中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 51-60.doi: 10.3864/j.issn.0578-1752.2022.01.005
邓艾兴1(),刘猷红2(),孟英2,陈长青3,董文军2,李歌星1,张俊1(),张卫建1
收稿日期:
2021-03-07
接受日期:
2021-06-03
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
张俊
作者简介:
邓艾兴,E-mail: 基金资助:
DENG AiXing1(),LIU YouHong2(),MENG Ying2,CHEN ChangQing3,DONG WenJun2,LI GeXing1,ZHANG Jun1(),ZHANG WeiJian1
Received:
2021-03-07
Accepted:
2021-06-03
Online:
2022-01-01
Published:
2022-01-07
Contact:
Jun ZHANG
摘要:
【背景】水稻是我国最重要的口粮作物。东北稻区不仅是我国高纬度优质粳稻的重要产区,约占我国粳稻总产50%以上;也是我国气候变暖最明显区域,近半个世纪来该区年平均气温上升了1.1℃。【目的】研究气候变暖情境下东北稻区水稻产量和品质的变化,为保障我国优质粳稻生产提供参考依据。【方法】结合田间开放式远红外增温装置,设置全生育期增温1.5℃和不增温处理,分析田间开放式增温1.5℃对高纬度粳稻生育期、产量及产量构成、加工品质、外观品质、营养品质和蒸煮品质的影响。【结果】与不增温相比,2017年和2018年增温处理的水稻全生育期天数分别减少了6—7 d和4—5 d,主要表现在抽穗前天数缩短;增温处理下龙稻5号和龙稻18两年平均产量分别提高了5.8%和14.4%,其主要得益于单位面积的有效穗数增加;增温显著降低了籽粒中直链淀粉含量,但对糙米率、精米率、整精米率和蛋白质含量影响不大;增温有增加水稻淀粉峰值黏度、热浆黏度和最终黏度,降低淀粉消减值的趋势,但对回生值无显著影响。【结论】基于高纬度稻区较低的背景温度,增温1.5℃对水稻产量和稻米蒸煮品质具有一定的促进作用,但未来增温幅度升高将会加大该稻区稻米品质变化的不确定性。
邓艾兴,刘猷红,孟英,陈长青,董文军,李歌星,张俊,张卫建. 田间增温1.5℃对高纬度粳稻产量和品质的影响[J]. 中国农业科学, 2022, 55(1): 51-60.
DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area[J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
表1
水稻生长期内各阶段增温效果"
年份 Year | 处理Treatment | 移栽至成熟 Transplanting to maturity | 移栽至抽穗 Transplanting to heading stage | 抽穗至成熟 Heading stage to maturity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
日均 Daily | 白天 Daytime | 夜间 Nighttime | 日均 Daily | 白天 Daytime | 夜间 Nighttime | 日均 Daily | 白天 Daytime | 夜间 Nighttime | ||
2017 | ET | 23.6 | 26.9 | 20.5 | 24.2 | 27.0 | 21.2 | 23.1 | 26.8 | 19.7 |
CK | 22.0 | 25.9 | 18.2 | 23.2 | 26.4 | 19.8 | 21.0 | 25.4 | 16.7 | |
ΔT | 1.6 | 1.0 | 2.3 | 1.0 | 0.6 | 1.4 | 2.1 | 1.4 | 3.0 | |
2018 | ET | 22.8 | 24.8 | 20.7 | 24.7 | 25.7 | 21.7 | 22.8 | 23.7 | 19.3 |
CK | 21.5 | 23.8 | 19.2 | 23.7 | 24.9 | 20.3 | 21.4 | 22.4 | 17.9 | |
ΔT | 1.3 | 1.0 | 1.4 | 1.0 | 0.8 | 1.4 | 1.4 | 1.3 | 1.4 |
表2
全生育期增温对高纬度粳稻生育进程的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 播种期 SD (M-D) | 移栽期 TS (M-D) | 拔节期 BS (M-D) | 齐穗期 HS (M-D) | 成熟期 MS (M-D) | 全生育期 WGD (d) | 播种—齐穗 SW to HS (d) | 齐穗—成熟 HS to MS (d) |
---|---|---|---|---|---|---|---|---|---|---|
2017 | 龙稻5号 Longdao 5 | ET | 04-15 | 05-17 | 07-07 | 07-26 | 09-10 | 148 | 102 | 46 |
CK | 04-15 | 05-17 | 07-10 | 07-30 | 09-15 | 153 | 106 | 47 | ||
龙稻18 Longdao 18 | ET | 04-15 | 05-17 | 07-04 | 07-20 | 09-05 | 143 | 96 | 47 | |
CK | 04-15 | 05-17 | 07-07 | 07-26 | 09-12 | 150 | 102 | 48 | ||
2018 | 龙稻5号 Longdao 5 | ET | 04-15 | 05-18 | 07-06 | 07-24 | 09-05 | 143 | 100 | 43 |
CK | 04-15 | 05-18 | 07-10 | 07-27 | 09-10 | 148 | 103 | 45 | ||
龙稻18 Longdao 18 | ET | 04-15 | 05-18 | 07-08 | 07-27 | 09-08 | 146 | 103 | 43 | |
CK | 04-15 | 05-18 | 07-12 | 07-29 | 09-12 | 150 | 105 | 45 |
表3
增温对高纬度粳稻产量及产量构成的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 产量 Yield (t·hm-2) | 穗数 Panicles (panicle/m2) | 穗粒数 Spikelet per panicle | 结实率 Grain setting rate (%) | 千粒重 1000-grain weight (g) |
