kg·kg-1) | 氮肥生理效率PEN (kg·kg-1) | 氮肥农学效率 AEN (kg·kg-1) | 氮肥偏生产力 NPFP (kg·kg-1) | 氮肥回收率 REN (%) |
---|---|---|---|---|---|---|---|
2016- 2017 | NM+N0 | 13.4d | 47.1a | — | — | — | — |
NM+RN | 16.7c | 34.7c | 16.5b | 5.1c | 26.4c | 30.7c | |
NM+CN | 17.1c | 32.7c | 14.4b | 3.5c | 17.7d | 23.9c | |
均值Mean | 15.7 | 38.2 | 15.4 | 4.3 | 22 | 27.3 | |
SM+N0 | 32.3b | 33.6c | — | — | — | — | |
SM+RN | 33.6ab | 46.5a | 46.1a | 34.7a | 55.9a | 75.5a | |
SM+CN | 34.2a | 42.6b | 40.4a | 25.1b | 39.2b | 62.2b | |
均值Mean | 33.3 | 40.9 | 43.3 | 29.9 | 47.6 | 68.9 | |
F值F values | |||||||
覆盖类型 M | 627.5** | 42.7* | 95.8* | 1052.4** | 987.7** | 983.6** | |
施氮量 N levels | 10.3** | Ns | ns | 53.3** | 323.6** | 18.6* | |
覆盖类型×施氮量M×N levels | ns | 56.7** | ns | 27.1** | 32.1** | ns | |
2017- 2018 | NM+N0 | 19.1e | 37.8d | — | — | — | — |
NM+RN | 28.6d | 41.9bc | 53.6ab | 12.7c | 36.1c | 24.6c | |
NM+CN | 30.9c | 44.7ab | 62.9a | 9.9d | 25.4d | 15.7d | |
均值Mean | 26.2 | 41.5 | 58.2 | 11.3 | 30.8 | 20.2 | |
SM+N0 | 36.5b | 47.5a | — | — | — | — | |
SM+RN | 39.9a | 40.9c | 43.5bc | 31.8a | 55.2a | 73.3a | |
SM+CN | 39.6a | 36.8d | 36.2c | 22.2b | 37.8b | 61.6b | |
均值Mean | 38.7 | 41.7 | 39.8 | 27 | 46.5 | 67.4 | |
F值F values | |||||||
覆盖类型 M | 879.7** | ns | 21.6* | 1025** | 1100.5** | 490.7** | |
施氮量 N levels | 97.9** | ns | ns | 183.1** | 871.5** | 38.7* | |
覆盖类型×施氮量M×N levels | 59.6** | 43.7** | ns | 52.6** | 49.9** | ns |
表5
产量、水氮利用效率与根长及根长密度的相关分析"
项目Item | GY | WUE | TN | NUEg | PEN | AEN | NPFP | REN | ||
---|---|---|---|---|---|---|---|---|---|---|
拔节期 Jointing | 总根长TRL | 0.75* | 0.87** | 0.82** | 0.18 | 0.59 | 0.73* | 0.67* | 0.61 | |
根长密度RLD | 0-10 cm | 0.77* | 0.80** | 0.81** | 0.18 | 0.65 | 0.87** | 0.78* | 0.72* | |
10-20 cm | 0.00 | 0.16 | 0.22 | -0.20 | -0.52 | -0.23 | -0.19 | -0.02 | ||
20-30 cm | 0.41 | 0.72* | 0.43 | 0.21 | 0.57 | 0.23 | 0.25 | 0.09 | ||
30-40 cm | 0.60 | 0.86** | 0.59 | 0.28 | 0.68* | 0.45 | 0.45 | 0.28 | ||
开花期Anthesis | 总根长TRL | 0.51 | 0.79* | 0.54 | 0.21 | 0.60 | 0.25 | 0.27 | 0.10 | |
根长密度RLD | 0-10 cm | 0.53 | 0.80** | 0.56 | 0.19 | 0.62 | 0.24 | 0.25 | 0.07 | |
10-20 cm | 0.33 | 0.65 | 0.37 | 0.27 | 0.52 | 0.21 | 0.24 | 0.09 | ||
20-30 cm | 0.51 | 0.76* | 0.57 | 0.19 | 0.35 | 0.35 | 0.34 | 0.31 | ||
30-40 cm | 0.36 | 0.61 | 0.34 | 0.47 | 0.62 | 0.42 | 0.41 | 0.28 |
[1] | 于振文. 小麦产量与品质生理及栽培技术. 北京: 中国农业出版社, 2006. |
YU Z W. Physiology and Cultivation for Wheat Yield and Quality. Beijing: China Agriculture Press, 2006. (in Chinese) | |
[2] | 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2018. |
The State Statistics Bureau of the People’s Republic of China. Statistical Year Book of China. Beijing: China Statistical Publishing House, 2018. (in Chinese) | |
[3] |
SPIERTZ J H J. Nitrogen, sustainable agriculture and food security. A review. Agronomy for Sustainable Development, 2010, 30(1): 43-55.
