中国农业科学 ›› 2021, Vol. 54 ›› Issue (17): 3702-3711.doi: 10.3864/j.issn.0578-1752.2021.17.012
收稿日期:
2020-12-05
接受日期:
2020-12-28
出版日期:
2021-09-01
发布日期:
2021-09-09
通讯作者:
王振营
作者简介:
李琴珵,E-mail: 基金资助:
LI QinCheng1(),SHI Jie2,HE KangLai1,WANG ZhenYing1()
Received:
2020-12-05
Accepted:
2020-12-28
Online:
2021-09-01
Published:
2021-09-09
Contact:
ZhenYing WANG
摘要:
【背景】拟轮枝镰孢(Fusarium verticillioides)引起的穗腐病严重影响玉米产量和品质,其产生的伏马毒素威胁食品安全。亚洲玉米螟(Ostrinia furnacalis)和桃蛀螟(Conogethes punctiferalis)等穗期害虫危害可导致玉米严重减产,并加重玉米穗腐病的发生。【目的】评估2种杀虫剂(甲维盐和氯虫苯甲酰胺)、3种杀菌剂(氰烯菌酯、戊唑醇和苯醚甲环唑)对玉米穗期病虫害的防治效果以及对玉米产量和籽粒中伏马毒素含量的影响;明确施用杀虫剂后接菌对穗腐病发病的影响,探究防治玉米穗期病虫害的有效方案,为玉米安全生产提供技术支撑。【方法】以郑单958为供试玉米,在2019年春、夏两季于河北廊坊进行田间试验。玉米大量吐丝后5 d和20 d两次施药,接菌处理于吐丝后7 d进行。在玉米完熟期调查虫害级别、穗腐病发病率和病情指数、果穗穗长、行粒数、穗重和百粒重,计算防治效果和增产情况,并用高效液相色谱-串联质谱法分析籽粒中伏马毒素B1、B2的含量。【结果】与对照相比,施用甲维盐和氯虫苯甲酰胺均可显著降低平均虫害级别、穗腐病发病率、病情指数、伏马毒素含量。与单独施用杀虫剂相比,施用杀虫剂与杀菌剂的混剂未显著降低平均虫害级别、穗腐病发病率、病情指数、伏马毒素含量,也未显著提高产量和对上述病虫害的防治效果。与仅接菌的处理相比,施用氯虫苯甲酰胺后接菌处理在穗腐病发病率、病情指数和伏马毒素含量方面均显著下降。在春玉米和夏玉米试验中,25 g·hm-2氯虫苯甲酰胺及其与杀菌剂的混剂对穗部螟虫的防治效果分别达82.1%—92.7%、94.2%—95.0%,而30 g·hm-2甲维盐及其与杀菌剂的混剂对穗部螟虫的防治效果显著低于25 g·hm-2氯虫苯甲酰胺,仅为57.8%—78.0%、83.1%—89.9%。2种杀虫剂对穗腐病的防治效果无显著差异,春玉米防治效果均>60%,夏玉米防治效果均>88%。对于产量而言,各处理均对果穗穗长和行粒数无显著影响,药剂处理后的果穗穗重均显著高于对照,且各处理间无显著差异。施用杀虫剂后接菌对产量无显著影响。分别施用2种杀虫剂单剂或其与杀菌剂的混剂后,春玉米可增产5.49%—13.49%,夏玉米可增产9.20%—13.95%,玉米籽粒中伏马毒素含量均低于500 μg·kg-1,而对照玉米中伏马毒素含量达2 817 μg·kg -1。喷雾接菌处理的玉米中伏马毒素含量高达8 710 μg·kg -1,而接菌前施用杀虫剂可将伏马毒素含量降至1 500 μg·kg -1以下。【结论】施用25 g·hm-2氯虫苯甲酰胺和30 g·hm-2甲维盐均可通过显著降低玉米蛀穗害虫的危害,从而减轻穗腐病的发生并降低籽粒中伏马毒素含量,提高玉米产量和品质,而杀虫剂/杀菌剂混用与杀虫剂单用对虫害防控效果差异不显著;穗期害虫对果穗的伤害在穗腐病的发生过程中起决定性作用。综合各方面因素,25 g·hm-2的氯虫苯甲酰胺是防治穗期玉米害虫、减轻穗腐病较为理想的药剂。
李琴珵,石洁,何康来,王振营. 化学防控玉米蛀穗害虫对减轻拟轮枝镰孢穗腐病及伏马毒素的作用[J]. 中国农业科学, 2021, 54(17): 3702-3711.