---|---|---|---|---|---|---|---|
2017 | 龙稻5号 Longdao 5 | ET | 9.1a | 450.0a | 97.9a | 87.3a | 23.8a |
CK | 9.0a | 430.6a | 101.4a | 84.7a | 24.5a | ||
龙稻18 Longdao 18 | ET | 9.9a | 425.0a | 114.4a | 85.3a | 23.9a | |
CK | 8.8a | 391.7a | 121.1a | 75.3b | 24.6a | ||
2018 | 龙稻5号 Longdao 5 | ET | 8.4a | 517.5a | 63.6b | 95.7a | 24.9a |
CK | 7.6a | 438.3b | 74.4a | 94.7a | 23.7a | ||
龙稻18 Longdao 18 | ET | 7.9a | 434.5a | 70.3a | 94.0a | 25.7a | |
CK | 6.8a | 430.7a | 79.7a | 94.7a | 24.0b | ||
F值F-value | |||||||
年份Year (Y) | 17.1** | 6.1* | 126.0** | 51.8** | 1.8 | ||
品种Cultivar (C) | 0 | 9.5** | 13.6** | 4.1 | 1.8 | ||
温度Temperature (T) | 2.8 | 7.3* | 5.4* | 4.1 | 2.1 | ||
Y×C | 0.4 | 0.3 | 3.4 | 2.3 | 0.8 | ||
Y×T | 0.1 | 0.4 | 0.6 | 3.7 | 16.5** | ||
C×T | 0 | 1.5 | 0 | 0.8 | 0.3 | ||
Y×C×T | 1.8 | 3.2 | 0.1 | 2 | 0.2 |
表4
增温对东北水稻加工和外观品质的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 糙米率 Brown rice rate (%) | 精米率 Milled rice rate (%) | 整精米率 Head rice rate (%) | 垩白粒率 Chalkness grain rate (%) | 粒长 Grain length (cm) | 粒宽 Grain width (cm) |
---|---|---|---|---|---|---|---|---|
2017 | 龙稻5号 Longdao 5 | ET | 81.2a | 72.5a | 64.4a | 7.5a | 4.1a | 2.5a |
CK | 80.7a | 70.3a | 66.4a | 7.9a | 4.3a | 2.6a | ||
龙稻18 Longdao 18 | ET | 80.5a | 69.9a | 64.5a | 7.7a | 5.1a | 2.3a | |
CK | 78.5a | 66.8b | 62.7a | 7.2a | 5.2a | 2.3a | ||
2018 | 龙稻5号 Longdao 5 | ET | 82.9a | 73.4a | 70.2a | 2.3a | 4.2a | 2.6a |
CK | 82.9a | 73.9a | 68.2a | 2.3a | 4.2a | 2.6a | ||
龙稻18 Longdao 18 | ET | 83.4a | 73.2a | 70.3a | 2.0a | 5.2a | 2.4a | |
CK | 82.9a | 70.9a | 68.8a | 1.8a | 5.1a | 2.4a | ||
F值F-value | ||||||||
年份Year (Y) | 12.2** | 8.2* | 8.8* | 212.5** | 0 | 11.2* | ||
品种Cultivar (C) | 0.6 | 8.2* | 2 | 0.8 | 335.3** | 281.4** | ||
温度Temperature (T) | 0.9 | 1.2 | 0 | 0 | 2.4 | 2.1 | ||
Y×C | 1.1 | 0.1 | 0 | 0.1 | 0 | 0.8 | ||
Y×T | 0.4 | 1.3 | 0 | 0 | 3.1 | 6.9* | ||
C×T | 0.3 | 1.1 | 0 | 0.6 | 0.2 | 0.5 | ||
Y×C×T | 0.1 | 1.9 | 2.1 | 0.2 | 0 | 0 |
表5
增温对高纬度粳稻淀粉RVA特性的影响"
年份 Year | 品种 Cultivar | 处理 Treatment | 峰值黏度 PKV (cP) | 热浆黏度 HPV (cP) | 崩解值 BDV (cP) | 最终黏度 CPV (cP) | 回生值 CSV (cP) | 消减值 SBV (cP) | 起始糊化温度 PaT (℃) |
---|---|---|---|---|---|---|---|---|---|
2017 | 龙稻5号 Longdao 5 | ET | 2159a | 1151a | 1002a | 2380a | 1229a | 221b | 86.2a |
CK | 1896b | 1075b | 820b | 2267a | 1192a | 369a | 87.7a | ||
龙稻18 Longdao 18 | ET | 2407a | 1670a | 732a | 2855a | 1185a | 445b | 89.6a | |
CK | 2196a | 1409b | 785a | 2690a | 1281a | 492a | 89.3a | ||
2018 | 龙稻5号 Longdao 5 | ET | 2505a | 1215a | 1289a | 2432a | 1217a | -72a | 73.4a |
CK | 2412a | 1200a | 1212a | 2412a | 1212a | 0a | 79.3a | ||
龙稻18 Longdao 18 | ET | 2653a | 1576a | 1077a | 2807a | 1230a | 154a | 75.9a | |
CK | 2623a | 1538a | 1085a | 2798a | 1260a | 175a | 78.4a | ||
F值F-value | |||||||||