doi: 10.1051/agro:2008064 |
[4] |
GHOSH P K, DAYAL D, BANDYOPADHYAY K K, MOHANTY M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crops Research, 2006, 99(2): 76-86.
doi: 10.1016/j.fcr.2006.03.004 |
[5] |
RAHMA A E, WANG W, TANG Z J, LEI T W, WARRINGTON D N, ZHAO J. Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agricultural and Forest Meteorology, 2017, 232: 141-151.
doi: 10.1016/j.agrformet.2016.07.015 |
[6] |
HU C L, ZHENG C, SADRAS V O, DING M, YANG X Y, ZHANG S L. Effect of straw mulch and seeding rate on the harvest index, yield and water use efficiency of winter wheat. Scientific Reports, 2018, 8(1): 386-388.
doi: 10.1038/s41598-017-18649-4 |
[7] |
LI R, HOU X Q, JIA Z K, HAN Q F, REN X L, YANG B P. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agricultural Water Management, 2013, 116: 101-109.
doi: 10.1016/j.agwat.2012.10.001 |
[8] |
TANG Y L, WU X L, LI C S, WU C, MA X L, HUANG G. Long-term effect of year-round tillage patterns on yield and grain quality of wheat. Plant Production Science, 2013, 16(4): 365-373.
doi: 10.1626/pps.16.365 |
[9] |
MAMILOV A S, BYZOV B A, ZVYAGINTSEV D G, DILLY O M. Predation on fungal and bacterial biomass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Applied Soil Ecology, 2001, 16(2): 131-139.
doi: 10.1016/S0929-1393(00)00109-8 |
[10] |
GOVAERTS B, SAYRE K D, DECHERS J. Stable high yields with zero tillage and permanent bed planting? Field Crops Research, 2005, 94(1): 33-42.
doi: 10.1016/j.fcr.2004.11.003 |
[11] | ZHANG P, WEI T, WANG H X, WANG M, MENG X P, MOU S W, ZHANG R, JIA Z K, HAN Q F. Effects of straw mulch on soil water and winter wheat production in dryland farming. Scientific Reports, 2015, 5: 10725. |
[12] | HOU X, LI R. Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China. Agricultural Water Management, 2019, 224: 105747. |
[13] | KADER M A, NAKAMURA K, SENGE M, MOJID M A, KAWASHIMA S. Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches. Agricultural Water Management, 2019, 223: 105707. |
[14] |
LI C S, LI J G, TANG Y L, WU X L, WU C, HUANG G, ZENG H. Stand establishment, root development and yield of winter wheat as affected by tillage and straw mulch in the water deficit hilly region of southwestern China. Journal of Integrative Agriculture, 2016, 15(7): 1480-1489.
doi: 10.1016/S2095-3119(15)61184-4 |
[15] |
DONG Q G, YANG Y C, YU K, FENG H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agricultural Water Management, 2018, 201: 133-143.
doi: 10.1016/j.agwat.2018.01.021 |
[16] |
SHAO Y H, XIE Y X, WANG C Y, YUE J Q, YAO Y Q, LI X D, LIU W X, ZHU Y J, GUO T C. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. European Journal of Agronomy, 2016, 81: 37-45.
doi: 10.1016/j.eja.2016.08.014 |
[17] |
吴晓丽, 汤永禄, 李朝苏, 吴春, 黄钢. 秋季玉米秸秆覆盖对丘陵旱地小麦生理特性及水分利用效率的影响. 作物学报, 2015, 41(6): 929-937.