LI QinCheng,SHI Jie,HE KangLai,WANG ZhenYing. Effects of Chemical Control of Ear Borers on Reducing Fusarium verticillioides Ear Rot and Fumonisin Level[J]. Scientia Agricultura Sinica, 2021, 54(17): 3702-3711.
表1
试验所用化学药剂"
编号 Number | 药剂 Pesticide | 剂型 Dosage form | 有效成分用量 Dosage (g·hm-2 or mL·hm-2) | 生产厂家 Manufacturer |
---|---|---|---|---|
1 | 5%甲维盐 5% Emamectin benzoate | 水分散粒剂 Water dispersible granule | 30 | 中国农业科学院植物保护研究所廊坊农药中试厂 Langfang Pesticide Factory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences |
2 | 200 g·L-1氯虫苯甲酰胺 200 g·L-1 Chlorantraniliprole | 悬浮剂 Suspension concentrate | 25 | 中国农业科学院植物保护研究所廊坊农药中试厂 Langfang Pesticide Factory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences |
3 | 25%氰烯菌酯 25% Phenamacril | 悬浮剂 Suspension concentrate | 500 | 江苏省农药研究所股份有限公司 Jiangsu Pesticide Research Institute Company Limited |
4 | 430 g·L-1戊唑醇 430g·L-1 Tebuconazole | 悬浮剂 Suspension concentrate | 250 | 拜耳(中国)有限公司 Bayer (China) Company Limited |
5 | 10%苯醚甲环唑 10% Difenoconazole | 微乳剂 Microemulsion | 22.5 | 中国农业科学院植物保护研究所廊坊农药中试厂 Langfang Pesticide Factory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences |
表2
杀虫/杀菌剂混用对虫害和拟轮枝镰孢穗腐病发生、防控的影响"
种植季节 Sowing season | 药剂处理 Formulation | 蛀穗率 Insect damage incidence (%) | 平均虫害级别 Average insect damage severity | 病情指数 Disease index | 发病率 Ear rot incidence (%) | 伏马毒素B1+B2含量 Fumonisin B1 + B2 content (μg·kg-1) | 虫害防治效果 Insect damage control effect (%) | 病害防治效果 Ear rot control effect (%) |
---|---|---|---|---|---|---|---|---|
春玉米 Spring maize | 氯虫苯甲酰胺 Chlorantraniliprole | 4.2e | 0.042d | 0.3b | 2.9bc | 101b | 92.7a | 75.3a |
氯虫苯甲酰胺+戊唑醇 Chlorantraniliprole + Tebuconazole | 14.4cd | 0.160cd | 0.5b | 1.7bc | 457b | 82.1bc | 84.2a | |
氯虫苯甲酰胺+苯醚甲环唑 Chlorantraniliprole + Difenoconazole | 9.7de | 0.097d | 0.8b | 6.3b | 208b | 90.8ab | 64.8a | |
氯虫苯甲酰胺+氰烯菌酯 Chlorantraniliprole + Phenamacril | 11.1de | 0.121d | 0.2b | 2.2bc | 187b | 86.5ab | 83.0a | |
甲维盐 Emamectin benzoate | 26.8bc | 0.307bc | 0.3b | 2.9bc | 293b | 63.6cd | 60.1a | |
甲维盐+戊唑醇 Emamectin benzoate + Tebuconazole | 28.2bc | 0.310bc | 0.5b | 3.7bc | 277b | 62.4cd | 60.4a | |
甲维盐+苯醚甲环唑 Emamectin benzoate + Difenoconazole | 33.6b | 0.388b | 0.6b | 5.3bc | 330b | 57.8d | 63.4a | |
甲维盐+氰烯菌酯 Emamectin benzoate + Phenamacril | 15.2d | 0.165cd | 0.2b | 0.5c | 127b | 78.0ab | 83.4a | |
CK | 71.7a | 0.902a | 2.7a | 17.2a | 2817a | - | - | |
夏玉米 Summer maize | 氯虫苯甲酰胺 Chlorantraniliprole | 4.3b | 0.048bc | 0b | 0b | 85b | 94.7a | 100.0a |
氯虫苯甲酰胺+戊唑醇 Chlorantraniliprole + Tebuconazole | 4.9b | 0.045c | 0b | 0b | 85b | 95.0a | 100.0a | |
