中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 4984-4995.doi: 10.3864/j.issn.0578-1752.2021.23.005
宗毓铮(),张函青,李萍,张东升,林文,薛建福,高志强,郝兴宇(
)
收稿日期:
2021-02-18
接受日期:
2021-07-05
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
郝兴宇
作者简介:
宗毓铮,E-mail: 基金资助:
ZONG YuZheng(),ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu(
)
Received:
2021-02-18
Accepted:
2021-07-05
Online:
2021-12-01
Published:
2021-12-06
Contact:
XingYu HAO
摘要:
【目的】探讨大气CO2浓度升高与增温影响下北方冬小麦叶片光合特征、碳氮代谢物、生物量和产量形成的调节适应规律,为未来气候变化下小麦生产提供理论依据。【方法】以冬小麦品种“中科2011”为材料,利用封闭式人工气候室,设置对照CK(CO2浓度和气温与大田一致)、EC(CO2浓度为大田浓度+200 μmol·mol-1,气温与大田相同)、ET(CO2浓度与大田一致,气温为大田温度+2℃)、ECT(CO2浓度为大田浓度+200 μmol·mol-1,气温为大田温度+2℃)共4个处理。测定CO2浓度升高200 μmol·mol-1和气温升高2℃变化条件下冬小麦生长发育、叶片的光合特性、碳氮代谢、生物量和产量指标。【结果】气温升高2℃会缩短小麦全生育期及开花到成熟时间,使孕穗期净光合速率显著增加24.7%,而对拔节期与灌浆期净光合速率无显著影响,同时,使灌浆期叶片纤维素含量、可溶性蛋白含量和硝酸还原酶活性下降,穗粒数和千粒重下降,进而使产量与生物量分别显著降低23.0%和19.7%;CO2浓度升高200 μmol·mol-1使拔节期与孕穗期小麦净光合速率分别提高32.8%和40.7%,增加灌浆期叶片碳水化合物含量,虽然生长后期出现光适应,但仍可通过增加单位面积穗数使小麦产量增加26.1%。在增温条件下,CO2浓度升高可通过使开花到成熟的时间延长2 d、叶片净光合速率提高约25.54%、增加可溶性总糖、纤维素与淀粉含量等弥补升温对小麦生物量和产量的负效应。【结论】CO2浓度升高可通过延长开花到成熟时间、提高小麦净光合速率、增加光合代谢物等弥补升温对小麦生物量和产量的负效应。
宗毓铮,张函青,李萍,张东升,林文,薛建福,高志强,郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(23): 4984-4995.
ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China[J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
表1
两个生长季各处理气温变化"
年份 Year | 处理 Treatment | 生长季平均温度 Mean temperature of growing season (℃) | 最高温度及出现日期 Maximum temperature and its date | 最低气温及出现日期 Minimum temperature and its date | ||||
---|---|---|---|---|---|---|---|---|
最高温度 Maximum temperature (℃) | 日平均温度 Mean daily temperature (℃) | 日期 Date (M-D) | 最低温度 Minimum temperature (℃) | 日平均温度 Mean daily temperature (℃) | 日期 Date (M-D) | |||
2017-2018 | CK | 11.4 | 38.3 | 28.7 | 06-07 | -11.9 | 0.2 | 02-04 |
EC | 11.6 | 38.6 | 28.9 | 06-07 | -11.3 | -0.1 | 02-04 | |
ET | 13.5 | 40.5 | 30.9 | 06-07 | -11.9 | 0.3 | 02-04 | |
ECT | 13.6 | 40.8 | 30.9 | 06-07 | -11.8 | 0.2 | 02-04 | |
2019-2020 | CK | 12.4 | 40.3 | 28.7 | 06-04 | -10.9 | -0.2 | 12-31 |
EC | 12.4 | 40.5 | 28.9 | 06-04 | -10.3 | 0.1 | 12-31 | |
ET | 14.1 | 42.4 | 30.9 | 06-04 | -10.9 | 0.3 | 12-31 | |
ECT | 14 | 42.5 | 31.0 | 06-04 | -9.9 | 0.3 | 12-31 |
表2
CO2浓度和气温升高对小麦生育期的影响"
年份 Year | 处理 Treatment | 播种期 Sowing date (M-D) | 出苗时间 Emergence (d) | 开花时间 Flowering date (d) | 成熟期 Mature date (d) | 开花到成熟时间 The days from flowering to ripening (d) |
---|---|---|---|---|---|---|