doi: 10.3724/SP.J.1006.2015.00929 |
WU X L, TANG Y L, LI C S, WU C, HUANG G. Effects of autumn straw mulching on physiological characteristics and water use efficiency in winter wheat grown in hilly drought region. Acta Agronomica Sinica, 2015, 41(6): 929-937. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00929 |
|
[18] | 赵鹏, 陈阜. 豫北秸秆还田配施氮肥对冬小麦氮利用及土壤硝态氮的短期效应. 中国农业大学学报, 2008, 13(4): 19-23. |
ZAHO P, CHEN F. Short-term influences of straw and nitrogen cooperation on nitrogen use and soil nitrate content in North Henan. Journal of China Agricultural University, 2008, 13(4): 19-23. (in Chinese) | |
[19] | 李华. 旱地地表覆盖栽培的冬小麦产量形成和养分利用[D]. 杨凌: 西北农林科技大学, 2012. |
LI H. Grain yield formation and nutrient use of winter wheat under soil surface mulching on dryland[D]. Yangling: Northwest A&F University, 2012. (in Chinese) | |
[20] | GREGORY P J. Plant Roots: Growth, Activity and Interactions with Soils. Oxford: Blackwell Scientific, 2006: 318. |
[21] |
GEWIN V. Food: An underground revolution. Nature, 2010, 466: 552-553.
doi: 10.1038/466552a |
[22] |
MU X Y, ZHAO Y L, LIU K, JI B Y, GUO H B, XUE Z W, LI C H. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. European Journal of Agronomy, 2016, 78: 32-43.
doi: 10.1016/j.eja.2016.04.010 |
[23] | 冯福学, 黄高宝, 柴强, 于爱忠, 乔海军, 黄涛. 不同耕作措施对冬小麦根系时空分布和产量的影响. 生态学报, 2009, 29(5): 2499-2506. |
FENG F X, HUANG G B, CHAI Q, YU A Z, QIAO H J, HUANG T. Effects of different tillage on spatiotemporal distribution of winter wheat root and yield. Acta Ecologica Sinica, 2009, 29(5): 2499-2506. (in Chinese) | |
[24] | 任爱霞, 孙敏, 高志强, 王培如, 薛建福, 薛玲珠, 雷妙妙. 夏闲期覆盖配施氮肥对旱地小麦土壤水分及氮素利用的影响. 中国农业科学, 2017, 50(15): 2888-2903. |
REN A X, SUN M, GAO Z Q, WANG P R, XUE J F, XUE L Z, LEI M M. Effects of mulching during the fallow period and nitrogen fertilizer on soil water and plant nitrogen use of dry-land wheat. Scientia Agricultura Sinica, 2017, 50(15): 2888-2903. (in Chinese) | |
[25] | 毛安然, 赵护兵, 杨慧敏, 王涛, 陈秀文, 梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响. 中国农业科学, 2021, 54(3): 608-618. |
MAO A R, ZHAO H B, YANG H M, WANG T, CHEN X W, LIANG W J. Effects of different mulching periods and mulching practices on economic return and environment. Scientia Agricultura Sinica, 2021, 54(3): 608-618. (in Chinese) | |
[26] |
WANG Y, ZHANG X Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, LIU S R, MI G H, GAO Q. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agricultural Water Management, 2019, 212: 328-337.
doi: 10.1016/j.agwat.2018.09.010 |
[27] |
RATHORE V S, NATHAWAT N S, BHARDWAJ S, SASIDHARAN R P, YADAV B M, KUMAR M, SANTRA P, YADAVA N D, YADAV O P. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 2017, 187: 232-245.
doi: 10.1016/j.agwat.2017.03.031 |
[28] | 管大海. 不同水分条件与耕作方式对冬小麦,夏玉米根系和水分利用的影响及其化学调控[D]. 北京: 中国农业大学, 2014. |
GUAN D H. Effect of different water conditions and tillage practices on root growth and water use of winter wheat and summer maize and its chemical regulation[D]. Beijing: China Agriculture University, 2014. (in Chinese) | |
[29] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. (in Chinese) | |
[30] |
CHEN Y L, XIAO C X, WU D L, XIA T T, CHEN Q W, CHEN F J, YUAN L X, MI G H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. European Journal of Agronomy, 2015, 62: 79-89.
doi: 10.1016/j.eja.2014.09.008 |
[31] |
KOUTROUBAS S D, FOTIADIS S, DAMALAS C A. Biomass and nitrogen accumulation and translocation in spelt (Triticum spelta) grown in a Mediterranean area. Field Crops Research, 2012, 127: 1-8.