年份Year (Y) | 74.5** | 3.2 | 192.9** | 3.3 | 0.4 | 208.6** | 38.9** | ||
品种Cultivar (C) | 26.1** | 155.2** | 45.6* | 137.7** | 4.1 | 72.1** | 0.8 | ||
温度Temperature (T) | 11.2** | 9.8** | 4.3 | 4.7* | 2.6 | 10.8** | 1.7 | ||
Y×C | 1.1 | 1.5 | 0.1 | 1.0 | 0.1 | 0.4 | 0.2 | ||
Y×T | 3.9 | 5.2 | 0.4 | 3.1 | 0.4 | 1.3 | 1.0 | ||
C×T | 0.4 | 2.8 | 11.3** | 0.1 | 10.3** | 3.0 | 0.5 | ||
Y×C×T | 0.0 | 1.7 | 2.5 | 0.2 | 3.6 | 0.3 | 0.0 |
[1] | IPCC. Summary for policymakers//MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, ROBERTS D, SKEA J, SHUKLA P R. eds. Global Warming of 1.5°C. Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Switzerland, 2018. |
[2] | 国家统计局. 2019年中国统计年鉴. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics. China Statistical Yearbook 2019. Beijing: China Statistics Press, 2019. (in Chinese) | |
[3] | 张卫建, 陈长青, 江瑜, 张俊, 钱浩宇. 气候变暖对我国水稻生产的综合影响及其应对策略. 农业环境科学学报, 2020, 39(4): 805-811. |
ZHANG W J, CHEN C Q, JIANG Y, ZHANG J, QIAN H Y. Comprehensive influence of climate warming on rice production and counter measure for food security in China. Journal of Agro-Environment Science, 2020, 39(4): 805-811. (in Chinese) | |
[4] | 王晓煜, 杨晓光, 吕硕, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅻ.气候变暖对黑龙江寒地水稻安全种植区域和冷害风险的影响. 中国农业科学, 2016, 49(10): 1859-1871. |
WANG X Y, YANG X G, LÜ S, CHEN F. The possible effects of global warming on cropping systems in China Ⅻ. The possible effects of climate warming on geographical shift in safe planting area of rice in cold areas and the risk analysis of chilling damage. Scientia Agricultura Sinica, 2016, 49(10): 1859-1871. (in Chinese) | |
[5] | 张卫建, 陈金, 徐志宇, 陈长青, 邓艾兴, 钱春荣, 董文军. 东北稻作系统对气候变暖的实际响应与适应. 中国农业科学, 2012, 45(7): 1265-1273. |
ZHANG W J, CHEN J, XU Z Y, CHEN C Q, DENG A X, QIAN C R, DONG W J. Actual responses and adaptations of rice cropping system to global warming in Northeast China. Scientia Agricultura Sinica, 2012, 45(7): 1265-1273. (in Chinese) | |
[6] | 张佳华, 张健南, 姚凤梅, 门艳忠, 高西宁. 开放式增温对东北稻田生态系统作物生长与产量的影响. 生态学杂志, 2013, 32(1): 15-21. |
ZHANG J H, ZHANG J N, YAO F M, MEN Y Z, GAO X N. Effects of free air temperature increasing on the rice growth and grain yield in Northeast China. Chinese Journal of Ecology, 2013, 32(1): 15-21. (in Chinese) | |
[7] | 徐漫, 贾东, 卢晶晶, 孙雅君, 宋双, 杜晗, 韩雷. 花后开放式增温对水稻生产的影响. 北方水稻, 2018, 48(1): 17-21. |
XU M, JIA D, LU J J, SUN Y J, SONG S, DU H, HAN L. Effects of different day and night temperature enhancements on rice production after anthesis under free air controlled condition. North Rice, 2018, 48(1): 17-21. (in Chinese) | |
[8] | 宋晓雯, 王国骄, 孙备, 刘春溪, 宛涛, 李美松, 殷红, 隋明. 开放式增温对不同耐热性粳稻光合作用和产量的影响. 沈阳农业大学学报, 2019, 50(6): 648-655. |
SONG X W, WANG G J, SUN B, LIU C X, WAN T, LI M S, YIN H, SUI M. Effects of free air temperature increasing on photosynthesis and yield of japonica rice with different heat-tolerance characteristics. Journal of Shenyang Agricultural University, 2019, 50(6): 648-655. (in Chinese) | |
