中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 61-73.doi: 10.3864/j.issn.0578-1752.2022.01.006
冯晨1,2(),黄波3,4(),冯良山1,2,郑家明1,2,白伟1,2,杜桂娟1,2,向午燕1,2,蔡倩1,2,张哲1,2,孙占祥1,2()
收稿日期:
2021-02-26
接受日期:
2021-04-28
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
孙占祥
作者简介:
冯晨,E-mail: 基金资助:
FENG Chen1,2(),HUANG Bo3,4(),FENG LiangShan1,2,ZHENG JiaMing1,2,BAI Wei1,2,DU GuiJuan1,2,XIANG WuYan1,2,CAI Qian1,2,ZHANG Zhe1,2,SUN ZhanXiang1,2()
Received:
2021-02-26
Accepted:
2021-04-28
Online:
2022-01-01
Published:
2022-01-07
Contact:
ZhanXiang SUN
摘要:
【目的】通过研究不同配置条件下玉米‖花生间作系统地上部氮含量和吸收量,结合间作系统花生结瘤固氮和土壤有效氮分布,明确不同配置下玉米‖花生间作体系对氮素的吸收利用特征,为玉米‖花生间作氮高效利用模式的区域筛选提供依据。【方法】本试验于2015—2016年在国家农业环境阜新观测实验站进行,设置玉米单作(M)、花生单作(P)、2行玉米4行花生间作(M2P4)和4行玉米4行花生间作(M4P4)模式,玉米单作及每种间作模式下设3种不同玉米种植密度(6、9和12株/m2),共10个处理,分析不同配置(行比和密度)玉米‖花生间作系统氮素吸收利用特征和优势。【结果】与单作相比,间作玉米和花生植株氮浓度变化并不明显,受作物占地比例影响,间作模式下玉米和花生的产量、氮产量均低于相应单作,且氮产量与间作生物产量表现相一致。玉米‖花生间作可以显著提高系统氮的吸收利用(氮吸收当量比NER>1),且主要归因于玉米的养分吸收优势(pNERm为0.63—0.80)。随着玉米行比和密度的增加NER也随之增大,其中M4P4模式(NER 1.06—1.22)的氮吸收要显著高于M2P4模式(NER 1.0—1.06)。在玉米‖花生间作系统中,玉米比花生更有竞争力(Amp>0),且竞争吸收氮养分能力也更强(CRmp>1),M4P4行比以及玉米增密有助于增强玉米对氮营养的竞争,增加系统氮养分吸收优势(△NU>0)以及间作养分对产量的贡献(C)。与玉米间作可促进花生结瘤固氮,M4P4行比配置下花生根瘤数量、单株根瘤重量和单个瘤重均高于M2P4配置,且以中、低密度处理为优。间作系统中土壤有效氮含量(Nmin)表现为花生条带土壤Nmin高于玉米条带,且单作花生土壤Nmin高于间作花生,而单作玉米土壤Nmin低于间作玉米。【结论】玉米‖花生间作可显著提高系统氮的吸收利用,其中玉米对系统氮吸收的贡献较大,适度增加玉米行比和密度有助于增加系统氮素吸收当量比、增强玉米对氮营养的竞争以及间作养分对产量的贡献。综合分析认为,本研究中M4P4-6和M4P4-8为玉米‖花生间作较佳配置,玉米花生种间互作对间作系统干物质量和花生生物固氮的促进,以及玉米在吸收氮养分上的强竞争能力是玉米‖花生间作具有氮素吸收利用优势的重要原因。
冯晨,黄波,冯良山,郑家明,白伟,杜桂娟,向午燕,蔡倩,张哲,孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61-73.
FENG Chen,HUANG Bo,FENG LiangShan,ZHENG JiaMing,BAI Wei,DU GuiJuan,XIANG WuYan,CAI Qian,ZHANG Zhe,SUN ZhanXiang. Effects of Different Configurations on Nitrogen Uptake and Utilization Characteristics of Maize-Peanut Intercropping System in West Liaoning[J]. Scientia Agricultura Sinica, 2022, 55(1): 61-73.