2017-2018 | CK | 10-25 | 9 | 180 | 219 | 39 |
EC | 10-25 | 9 | 176 | 216 | 40 | |
ET | 10-25 | 8 | 174 | 209 | 35 | |
ECT | 10-25 | 8 | 171 | 208 | 37 | |
2019-2020 | CK | 10-27 | 9 | 185 | 225 | 40 |
EC | 10-27 | 9 | 183 | 223 | 40 | |
ET | 10-27 | 8 | 177 | 213 | 36 | |
ECT | 10-27 | 8 | 174 | 212 | 38 |
表3
CO2浓度和气温升高对小麦灌浆期叶片光响应参数的影响"
处理 Treatment | 光饱和点 Light saturation point (LSP) (μmol·m-2·s-1) | 光补偿点 Light compensation point (LCP) (μmol·m-2·s-1) | 最大净光合速率 Maximum net photosynthetic rate (Pnmax) (μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate (Rd) (μmol·m-2·s-1) | |
---|---|---|---|---|---|
CK | 2235.92±508.20ab | 12.83±0.07ab | 18.28±1.35b | 1.01±0.14a | |
EC | 2554.62±146.51a | 10.47±5.17ab | 22.07±0.58a | 0.88±0.41a | |
ET | 1475.33±118.13b | 4.19±0.52b | 19.99±0.28ab | 0.42±0.05a | |
ECT | 1481±150.09b | 15.76±0.97a | 22.59±0.61a | 1.14±0.11a | |
P-value | PT | 0.01 | 0.54 | 0.21 | 0.49 |
PCO2 | 0.58 | 0.01 | 0.00 | 0.23 | |
PT×CO2 | 0.59 | 0.03 | 0.48 | 0.09 |
表4
CO2浓度和气温升高对小麦灌浆期叶片CO2响应参数的影响"
处理 Treatment | 饱和胞间CO2浓度 Saturated intercellular CO2 concentration (Cisat) (μmol·mol-1) | CO2补偿点 CO2 compensation point (Γ) (μmol·mol-1) | 最大光合能力 Photosynthetic capacity (Amax) (μmol·m-2·s-1) | 光呼吸速率 Photorespiration rate (Rp) (μmol·m-2·s-1) | |
---|---|---|---|---|---|
CK | 772.78±70.01a | 62.15±2.32a | 42.64±3.2a | 14.79±1.35a | |
EC | 717.73±12.78b | 65.41±3.44a | 35.45±4.00ab | 14.33±1.43a | |
ET | 821.97±10.71a | 68.47±4.28a | 36.49±2.31ab | 13.19±0.63a | |
ECT | 842.16±14.57a | 59.12±11.37a | 30.64±1.92b | 10.75±1.64a | |
P-value | PT | 0.00 | 0.99 | 0.10 | 0.08 |
PCO2 | 0.13 | 0.64 | 0.05 | 0.30 | |
PT×CO2 | 0.01 | 0.35 | 0.82 | 0.47 |
表5
CO2浓度和气温升高对小麦灌浆期叶片最大羧化速率和最大电子传递速率的影响"
处理 Treatment | 最大羧化速率 Maximum carboxylation rate (Vc.max) (μmol·m-2·s-1) | 最大电子传递速率 Maximum electron transport rate (Jmax) (μmol·m-2·s -1) | Jmax/Vc.max | |||||
---|---|---|---|---|---|---|---|---|
CK | 102.50±6.05a | 103.78±9.45a | 0.99±0.04b | |||||
EC | 102.63±8.49a | 104.00±5.60a | 0.98±0.03b | |||||
ET | 71.47±6.15b | 60.43±6.58b | 1.19±0.03a | |||||
ECT | 52.52±4.70b | 44.83±3.67b | 1.17±0.03a | |||||
P-value | PT | 0.00 | 0.00 | 0.00 | ||||
PCO2 | 0.18 | 0.28 | 0.65 | |||||
PT×CO2 | 0.18 | 0.26 | 0.90 |
表6
CO2浓度和气温升高对小麦灌浆期叶片细胞色素的影响"
处理 Treatment | 叶绿素a Chl a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素a+b Chl a and Chl b (mg·g-1 FW) | 类胡萝卜素 Chl x∙c (mg·g-1 FW) | |||||
---|---|---|---|---|---|---|---|---|---|