doi: 10.1016/j.fcr.2011.10.011 |
[32] | 戢林, 李廷轩, 张锡洲, 余海英, 郑子成. 氮高效利用基因型水稻生育后期氮素分配与转运特性. 应用生态学报, 2014, 25(4): 1036-1042. |
JI L, LI T X, ZHANG X Z, YU H Y, ZHENG Z C. Characteristics of distribution and transportation of rice genotype with high nitrogen utilization efficiency at the late growth stage. Chinese Journal of Applied Ecology, 2014, 25(4): 1036-1042. (in Chinese) | |
[33] |
CIAMPITTI I A, VYN T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 2011, 121(1): 2-18.
doi: 10.1016/j.fcr.2010.10.009 |
[34] |
吴晓丽, 李朝苏, 汤永禄, 李俊, 马孝玲, 李式昭, 黄明波. 四川盆地9000kg·ha-1产量潜力小麦品种的花后冠层结构、生理及同化物分配特性. 作物学报, 2017, 43(7): 1043-1056.
doi: 10.3724/SP.J.1006.2017.01043 |
WU X L, LI C S, TANG Y L, LI J, MA X L, LI S Z, HUANG M B. Canopy architecture, physiological characteristics and assimilate partitioning in wheat cultivars with 9000 kg·ha-1 yield potential in Sichuan Basin. Acta Agronomica Sinica, 2017, 43(7): 1043-1056. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01043 |
|
[35] | 柳伟伟, 马宏亮, 樊高琼, 李勇, 莫飘, 郭翔. 生态条件和施磷量对四川不同筋力型小麦籽粒产量与蛋白质品质的影响. 麦类作物学报, 2018, 38(3): 298-305. |
LIU W W, MA H L, FAN G Q, LI Y, MO P, GUO X. Effect of phosphorous application and location on grain yield and protein quality of different gluten type wheat in Sichuan province. Journal of Triticeae Crops, 2018, 38(3): 298-305. (in Chinese) | |
[36] | 武继承, 管秀娟, 杨永辉. 地面覆盖和保水剂对冬小麦生长和降水利用的影响. 应用生态学报, 2011, 22(1): 86-92. |
WU J C, GUAN X J, YANG Y H. Effects of ground cover and water retaining agent on winter wheat growth and precipitation utilization. Chinese Journal of Applied Ecology, 2011, 22(1): 86-92. (in Chinese) | |
[37] | 刘俊梅, 曲超, 杨学云, 张树兰. 播种密度对秸秆覆盖旱地冬小麦产量和土壤水分的影响. 西北农业学报, 2014, 23(9): 36-43. |
LIU J M, QU C, YANG X Y, ZHANG S L. Effects of seeding rate on winter wheat yield and soil water dynamics under straw mulching on dryland. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(9): 36-43. (in Chinese) | |
[38] | 范颖丹, 柴守玺, 程宏波, 陈玉章, 杨长刚, 黄彩霞, 常磊, 逄蕾. 覆盖方式对旱地冬小麦土壤水分的影响. 应用生态学报, 2013, 24(11): 3137-3144. |
FAN Y D, CHAI S X, CHENG H B, CHEN Y Z, YANG C G, HUANG C X, CHANG L, PANG L. Effects of mulching on soil moisture in a dryland winter wheat field, Northwest China. Chinese Journal of Applied Ecology, 2013, 24(11): 3137-3144. (in Chinese) | |
[39] | 王贺正, 张均, 徐国伟, 马超, 黄明, 李友军, 陈明灿, 付国占. 不同秸秆覆盖量对旱地小麦生理生化特性的影响. 干旱地区农业研究, 2018, 36(6): 131-136. |
WANG H Z, ZHANG J, XU G W, MA C, HUANG M, LI Y J, CHEN M C, FU G Z. Effect of straw mulching rates on physiological and biochemical characteristics of wheat in dryland. Agricultural Research in the Arid Areas, 2018, 36(6): 131-136. (in Chinese) | |
[40] |
韩浏, 陈玉章, 李瑞. 秸秆带状覆盖下旱地冬小麦生长和土壤水分动态差异. 核农学报, 2018, 32(9): 1831-1838.