表1
试验处理及代号"
序号No. | 处理 Treatment | 代号Code |
---|---|---|
1 | 单作花生 Sole peanut | P |
2 | 单作玉米(密度6株/m2,即4 000株/亩) Sole maize (density 6 plants/m2) | M-4 |
3 | 单作玉米(密度9株/m2,即6 000株/亩) Sole maize (density 9 plants/m2) | M-6 |
4 | 单作玉米(密度12株/m2,即8 000株/亩) Sole maize (density 12 plants/m2) | M-8 |
5 | 玉米花生间作2:4(玉米密度6株/m2) Maize-peanut intercropping 2:4 (maize density 6 plants/m2) | M2P4-4 |
6 | 玉米花生间作2:4(玉米密度9株/m2) Maize-peanut intercropping 2:4 (maize density 9 plants/m2) | M2P4-6 |
7 | 玉米花生间作2:4(玉米密度12株/m2) Maize-peanut intercropping 2:4 (maize density 12 plants/m2) | M2P4-8 |
8 | 玉米花生间作4:4(玉米密度6株/m2) Maize-peanut intercropping 4:4 (maize density 6 plants/m2) | M4P4-4 |
9 | 玉米花生间作4:4(玉米密度9株/m2) Maize-peanut intercropping 4:4 (maize density 9 plants/m2) | M4P4-6 |
10 | 玉米花生间作4:4(玉米密度12株/m2) Maize-peanut intercropping 4:4 (maize density 12 plants/m2) | M4P4-8 |
表2
不同间作配置下玉米与花生的氮产量及氮吸收当量比(2015—2016)"
年份 Year | 间作配置 Configuration | 玉米氮产量 N yield of maize (kg·hm-2) | 花生氮产量 N yield of peanut (kg·hm-2) | 氮吸收当量比 NER | ||||
---|---|---|---|---|---|---|---|---|
间作 Intercropping | 单作 Sole | 间作 Intercropping | 单作Sole | pNERm | pNERp | NER | ||
2015 | M2P4-4 | 103.6 | 157.5 | 67.4 | 201.7 | 0.66 | 0.34 | 1.00 |
M2P4-6 | 122.4 | 175.5 | 66.2 | 0.70 | 0.33 | 1.03 | ||
M2P4-8 | 127.9 | 180.2 | 70.2 | 0.71 | 0.36 | 1.07 | ||
M4P4-4 | 101.2 | 157.5 | 77.3 | 0.64 | 0.39 | 1.03 | ||
M4P4-6 | 121.6 | 175.5 | 80.4 | 0.69 | 0.41 | 1.10 | ||
M4P4-8 | 144.1 | 180.2 | 77.8 | 0.80 | 0.39 | 1.19 | ||
SE | 8.78 | 5.40 | 2.77 | 18.3 | 0.040 | 0.037 | 0.065 | |
2016 | M2P4-4 | 101.9 | 154.7 | 66.5 | 196.7 | 0.66 | 0.34 | 1.00 |
M2P4-6 | 108.1 | 164.9 | 67.5 | 0.66 | 0.35 | 1.00 | ||
M2P4-8 | 115.3 | 160.5 | 66.4 | 0.72 | 0.34 | 1.06 | ||
M4P4-4 | 96.3 | 154.7 | 93.5 | 0.62 | 0.48 | 1.10 | ||
M4P4-6 | 113.5 | 164.9 | 90.7 | 0.69 | 0.46 | 1.15 | ||
M4P4-8 | 128.5 | 160.5 | 86.5 | 0.80 | 0.44 | 1.24 | ||
SE | 8.04 | 6.03 | 5.37 | 7.46 | 0.033 | 0.038 | 0.063 | |
2015-2016 | M2P4-4 | 102.7 | 156.1 | 66.9 | 199.2 | 0.66 | 0.34 | 1.00 |
M2P4-6 | 115.3 | 170.2 | 66.9 | 0.68 | 0.34 | 1.02 | ||
M2P4-8 | 121.6 | 170.4 | 68.3 | 0.71 | 0.35 | 1.06 | ||
M4P4-4 | 98.7 | 156.1 | 85.4 | 0.63 | 0.43 | 1.06 | ||
M4P4-6 | 117.6 | 170.2 | 85.5 | 0.69 | 0.43 | 1.12 | ||
M4P4-8 | 136.3 | 170.4 | 82.2 | 0.80 | 0.42 | 1.22 | ||
SE | 5.84 | 4.64 | 3.34 | 8.92 | 0.024 | 0.026 | 0.042 | |
P值 P value | 行比Row proportion (R) | 0.3715 | 1.0000 | 0.0000 | — | 0.2336 | 0.0003 | 0.0031 |
密度Density (D) | 0.0001 | 0.0055 | 0.9483 | — | 0.0002 | 0.9926 | 0.0446 | |
行比×密度 (R×D) | 0.2813 | 1.0000 | 0.7175 | — | 0.0747 | 0.8467 | 0.5915 |
表3