CK | 2.44±0.14b | 0.27±0.04b | 2.71±0.18b | 8.94±1.46a | |||||
EC | 2.51±0.27bc | 0.34±0.11b | 2.85±0.38b | 7.43±1.42a | |||||
ET | 3.01±0.11a | 0.63±0.00a | 3.63±0.06a | 4.78±2.75b | |||||
ECT | 2.20±0.03c | 0.32±0.04b | 2.42±0.21c | 7.89±0.71a | |||||
P-value | PT | 0.28 | 0.00 | 0.08 | 0.02 | ||||
PCO2 | 0.01 | 0.02 | 0.01 | 0.17 | |||||
PT×CO2 | 0.00 | 0.00 | 0.00 | 0.05 |
表7
CO2浓度和气温升高对小麦灌浆期叶片碳氮代谢物的影响"
处理 Treatment | 可溶性总糖含量 Soluble sugar content (mg·g-1 FW) | 淀粉含量 Starch content (mg·g-1 FW) | 纤维素含量 Cellulose content (mg·g-1 FW) | 可溶性蛋白 Soluble protein (mg·g-1 FW) | 硝酸还原酶活性 Nitrate reductase activity (μg NO2-·g-1 FW·h-1) | |
---|---|---|---|---|---|---|
CK | 2.38±0.40d | 0.13±0.02b | 4.39±1.23a | 15.47±2.83b | 4.14±0.74a | |
EC | 7.01±0.59a | 0.23±0.09a | 4.91±0.90a | 21.15±1.18a | 1.70±0.02b | |
ET | 4.36±0.30c | 0.13±0.01b | 2.79±0.13b | 10.80±1.63c | 1.84±0.24b | |
ECT | 5.99±0.72b | 0.28±0.03a | 3.16±0.99b | 8.25±1.15d | 1.98±0.34b | |
P-value | PT | 0.15 | 0.47 | 0.02 | 0.00 | 0.00 |
PCO2 | 0.00 | 0.00 | 0.51 | 0.22 | 0.00 | |
PT×CO2 | 0.00 | 0.41 | 0.91 | 0.01 | 0.00 |
表8
CO2浓度和气温升高对小麦形态指标的影响"
年份 Year | 处理 Treatment | 株高 Plant height (cm) | 穗长 Spike length (cm) | 茎粗 Stem-diameter (mm) | 节数 Internode number |
---|---|---|---|---|---|
2017-2018 | CK | 63.34±0.90ab | 7.21±0.16a | 3.419±0.072a | 4.8±0.1a |
EC | 65.76±2.30a | 7.64±0.26a | 3.458±0.066a | 4.9±0.0a | |
ET | 60.41±0.29b | 7.3±0.09a | 3.418±0.059a | 4.8±0.1a | |
ECT | 62.83±1.55ab | 7.52±0.13a | 3.574±0.026a | 4.7±0.1a | |
2019-2020 | CK | 66.19±2.32bc | 9.81±0.20a | 3.468±0.166a | 5.9±0.1a |
EC | 71.26±1.16a | 9.08±0.24b | 3.520±0.102a | 5.9±0.1a | |
ET | 65.03±0.91c | 8.49±0.20bc | 3.096±0.114b | 5.1±0.1b | |
ECT | 70.53±1.02ab | 8.25±0.18c | 3.058±0.077b | 5.1±0.1b | |
P-value | Pyear | 0.00 | 0.00 | 0.01 | 0.001 |
PT | 0.07 | 0.00 | 0.01 | 0.01 | |
PCO2 | 0.00 | 0.55 | 0.42 | 0.00 | |
PT×CO2 | 0.91 | 0.61 | 0.91 | 0.01 |
表9
CO2浓度和气温升高对小麦产量构成的影响"
年份 Year | 处理 Treatment | 单穗粒数 Grain number per spike | 单位面积穗数 Spikes number (No./m2) | 千粒重 1000-seed weight (g) |
---|---|---|---|---|
2017-2018 | CK | 22.7±1.7ab | 327.1±9.8ab | 45.44±1.84a |
EC | 25.3±1.2a | 349.0±23.2a | 44.45±0.66a | |
ET | 21.1±1.0b | 292.7±16.4b | 43.68±0.74a | |
ECT | 23.9±0.3ab | 344.8±7.3a | 44.55±0.66a | |
2019-2020 | CK | 45.0±1.4a | 230.0±21.9c | 43.53±1.12a |
EC | 46.3±6.7a | 371.5±23.4a | 38.39±4.00a | |
ET | 37.2±4.4a | 254.8±11.6bc | 37.00±1.55a | |