氯虫苯甲酰胺+苯醚甲环唑 Chlorantraniliprole + Difenoconazole | 3.3b | 0.048bc | 0b | 0b | 39b | 94.6a | 100.0a | |
氯虫苯甲酰胺+氰烯菌酯 Chlorantraniliprole + Phenamacril | 3.0b | 0.053bc | 0.4b | 1.6b | 30b | 94.2a | 89.6a | |
甲维盐 Emamectin benzoate | 8.0b | 0.092bc | 0.2b | 1.5b | 89b | 89.9a | 96.0a | |
甲维盐+戊唑醇 Emamectin benzoate + Tebuconazole | 12.7b | 0.132bc | 0.5b | 2.7b | 24b | 85.5a | 88.2a | |
甲维盐+苯醚甲环唑 Emamectin benzoate + Difenoconazole | 10.1b | 0.132bc | 0.2b | 1.0b | 73b | 85.4a | 95.0a | |
甲维盐+氰烯菌酯 Emamectin benzoate + Phenamacril | 15.9b | 0.153b | 0.1b | 0.5b | 55b | 83.1a | 98.6a | |
CK | 80.8a | 0.900a | 4.2a | 21.9a | 1670a | - | - |
表3
接菌前施药对虫害和拟轮枝镰孢穗腐病发生的影响"
种植季节 Sowing season | 药剂处理 Formulation | 蛀穗率 Insect damage incidence (%) | 平均虫害级别 Average insect damage severity | 病情指数 Disease index | 发病率 Ear rot incidence (%) | 伏马毒素B1+B2含量Fumonisin B1+ B2 content (μg·kg-1) |
---|---|---|---|---|---|---|
春玉米 Spring maize | 氯虫苯甲酰胺+接菌 Chlorantraniliprole + F. verticillioides inoculation | 6.9c | 0.069d | 0.4c | 3.5c | 711c |
甲维盐+接菌 Emamectin benzoate + F. verticillioides inoculation | 32.8b | 0.376c | 1.9b | 8.5bc | 1454bc | |
仅接菌F. verticillioides inoculation | 60.8a | 0.752b | 9.4a | 50.0a | 8710a | |
CK | 71.7a | 0.902a | 2.7b | 17.2b | 2817b | |
夏玉米 Summer maize | 氯虫苯甲酰胺+接菌 Chlorantraniliprole + F. verticillioides inoculation | 4.6c | 0.046d | 0b | 0b | 59b |
甲维盐+接菌 Emamectin benzoate + F. verticillioides inoculation | 16.6b | 0.166c | 0.3b | 2.7b | 186b | |
仅接菌F. verticillioides inoculation | 88.9a | 1.177a | 6.2a | 31.0a | 3119a | |
CK | 82.0a | 0.900b | 4.2a | 21.9a | 1670a |
表4
化学防治对玉米产量的影响"
种植季节 Sowing season | 药剂处理 Formulation | 穗长 Ear length (cm) | 行粒数 Kernels per row | 百粒重 100-grain weight (g) | 籽粒损失率 Percent of unconsumable kernels (%) | 单穗重 Ear weight (g) | 单穗增产率 Percent of yield growth (%) |
---|---|---|---|---|---|---|---|
春玉米 Spring maize | 氯虫苯甲酰胺 Chlorantraniliprole | 19.67±0.69a | 39.31±0.28a | 35.59±0.64a | 0.33b | 213.52±9.22ab | 9.38 |
氯虫苯甲酰胺+戊唑醇 Chlorantraniliprole + Tebuconazole | 19.57±0.63a | 39.12±0.10a | 35.71±0.97a | 0.11b | 216.04±5.92ab | 10.67 | |
氯虫苯甲酰胺+苯醚甲环唑 Chlorantraniliprole + Difenoconazole | 19.48±0.59a | 38.55±0.28a | 35.68±0.69a | 0.22b | 221.53±4.61a | 13.49 | |
氯虫苯甲酰胺+氰烯菌酯 Chlorantraniliprole + Phenamacril | 19.34±0.55a | 39.2±0.19a | 35.73±0.79a | 0.06b | 210.54±7.6b | 7.86 | |
氯虫苯甲酰胺+接菌 Chlorantraniliprole + F. verticillioides inoculation | 19.17±0.74a | 38.27±0.18a | 35.07±0.87a | 0.50b | 205.93±6.23b | 5.49 | |
甲维盐 Emamectin benzoate | 19.52±0.73a | 39.25±0.39a | 35.07±0.69a | 0.22b | 209.73±5.65b | 7.44 | |