不同间作处理氮吸收利用优势、种间竞争力及氮吸收利用对间作产量优势的贡献"
年份 Year | 间作配置 Configuration | 氮吸收优势 N absorption advantage (△NU) | 氮利用效率优势 N use efficiency advantage | 竞争能力 Aggressivity (Amp) | 氮竞争比率 Competitive rate (CRmp) | 优势贡献 Contribution (C) | |
---|---|---|---|---|---|---|---|
△NUEb | △NUEy | ||||||
2015-2016 | M2P4-4 | -7.86 | 49.33 | 47.42 | 1.762 | 0.975 | 0.13 |
M2P4-6 | -3.35 | 38.07 | 39.55 | 1.266 | 0.991 | 0.06 | |
M2P4-8 | 0.83 | 46.39 | 26.96 | 1.149 | 1.06 | 0.15 | |
M4P4-4 | 3.79 | 8.76 | 45.86 | 1.173 | 1.491 | 0.12 | |
M4P4-6 | 10.64 | 13.28 | 21.06 | 0.772 | 1.596 | 0.18 | |
M4P4-8 | 18.60 | 7.06 | 1.23 | 0.699 | 1.942 | 0.17 | |
SE | 5.20 | 4.54 | 17.8 | 0.334 | 0.093 | 0.023 | |
P值 P value | 行比Row proportion (R) | 0.0019 | 0.0000 | 0.3018 | 0.0709 | 0.0000 | 0.0219 |
密度 Density (D) | 0.0944 | 0.7509 | 0.2046 | 0.2368 | 0.0179 | 0.1312 | |
行比×密度 (R×D) | 0.8391 | 0.1720 | 0.7857 | 0.9775 | 0.1355 | 0.0179 |
表4
不同种植模式及不同密度处理下花生(花针期)的结瘤特性"
不同模式/配置 Planting pattern/Configuration | 根瘤数量 Nodule number (No./plant) | 单株根瘤重 Nodule weight (mg/plant) | 单个瘤重 Weight per nodule (mg/nodule) | |
---|---|---|---|---|
单作花生Sole peanut | 8±5B | 9.0±0.9B | 1.23±0.13A | |
M2P4-4 | 6±3b | 4.17±1.9b | 0.74±0.16a | |
M2P4-6 | 30±4a | 26.5±6.4a | 0.83±0.11a | |
M2P4-8 | 11±5b | 11.7±5.3ab | 0.74±0.24a | |
平均值Mean | 16±3B | 14.1±3.7B | 0.77±0.07B | |
M4P4-4 | 40±6a | 46.2±11.1a | 1.10±0.14a | |
M4P4-6 | 21±7b | 22.0±6.7b | 1.12±0.10a | |
M4P4-8 | 23±5b | 24.3±5.1b | 1.09±0.12a | |
平均值Mean | 28±3A | 30.8±3.7A | 1.11±0.07A | |
P值 P value | 模式Configuration(C) | 0.004 | 0.003 | 0.003 |
密度Density (D) | 0.208 | 0.481 | 0.863 | |
模式×密度(C×D) | 0.001 | 0.004 | 0.945 |
[1] | 白伟, 孙占祥, 郑家明, 郝卫平, 刘勤, 刘洋, 冯良山, 蔡倩. 虚实并存耕层提高春玉米产量和水分利用效率. 农业工程学报, 2014, 30(21): 81-90. |
BAI W, SUN Z X, ZHENG J M, HAO W P, LIU Q, LIU Y, FENG L S, CAI Q. Furrow loose and ridge compaction plough layer improves spring maize yield and water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 81-90. (in Chinese) | |
[2] | 谢齐玥, 张广胜. 辽西玉米主产区农户氮肥减量化意愿因素分析——阜新蒙古族自治县农户低碳生产行为调研报告. 沈阳农业大学学报(社会科学版), 2013, 15(3): 257-261. |
XIE Q Y, ZHANG G S. Factors affecting farmers' willingness to reduce nitrogen fertilizer in main maize production areas-A survey of farmers' low-carbon production behavior in Fuxin county. Journal of Shenyang Agricultural University (Social Sciences Edition), 2013, 15(3): 257-261. (in Chinese) | |
[3] | 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017, 50(19): 3702-3713. |
GAO Y L, SUN Z X, BAI W, FENG L S, YANG N, CAI Q, FENG C, ZHANG Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Scientia Agricultura Sinica, 2017, 50(19): 3702-3713. (in Chinese) | |