doi: 10.11869/j.issn.100-8551.2018.09.1831 |
HAN L, CHEN Y Z, LI R. Effects of straw strip mulching on winter wheat growth and soil water dynamics in arid land. Journal of Nuclear Agricultural Sciences, 2018, 32(9): 1831-1838. (in Chinese)
doi: 10.11869/j.issn.100-8551.2018.09.1831 |
|
[41] | 马元喜, 王晨阳, 周继泽. 小麦根系主要生态效应研究. 河南农业大学学报, 1994, 28(1): 12-18. |
MA Y X, WANG C Y, ZHOU J Z. Study on the main ecological effects of wheat root systems. Journal of Henan Agricultural University, 1994, 28(1): 12-18. (in Chinese) | |
[42] |
LYNCH J P. Steep, cheap and deep: an ideotype to opimize water and N acquisition by maize root systems. Annals of Botany, 2013, 112: 347-357.
doi: 10.1093/aob/mcs293 |
[43] |
CHEN S H, GAO R C, XIANG X L, YANG H K, MA H L, ZHENG T, XIAO Y, ZHANG X, LI H, FAN G Q, YU Y. Straw mulching and nitrogen application altered ammonia oxidizers communities and improved soil quality in the alkaline purple soil of southwest China. AMB Express, 2021, 11: 52.
doi: 10.1186/s13568-021-01211-x |
[44] | YANG H K, WU G, MO P, CHEN S H, WANG S Y, XIAO Y, MA H L, WEN T, GUO X, FAN G Q. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil and Tillage Research, 2020, 197: 104485. |
[45] |
HUANG G B, CHAI Q, FENG F X, YU A Z. Effects of different tillage systems on soil properties, root growth, grain yield, and water use efficiency of winter wheat (Triticum aestivum L.) in arid Northwest China. Journal of Integrative Agriculture, 2012, 11(8): 1286-1296.
doi: 10.1016/S2095-3119(12)60125-7 |
[46] |
ZHANG S L, LI P R, YANG X Y, WANG Z H, CHEN X P. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil and Tillage Research, 2011, 112(1): 92-97.
doi: 10.1016/j.still.2010.11.006 |
[47] | 张素瑜, 王和洲, 杨明达, 王静丽, 贺德先. 水分与玉米秸秆还田对小麦根系生长和水分利用效率的影响. 中国农业科学, 2016, 49(13): 2484-2496. |
ZHANG S Y, WANG H Z, YANG M D, WANG J L, HE D X. Influence of returning corn stalks to field under different soil moisture contents on root growth and water use efficiency of wheat (Triticum aestivum L.). Scientia Agricultura Sinica, 2016, 49(13): 2484-2496. (in Chinese) |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[3] | 刘梦洁, 梁飞, 李全胜, 田宇欣, 王国栋, 贾宏涛. 膜下滴灌与细流沟灌对玉米生长及产量的影响[J]. 中国农业科学, 2023, 56(8): 1515-1530. |
[4] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[5] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[6] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[7] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[8] | 董秀, 张燕, MUNYAMPIRWA Tito, 陶海宁, 沈禹颖. 长期保护性耕作对黄土高原旱作农田土壤碳含量及转化酶活性的影响[J]. 中国农业科学, 2023, 56(5): 907-919. |
[9] | 贾晓昀, 王士杰, 朱继杰, 赵红霞, 李妙, 王国印. 陆地棉高密度遗传图谱的构建及产量相关性状的QTL定位[J]. 中国农业科学, 2023, 56(4): 587-598. |
[10] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
[11] | 刘丹, 安雨丽, 陶笑笑, 王孝忠, 吕典秋, 郭彦军, 陈新平, 张务帅. 西北地区制种玉米产量及氮素吸收对供氮水平的响应[J]. 中国农业科学, 2023, 56(3): 441-452. |
[12] | 赵建涛, 杨开鑫, 王旭哲, 马春晖, 张前兵. 施磷对苜蓿叶片生理参数及抗氧化能力的影响[J]. 中国农业科学, 2023, 56(3): 453-465. |
[13] | 刘明慧, 田虹雨, 刘之广, 巩彪. 减磷条件下含褪黑素的尿素缓释功能肥对番茄生长、产量、品质和磷素利用效率的影响[J]. 中国农业科学, 2023, 56(3): 519-528. |
[14] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[15] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
|