甲维盐+戊唑醇 Emamectin benzoate + Tebuconazole | 19.57±0.38a | 38.94±0.11a | 35.48±0.42a | 0.28b | 211.81±10.76b | 8.50 | |
甲维盐+苯醚甲环唑 Emamectin benzoate + Difenoconazole | 19.32±0.54a | 39.29±0.19a | 36.02±0.66a | 0.72b | 208.07±4.30b | 6.59 | |
甲维盐+氰烯菌酯 Emamectin benzoate + Phenamacril | 19.33±0.51a | 38.83±0.21a | 34.82±0.65a | 0.17b | 206.96±6.17b | 6.02 | |
甲维盐+接菌 Emamectin benzoate + F. verticillioides inoculation | 19.27±0.57a | 38.84±0.28a | 34.74±0.67a | 0.83b | 213.30±7.53ab | 9.27 | |
CK | 19.33±0.62a | 38.56±0.23a | 33.57±0.41b | 1.67a | 195.21±8.25c | - | |
夏玉米 Summer maize | 氯虫苯甲酰胺 Chlorantraniliprole | 16.37±0.62a | 32.76±1.58a | 33.92±0.53ab | 0.17b | 199.03±14.98a | 11.37 |
氯虫苯甲酰胺+戊唑醇 Chlorantraniliprole + Tebuconazole | 16.51±0.93a | 33.06±2.02a | 34.49±0.89ab | 0b | 199.38±14.61a | 11.41 | |
氯虫苯甲酰胺+苯醚甲环唑 Chlorantraniliprole + Difenoconazole | 16.82±0.91a | 33.50±2.35a | 34.20±1.15ab | 0.17b | 195.42±14.01a | 9.20 | |
氯虫苯甲酰胺+氰烯菌酯 Chlorantraniliprole + Phenamacril | 16.42±1.12a | 32.07±2.58a | 34.40±1.39ab | 0b | 201.09±17.5a | 12.37 | |
氯虫苯甲酰胺+接菌 Chlorantraniliprole + F. verticillioides inoculation | 16.88±0.83a | 33.74±2.65a | 34.34±1.08ab | 0b | 197.08±11.26a | 10.12 | |
甲维盐 Emamectin benzoate | 16.36±0.89a | 31.96±2.21a | 34.47±1.52ab | 0b | 195.66±14.84a | 9.33 | |
甲维盐+戊唑醇 Emamectin benzoate + Tebuconazole | 16.42±0.67a | 32.32±1.59a | 34.56±1.82ab | 0b | 198.17±16.24a | 10.74 | |
甲维盐+苯醚甲环唑 Emamectin benzoate + Difenoconazole | 17.01±0.23a | 34.24±1.31a | 35.25±1.01a | 0.11b | 203.93±9.45a | 13.95 | |
甲维盐+氰烯菌酯 Emamectin benzoate + Phenamacril | 16.45±0.76a | 33.04±1.65a | 34.95±1.41a | 0b | 201.62±16.16a | 12.66 | |
甲维盐+接菌 Emamectin benzoate + F. verticillioides inoculation | 16.73±0.47a | 33.37±1.31a | 33.96±1.45ab | 0.17b | 198.58±23.37a | 10.96 | |
CK | 16.60±0.68a | 32.50±1.98a | 32.79±1.10b | 3.39a | 178.96±12.30b | - |
[1] |
PRESELLO D A, BOTTA G, IGLESIAS J, EYHÉRABIDE G H. Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with Fusarium verticillioides. Crop Protection, 2008, 27(3/5): 572-576.
doi: 10.1016/j.cropro.2007.08.015 |
[2] | PIENAAR J G, KELLERMAN T S, MARASAS W F. Field outbreaks of leukoencephalomalacia in horses consuming maize infected by Fusarium verticillioides (= F. moniliforme) in South Africa. Journal of the South African Veterinary Association, 1981, 52(1): 21-24. |
[3] |
ROSS P F, NELSON P E, RICHARD J L, OSWEILER G D, RICE L G, PLATTNER R D, WILSON T M. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Applied and Environmental Microbiology, 1990, 56(10): 3225-3226.