[4] | 左元梅, 李晓林, 王永歧, 曹一平, 张福锁. 玉米花生间作对花生铁营养的影响. 植物营养与肥料学报, 1997, 3(2): 153-159. |
ZUO Y M, LI X L, WANG Y Q, CAO Y P, ZHANG F S. Effect of maize/peanut intercropping on iron nutrition of peanut. Plant Nutrition and Fertilizer Science, 1997, 3(2): 153-159. (in Chinese) | |
[5] | 左元梅, 李晓林, 王秋杰, 曹一平, 张福锁. 玉米、小麦与花生间作改善花生铁营养机制的探讨. 生态学报, 1998, 18(5): 489-495. |
ZUO Y M, LI X L, WANG Q J, CAO Y P, ZHANG F S. Study on mechanisms of improvement of iron nutrition of peanut by intercropping with maize or wheat. Acta Ecologica Sinica, 1998, 18(5): 489-495. (in Chinese) | |
[6] |
焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.
doi: 10.3724/SP.J.1258.2013.00104 |
JIAO N Y, YANG M K, NING T Y, YIN F, XU G W, FU G Z, LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)
doi: 10.3724/SP.J.1258.2013.00104 |
|
[7] | 焦念元, 侯连涛, 宁堂原, 李增嘉, 李友军, 付国占. 玉米花生间作氮磷营养间作优势分析. 作物杂志, 2007(4): 50-53. |
JIAO N Y, HOU L T, NING T Y, LI Z J, LI Y J, FU G Z. Analysis of nutrition intercropping advantages of nitrogen and phosphorus in maize/peanut intercropping system. Crops, 2007(4): 50-53. (in Chinese) | |
[8] |
焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉. 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013, 33(14): 4324-4330.
doi: 10.5846/stxb |
JIAO N Y, NING T Y, YANG M K, FU G Z, YIN F, XU G W, LI Z J. Effects of maize‖peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013, 33(14): 4324-4330. (in Chinese)
doi: 10.5846/stxb |
|
[9] | 焦念元, 赵春, 宁堂原, 侯连涛, 付国占, 李增嘉, 陈明灿. 玉米-花生间作对作物产量和光合作用光响应的影响. 应用生态学报, 2008, 19(5): 981-985. |
JIAO N Y, ZHAO C, NING T Y, HOU L T, FU G Z, LI Z J, CHEN M C. Effects of maize-peanut intercropping on economic yield and light response of photosynthesis. Chinese Journal of Applied Ecology, 2008, 19(5): 981-985. (in Chinese) | |
[10] | 周苏玫, 马淑琴, 李文, 张石头. 玉米花生间作系统优势分析. 河南农业大学学报, 1998, 32(1): 17-22. |
ZHOU S M, MA S Q, LI W, ZHANG S T. Analysis of superiority of maize and peanut row intercropping. Journal of Henan Agricultural University, 1998, 32(1): 17-22. (in Chinese) | |
[11] | 肖焱波, 段宗颜, 金航, 胡万里, 陈拾华, 魏朝富. 小麦/蚕豆间作体系中的氮节约效应及产量优势. 植物营养与肥料学报, 2007, 13(2): 267-271. |
XIAO Y B, DUAN Z Y, JIN H, HU W L, CHEN S H, WEI C F. Spared N response and yields advantage of intercropped wheat and faba bean. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 267-271. (in Chinese) | |
[12] |
ASHWORTH A J, TAYLOR A M, REED D L, ALLEN F L, KEYSER P D, TYLER D D. Environmental impact assessment of regional switchgrass feedstock production comparing nitrogen input scenarios and legume-intercropping systems. Journal of Cleaner Production, 2015, 87: 227-234.