ECT | 39.8±2.1a | 297.2±12.9b | 36.32±0.64a | |
P-value | Pyear | 0.00 | 0.00 | 0.00 |
PT | 0.03 | 0.08 | 0.05 | |
PCO2 | 0.21 | 0.00 | 0.23 | |
PT×CO2 | 0.83 | 0.16 | 0.21 |
[1] | 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7. |
ZHAO G C, CHANG X H, WANG D M, TAO Z Q, WANG Y J, YANG Y S, ZHU Y J. general situation and development of wheat production. Crops, 2018(4):1-7. (in Chinese) | |
[2] | IPCC. Summary for policymakers//STOCKER T F, QIN D H, PLATTNER G K. eds. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA, 2013. |
[3] | IPCC. Summary for policymakers//MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, ROBERTS D, SKEA J, SHUKLA P R. eds. Global Warming of 1.5°C. Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization,Switzerland, 2018. |
[4] |
AINSWORTH E A, LONG S P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 2020, 1:1-23.
doi: 10.1111/gcb.1995.1.issue-1 |
[5] |
SOBA D, SHU T, RUNION G B, PRIOR S A, FRITSCHI F B, ARANJUELO I, SANZ-SAEZ A. Effects of elevated [CO2] on photosynthesis and seed yield parameters in two soybean genotypes with contrasting water use efficiency. Environmental and Experimental Botany, 2020, 178:104154.
doi: 10.1016/j.envexpbot.2020.104154 |
[6] | RUIZ-VERA U M, DE S A P, AMENT M R, GLEADOW R M, ORT D R. High sink strength prevents photosynthetic down-regulation in cassava grown at elevated CO2 concentration. Journal of Experimental Botany, 2020: eraa459. |
[7] |
ZONG Y Z, SHANGGUAN Z P. Increased sink capacity enhances C and N assimilation under drought and elevated CO2 conditions in maize. Journal of Integrative Agriculture, 2016, 15(12):2775-2785.
doi: 10.1016/S2095-3119(16)61428-4 |
[8] | 韩雪, 郝兴宇, 王贺然, 林而达. FACE条件下冬小麦生长特征及产量构成的影响. 中国农学通报, 2012, 28(36):154-159. |
HAN X, HAO X Y, WANG H R, LIN E D. Effect of free air CO2 enrichment (FACE) on the growth and grain yield of winter wheat. Chinese Agricultural Science Bulletin, 2012, 28(36):154-159. (in Chinese) | |
[9] | 韩雪, 郝兴宇, 王贺然, 李迎春, 林而达. 高浓度CO2对冬小麦旗叶和穗部氮吸收的影响. 中国农业气象, 2012, 33(2):197-201. |
HAN X, HAO X Y, WANG H R, LI Y C, LIN E D. Effect of free air CO2 enrichment on nitrogen absorption in leaf and head of winter wheat. Chinese Journal of Agrometeorology, 2012, 33(2):197-201. (in Chinese) | |
[10] |
HAN X, LAM KEE S, WANG H, LIN E, WHEELER T. Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment. Agriculture, Ecosystems & Environment, 2015, 209:132-137.