[9] | 刘春溪. 开放式增温对北方粳稻光合特性和产量的影响研究[D]. 沈阳: 沈阳农业大学, 2019. |
LIU C X. Effects of open temperature increasing on photosynthetic characteristics and yield of japonica rice in North of China[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese) | |
[10] |
CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JIANG Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: 100359.
doi: 10.1016/j.gfs.2020.100359 |
[11] | 程方民, 胡东维, 丁元树. 人工控温条件下稻米垩白形成变化及胚乳扫描结构观察. 中国水稻科学, 2000, 14(2): 83-87. |
CHENG F M, HU D W, DING Y S. Dynamic change of chalkiness and observation of grain endosperm structure with scanning electron microscope under controlled temperature condition. Chinese Journal of Rice Science, 2000, 14(2) :83-87. (in Chinese) | |
[12] |
ARSHAD M S, FAROOQ M, ASCH F, KRISHNA J S V, PRASAD P V V, SIDDIQUE K H M. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115: 57-72.
doi: 10.1016/j.plaphy.2017.03.011 |
[13] | 张敬奇. 花后开放式增温对水稻产量与品质的影响研究[D]. 南京: 南京农业大学, 2012. |
ZHANG J Q. Effect of temperature free-air controlled enhancement after flowering on rice yield and quality[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese) | |
[14] |
SIDDIK M A, ZHANG J, CHEN J, QIAN H Y, JIANG Y, RAHEEM A K, DENG A X, SONG Z W, ZHENG C Y, ZHANG W J. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. European Journal of Agronomy, 2019, 106: 30-38.
doi: 10.1016/j.eja.2019.03.004 |
[15] | 窦志. 灌浆期开放式增温对水稻籽粒灌浆和品质的影响及氮素粒肥的调控效应[D]. 南京: 南京农业大学, 2017. |
DOU Z. Effects of free-air warming during grain filling stage on rice grain filling and quality and the regulation effects of nitrogen spikelet fertilizer[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
[16] | 杨陶陶, 胡启星, 黄山, 曾研华, 谭雪明, 曾勇军, 潘晓华, 石庆华, 张俊. 双季优质稻产量和品质形成对开放式主动增温的响应. 中国水稻科学, 2018, 32(6): 572-580. |
YANG T T, HU Q X, HUANG S, ZENG Y H, TAN X M, ZENG Y J, PAN X H, SHI Q H, ZHANG J. Response of yield and quality of double-cropping high quality rice cultivars under free-air temperature increasing. Chinese Journal of Rice Science, 2018, 32(6): 572-580. (in Chinese) | |
[17] | 董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫建. 开放式昼夜不同增温对单季稻影响的试验研究. 生态学报, 2011, 31(8): 2169-2177. |
DONG W J, DENG A X, ZHANG B, TIAN Y L, CHEN J, YANG F, ZHANG W J. An experimental study on the effects of different diurnal warming regimes on single cropping rice with Free Air Temperature Increased (FATI) facility. Acta Ecologica Sinica, 2011, 31(8): 2169-2177. | |
[18] |
KIM J, SHON J, LEE C K, YANG W, YOON Y, YANG W H, KIM Y G, LEE B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research, 2011, 122: 207-213.
doi: 10.1016/j.fcr.2011.03.014 |
[19] |
SHI W J, MUTHURAJAN R, RAHMAN H, SELVAM J, PENG S B, ZOU Y B, JAGADISH K S V. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist, 2013, 197(3): 825-837.