doi: 10.1128/aem.56.10.3225-3226.1990 |
[4] |
WILSON T M, ROSS P F, RICE L G, OSWEILER G D, NELSON H A, OWENS D L, PLATTNER R D, REGGIARDO C, NOON T H, PICKRELL J W. Fumonisin B1 levels associated with an epizootic of equine leukoencephalomalacia. Journal of Veterinary Diagnostic Investigation, 1990, 2(3): 213-216.
doi: 10.1177/104063879000200311 |
[5] |
MARIN S, RAMOS A J, CANO-SANCHO G, SANCHIS V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 2013, 60: 218-237.
doi: 10.1016/j.fct.2013.07.047 |
[6] |
FRANCESCHI S, BIDOLI E, BARÓN A E, LA VECCHIA C. Maize and risk of cancers of the oral cavity, pharynx, and esophagus in northeastern Italy. Journal of the National Cancer Institute, 1990, 82(17): 1407-1411.
doi: 10.1093/jnci/82.17.1407 |
[7] |
CHU F S, LI G Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Applied and Environmental Microbiology, 1994, 60(3): 847-852.
doi: 10.1128/aem.60.3.847-852.1994 |
[8] |
THIEL P G, MARASAS W F, SYDENHAM E W, SHEPHARD G S, GELDERBLOM W C. The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia, 1992, 117(1/2): 3-9.
doi: 10.1007/BF00497272 |
[9] |
ALIZADEH A M, ROHANDEL G, ROUDBARMOHAMMADI S, ROUDBARY M, SOHANAKI H, GHIASIAN S A, TAHERKHANI A, SEMNANI S, AGHASI M. Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in northeastern Iran. Asian Pacific Journal of Cancer Prevention, 2012, 13(6): 2625-2628.
doi: 10.7314/APJCP.2012.13.6.2625 |
[10] | 刘玥, 李荣荣, 何康来, 白树雄, 张天涛, 丛斌, 王振营. 桃蛀螟为害对春玉米镰孢穗腐病发生及产量损失的影响. 昆虫学报, 2017, 60(5): 576-581. |
LIU Y, LI R R, HE K L, BAI S X, ZHANG T T, CONG B, WANG Z Y. Effects of Conogethes punctiferalis (Lepidopteran: Crambidae) infestation on the occurrence of Fusarium ear rot and yield loss of spring corn. Acta Entomologica Sinica, 2017, 60(5): 576-581. (in Chinese) | |
[11] | 宋立秋, 石洁, 王振营, 何康来, 丛斌. 亚洲玉米螟为害对玉米镰孢穗腐病发生程度的影响. 植物保护, 2012, 38(6): 50-53, 58. |
SONG L Q, SHI J, WANG Z Y, HE K L, CONG B. Effects of the Asian corn borer injury on the incidence of Fusarium ear rot caused by Fusarium verticillioides at different developmental stages of corn ear. Plant Protection, 2012, 38(6): 50-53, 58. (in Chinese) | |
[12] |
NCUBE E, FLETT B C, VAN DEN BERG J, ERASMUS A, VILJOEN A. The effect of Busseola fusca infestation, fungal inoculation and mechanical wounding on Fusarium ear rot development and fumonisin production in maize. Crop Protection, 2017, 99: 177-183.
doi: 10.1016/j.cropro.2017.05.024 |
[13] |
SCHULTHESS F, CARDWELL K F, GOUNOU S. The effect of endophytic Fusarium verticillioides on infestation of two maize varieties by lepidopterous stemborers and coleopteran grain feeders. Phytopathology, 2002, 92(2): 120-128.
doi: 10.1094/PHYTO.2002.92.2.120 |
[14] | CHRISTENSEN J J, SCHNEIDER C L. European corn borer (Pyrausta nubilalis Hbn.) in relation to shank, stalk and ear rots of corn. Phytopathology, 1950, 40(3): 284-291. |
[15] |
AVANTAGGIATO G, QUARANTA F, DESIDERIO E, VISCONTI A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. Journal of the Science of Food and Agriculture, 2003, 83(1): 13-18.
doi: 10.1002/(ISSN)1097-0010 |
[16] | BLANDINO M, SCARPINO V, VANARA F, SULYOK M, KRSKA R, REYNERI A. Role of the European corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins. Food Additives and Contaminants Part A: Chemistry, Analysis, Control Exposure and Risk Assessment, 2015, 32(4): 533-543. |
[17] |
MADEGE R R, LANDSCHOOT S, KIMANYA M, TIISEKWA B, DE MEULENAER B, BEKAERT B, AUDENAERT K, HAESAERT G. Early sowing and harvesting as effective measures to reduce stalk borer injury, Fusarium verticillioides incidence and associated fumonisin production in maize. Tropical Plant Pathology, 2019, 44(2): 151-161.