doi: 10.1016/j.agee.2015.04.007 |
[11] | TAN K Y, FANG S B, ZHOU G S, REN S X, GUO J P. Responses of irrigated winter wheat yield in north China to increased temperature and elevated CO2 concentration. Journal of Meteorological Research, 2015(4):691-702. |
[12] |
ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, et al. Rising temperatures reduce global wheat production. Nature Climate Change, 2015, 5(2):143-147.
doi: 10.1038/nclimate2470 |
[13] | BARNABÁS B, JÄGER K, FEHÉR A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell & Environment, 2010, 31(1):11-38. |
[14] |
ASSENG S, FOSTER I, TURNER N C. The impact of temperature variability on wheat yields. Global Change Biology, 2011, 17(2):997-1012.
doi: 10.1111/gcb.2010.17.issue-2 |
[15] | LOBELL D B, BNZIGER M, MAGOROKOSHO C, VIVEK B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 2011, 1(1):42-45. |
[16] | HERRING S C, NIKOLAOS C, ANDREW H, KOSSIN J P, SCHRECK C J, STOTT P A. Explaining extreme events of 2016 from a climate perspective. Bulletin of the American Meteorological Society, 2017, 99(1):S1-S157. |
[17] |
XIE W, XIONG W, PAN J, ALI T, CUI Q, GUAN D, MENG J, MUELLER N D, LIN E, DAVIS S J. Decreases in global beer supply due to extreme drought and heat. Nature plants, 2018, 4(11):964-973.
doi: 10.1038/s41477-018-0263-1 |
[18] |
CAI C, YIN X, HE S, JIANG W, SI C, STRUIK P C, LUO W, LI G, XIE Y, XIONG Y, PAN G. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016, 22(2):856-874.
doi: 10.1111/gcb.13065 |
[19] | 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 61-63, 140-142. |
GAO J F. Experimental guidance for Plant Physiology. Beijing: China Higher Education Press, 2006: 61-63, 140-142.(in Chinese) | |
[20] |
叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6):727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012 |
YE Z P. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010, 34(6):727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012 |
|
[21] |
FARQUHAR G D, VON CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1):78-90.
doi: 10.1007/BF00386231 |
[22] |
STRECK N A. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 2005, 35(3):730-740.
doi: 10.1590/S0103-84782005000300041 |
[23] |
DUTTA S, MOHANTY S, TRIPATHY B C. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology, 2009, 150(2):1050-1061.
doi: 10.1104/pp.109.137265 |
[24] | LONG S P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment, 1991, 78(8):236-246. |
[25] | 杨松涛, 李彦舫, 胡玉熹, 林金星, 邹啸环. CO2倍增对3种禾本科植物叶绿体超微结构的影响. 西北植物学报, 1998, 18(3):330-334. |
YANG S T, LI Y F, HU Y X, LIN J X, ZHOU X H. The effects of elevated CO2 on the ultrastructure of chloroplast of three graminoid plants. Acta Botanica Boreali-Occidentalia Sinica, 1998, 18(3):330-334. (in Chinese) | |
[26] | 李佳帅, 杨再强, 王明田, 韦婷婷, 赵和丽, 江梦圆, 孙擎, 黄琴琴. 水氮耦合对苗期葡萄叶片氮素代谢酶活性的影响. 中国农业气象, 2019, 40(6):368-379. |
LI J S, YANG Z Q, WANG M T, WEI T T, ZHAO H L, JIANG M Y, SUN Q, HUANG Q Q. Effect of water and nitrogen coupling on nitrogen metabolism enzyme activities in grapevine seedling leaves. Chinese Journal of Agrometeorology, 2019, 40(6):368-379. (in Chinese) | |
[27] |
QIAO Y, MIAO S, LI Q, JIN J, LUO X, TANG C. Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. Science of the total Environment, 2019, 666:405-413.
doi: 10.1016/j.scitotenv.2019.02.149 |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[8] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|