doi: 10.1111/nph.2013.197.issue-3 |
[20] | 杨陶陶, 双季籼稻产量和稻米品质对增温的响应特征及其机理[D]. 南昌: 江西农业大学, 2020. |
YANG T T. Response of indica grain yield and grain quality to experimental warming in a double rice cropping system and its mechanism[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese) | |
[21] |
DONG W J, CHEN J, ZHANG B, TIAN Y L, ZHANG W J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Research, 2011, 123(3): 259-265.
doi: 10.1016/j.fcr.2011.05.024 |
[22] |
CAI C, YIN X Y, HE S Q, JIANG W Y, SI C F, STRUIK P C, LUO W H, LI G, XIE Y T, XIONG Y, PAN G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016, 22(2): 856-874.
doi: 10.1111/gcb.13065 |
[23] | 沈直, 唐设, 张海祥, 陈文珠, 丁艳锋, 王绍华. 灌浆期开放式增温对水稻强势粒和弱势粒淀粉代谢关键酶相关基因表达水平的影响. 南京农业大学学报, 2016, 39(6): 898-906. |
SHEN Z, TANG S, ZHANG H X, CHEN W Z, DING Y F, WANG S H. Effect of T-FACE high temperature on genes expression level of key enzymes involved in starch metabolism in superior spikelets and inferior spikelets of rice during grain filling period. Journal of Nanjing Agricultural University, 2016, 39(6): 898-906. (in Chinese) | |
[24] |
DOU Z, TANG S, CHEN W Z, ZHANG H X, LI G H, LIU Z H, DING C Q, CHEN L, WANG S H, ZHANG H C, DING Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. Journal of Cereal Science, 2018, 81: 118-126.
doi: 10.1016/j.jcs.2018.04.004 |
[25] | 杨志远. 增温对水稻生长发育、产量以及稻米品质的影响[D]. 武汉: 华中农业大学, 2018. |
YANG Z Y. Effects of warming treatments on the growth and development, yield and quality of rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
[26] |
YANG T T, TAN X M, HUANG S, PAN X H, SHI Q H, ZENG Y J, ZHANG J, ZENG Y H. Effects of experimental warming on physicochemical properties of indica rice starch in a double rice cropping system. Food Chemistry, 2020, 310: 125981.
doi: 10.1016/j.foodchem.2019.125981 |
[27] |
XIONG W, HOLMAN I P, YOU L Z, YANG J, WU W. Impacts of observed growing-season warming trends since 1980 on crop yields in China. Regional Environmental Change, 2014, 14(1): 7-16.
doi: 10.1007/s10113-013-0418-6 |
[28] |
TAO F L, ZHANG Z, SHI W J, LIU Y J, XIAO D P, ZHANG S, ZHU Z, WANG M, LIU F S. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Global Change Biology, 2013, 19(10): 3200-3209.
doi: 10.1111/gcb.2013.19.issue-10 |
[29] | 程方民, 张嵩午. 水稻籽粒灌浆过程中稻米品质动态变化及温度影响效应. 浙江大学学报(农业与生命科学版), 1999(4): 7-10. |
CHENG F M, ZHANG S W. The dynamic change of rice quality during the grain filling stage and effects of temperature upon it. Journal of Zhejiang University (Agriculture & Life Science), 1999(4): 7-10. (in Chinese) | |
[30] |
TANG S, CHEN W Z, LIU W Z, ZHOU Q Y, ZHANG H X, WANG S H, DING Y F. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice. Journal of Cereal Science, 2018, 84: 20-29.
doi: 10.1016/j.jcs.2018.09.013 |
[31] | LYMAN N B, JAGADISH K S, NALLEY L L, DIXON B L, SIBENMORGEN T. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS ONE, 2013, 8(8): 1-12. |
[32] |
CHEN J L, TANG L, SHI P H, YANG B H, SUN T, CAO W X, ZHU Y. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma, 2017, 254(2): 935-943.
doi: 10.1007/s00709-016-1002-y |
[33] | 张桂莲, 张顺堂, 王力, 肖应辉, 唐文帮, 陈光辉, 陈立云. 抽穗结实期不同时段高温对稻米品质的影响. 中国农业科学, 2013, 46(14): 2869-2879. |
ZHANG G L, ZHANG S T, WANG L, XIAO Y H, TANG W B, CHEN G H, CHEN L Y. Effects of high temperature at different times during heading and filling periods on rice quality. Scientia Agricultura Sinica, 2013, 46(14): 2869-2879. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[8] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|