doi: 10.1016/j.jclepro.2014.10.002 |
[13] |
KERMAH M, FRANKE AC, ADJEI-NSIAH S, AHIABOR B D, ABAIDOO R C, GILLER K E. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research, 2017, 213: 38-50.
doi: 10.1016/j.fcr.2017.07.008 |
[14] | 左元梅, 陈清, 张福锁. 利用14C示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制. 核农学报, 2004, 18(1): 43-46. |
ZUO Y M, CHEN Q, ZHANG F S. The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut/maize intercropping system by 14C tracer technique. Acta Agriculturae Nucleatae Sinica, 2004, 18(1): 43-46. (in Chinese) | |
[15] | 贾曦, 王璐, 刘振林, 李长松, 殷复伟, 王莹莹, 万书波. 玉米//花生间作模式对作物病害发生的影响及分析. 花生学报, 2016, 45(4): 55-60. |
JIA X, WANG L, LIU Z L, LI C S, YIN F W, WANG Y Y, WAN S B. Effects and analyses of intercropping pattern for maize and peanut on crops disease occurrence. Journal of Peanut Science, 2016, 45(4): 55-60. (in Chinese) | |
[16] | 刘颖, 王建国, 郭峰, 唐朝辉, 杨莎, 耿耘, 孟静静, 李新国, 张佳蕾, 万书波. 玉米花生间作对作物干物质积累和氮素吸收利用的影响. 中国油料作物学报, 2020, 42(6): 994-1001. |
LIU Y, WANG J G, GUO F, TANG Z H, YANG S, GENG Y, MENG J J, LI X G, ZHANG J L, WAN S B. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994-1001. (in Chinese) | |
[17] |
LIU L, WANG Y, YAN X, LI J, JIAO N, HU S. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agriculture, Ecosystems & Environment, 2017, 237: 16-23.
doi: 10.1016/j.agee.2016.12.026 |
[18] | REDDY S N, RAJU M S, RAMAIAH N V, REDDY A V. Studies of maize-groundnut intercropping systems under rainfed conditions. Indian Journal of Agronomy, 1986, 31(2): 189-191. |
[19] |
NAMBIAR P T C, RAO M R, REDDY M S, FLOYD C N, DART P J, WILLEY R W. Effect of intercropping on nodulation and N2-fixation by groundnut. Experimental Agriculture, 1983, 19(1): 79-86.
doi: 10.1017/S001447970001053X |
[20] | KONLAN S, SARKODIE-ADDO J, KOMBIOK M J, ASARE E, BAWAH I. Effect of intercropping on nitrogen fixation of three groundnut (Arachis hypogaea L.) genotypes in the Guinea Savanna zone of Ghana. International Journal of Plant & Soil Science, 2015, 5(1): 1-9. |
[21] |
MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 1980, 16(3): 217-228.
doi: 10.1017/S0014479700010978 |
[22] | 李隆. 间套作体系豆科作物固氮生态学原理与应用. 北京: 中国农业大学出版社, 2013: 97-101. |
LI L. The Ecological Principles and Applications of Biological N2 Fixation in Legumes-based Intercropping Systems. Beijing: China Agricultural University Press, 2013: 97-101. (in Chinese) | |
[23] |
FUJITA K, OFOSU-BUDU K G, OGATA S. Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant and Soil, 1992, 141(1/2): 155-175.
doi: 10.1007/BF00011315 |
[24] | OLJACA S, CVETKOVIC R, KOVACEVIC D, VASIC G, MOMIROVIC N. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaseolus vulgaris) intercropping system. Journal of Agricultural Science, 2000, 135(3): 261-270. |
[25] | 褚贵新, 沈其荣, 李奕林, 张娟, 王树起. 用15N叶片标记法研究旱作水稻与花生间作系统中氮素的双向转移. 生态学报, 2004, 24(2): 278-284. |
CHU G X, SHEN Q R, LI Y L, ZHANG J, WANG S Q. Researches on bi-directional N transfer between the intercropping system of groundnut with rice cultivated in aerobic soil using 15N foliar labeling method. Acta Ecologica Sinica, 2004, 24(2): 278-284. (in Chinese) | |
[26] | 王小春, 杨文钰, 任万军, 邓小燕, 张群, 向达兵, 雍太文. 小麦/玉米/大豆和小麦/玉米/甘薯套作体系中玉米产量及养分吸收的差异. 植物营养与肥料学报, 2012, 18(4): 803-812. |
WANG X C, YANG W Y, REN W J, DENG X Y, ZHANG Q, XIANG D B, YONG T W. Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Plant Nutrition and Fertilizer Science, 2012, 18(4): 803-812. (in Chinese) | |
[27] | 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军. 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22(6): 1477-1484. |
JIAO N Y, WANG J T, YIN F, MA C, QI F G, LIU L, FU G Z, LI Y J. Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. Plant Nutrition and Fertilizer Science, 2016, 22(6): 1477-1484. (in Chinese) | |
[28] | 刘振洋, 吴鑫雨, 汤利, 郑毅, 李海叶, 潘浩男, 朱东宇, 王静静, 黄少欣, 覃潇敏, 肖靖秀. 小麦蚕豆间作体系氮素吸收累积动态及其种间氮素竞争关系. 植物营养与肥料学报, 2020, 26(7): 1284-1294. |
LIU Z Y, WU X Y, TANG L, ZHENG Y, LI H Y, PAN H N, ZHU D Y, WANG J J, HUANG S X, QIN X M, XIAO J X. Dynamics of N acquisition and accumulation and its interspecific N competition in a wheat-faba bean intercropping system. Plant Nutrition and Fertilizer Science, 2020, 26(7): 1284-1294. (in Chinese) | |
[29] | MANDIMBA G R, GALANDZOU C, GUENGUIE N. Effect of plant population densities on the growth of Zea mays L. and Arachis hypogaea L. in intercropping systems. Biological Agriculture & Horticulture, 1993, 10(2): 141-154. |
[30] |
杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41(4): 642-650.
doi: 10.3724/SP.J.1006.2015.00642 |
YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(4): 642-650. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00642 |
|
[31] | 李隆, 李晓林, 张福锁, 孙建好, 杨思存, 芦满济. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6(2): 140-146. |
LI L, LI X L, ZHANG F S, SUN J H, YANG S C, LU M J. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. Journal of Plant Nutrition and Fertilizers, 2000, 6(2): 140-146. (in Chinese) | |
[32] |
FAN F L, ZHANG F S, SONG Y N, SUN J H, BAO X G, GUO T W, LI L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil, 2006, 283(1/2): 275-286.
doi: 10.1007/s11104-006-0019-y |
[33] |
XIAO Y B, LI L, ZHANG F S. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant and Soil, 2004, 262(1/2): 45-54.
doi: 10.1023/B:PLSO.0000037019.34719.0d |
[34] |
LIU Y C, QIN X M, XIAO J X, TANG L, WEI C Z, WEI J J, ZHENG Y, et al. Intercropping influences component and content change of flavonoids in root exudates and nodulation of faba bean. Journal of Plant Interactions, 2017, 12(1): 187-192.
doi: 10.1080/17429145.2017.1308569 |
[35] | 张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报, 2019, 27(8): 1183-1194. |
ZHANG X N, CHEN P, DU Q, ZHOU Y, REN J R, JIN F, YANG W Y, YONG T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1183-1194. (in Chinese) |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[3] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[4] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[5] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[6] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[7] | 吴月,隋新华,戴良香,郑永美,张智猛,田云云,于天一,孙学武,孙棋棋,马登超,吴正锋. 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8): 1518-1528. |
[8] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[9] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[10] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[11] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[12] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[13] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[14] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[15] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
|