doi: 10.1007/s40858-018-0233-1 |
[18] |
FOLCHER L, JARRY M, WEISSENBERGER A, GÉRAULT F, EYCHENNE N, DELOS M, REGNAULT-ROGER C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Protection, 2009, 28(4): 302-308.
doi: 10.1016/j.cropro.2008.11.007 |
[19] |
MAZZONI E, SCANDOLARA A, GIORNI P, PIETRI A, BATTILANI P. Field control of Fusarium ear rot, Ostrinia nubilalis (Hübner), and fumonisins in maize kernels. Pest Management Science, 2011, 67(4): 458-465.
doi: 10.1002/ps.2084 |
[20] |
DARVAS B, BÁNÁTI H, TAKÁCS E, LAUBER É, SZÉCSI Á, SZÉKÁCS A. Relationships of Helicoverpa armigera, Ostrinia nubilalis and Fusarium verticillioides on MON 810 maize. Insects, 2011, 2(1): 1-11.
doi: 10.3390/insects2010001 |
[21] |
BOWERS E, HELLMICH R, MUNKVOLD G. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm. Journal of Agricultural and Food Chemistry, 2014, 62(27): 6463-6472.
doi: 10.1021/jf5011897 |
[22] |
BOWERS E, HELLMICH R, MUNKVOLD G. Vip3Aa and Cry1Ab proteins in maize reduce Fusarium ear rot and fumonisins by deterring kernel injury from multiple Lepidopteran pests. World Mycotoxin Journal, 2013, 6(2): 127-135.
doi: 10.3920/WMJ2012.1510 |
[23] |
HAMMOND B G, CAMPBELL K W, PILCHER C D, DEGOOYER T A, ROBINSON A E, MCMILLEN B L, SPANGLER S M, RIORDAN S G, RICE L G, RICHARD J L. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000-2002. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1390-1397.
doi: 10.1021/jf030441c |
[24] |
ALMA A, LESSIO F, REYNERI A, BLANDINO M. Relationships between Ostrinia nubilalis (Lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn kernel in northwestern Italy. International Journal of Pest Management, 2005, 51(3): 165-173.
doi: 10.1080/09670870500179698 |
[25] | BLANDINO M, REYNERI A, VANARA F, PASCALE M, HAIDUKOWSKI M, CAMPAGNA C. Managing fumonisin contamination in maize kernels through the timing of insecticide application against European corn borer Ostrinia nubilalis Hübner. ood Additives and Contaminants Part A: Chemistry, Analysis, Control Exposure and Risk Assessment, 2009, 26(11): 1501-1514. |
[26] |
DE CURTIS F, DE CICCO V, HAIDUKOWSKI M, PASCALE M, SOMMA S, MORETTI A. Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. Field Crops Research, 2011, 123(2): 161-169.
doi: 10.1016/j.fcr.2011.05.012 |
[27] | 尚艳娥, 杨卫民. CAC、欧盟、美国与中国粮食中真菌毒素限量标准的差异分析. 食品科学技术学报, 2019, 37(1): 10-15. |
SHANG Y E, YANG W M. Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA, and China. Journal of Food Science and Technology, 2019, 37(1): 10-15. (in Chinese) | |
[28] |
WINDHAM G L, WILLIAMS W P, DAVIS F M. Effects of the southwestern corn borer on Aspergillus flavus kernel infection and aflatoxin accumulation in maize hybrids. Plant Disease, 1999, 83(6): 535-540.
doi: 10.1094/PDIS.1999.83.6.535 |
[29] | 中华人民共和国农业农村部. 转基因玉米环境安全检测技术规范: NY/T720.1-720.3, 2003. |
Ministry of Agriculture and Rural Affairs, The People’s Republic of China. Environmental impact testing of genetically modified maize: NY/T720.1-720.3, 2003. (in Chinese) | |
[30] | KUSHIRO M, NAGATA R, NAKAGAWA H, NAGASHIMA H. Liquid chromatographic detection of fumonisins in rice seed. Report of National Food Research Institute, 2008, 72: 37-44. |
[31] |
SCARPINO V, REYNERI A, VANARA F, SCOPEL C, CAUSIN R, BLANDINO M. Relationship between European corn borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. Field Crops Research, 2015, 183: 69-78.
doi: 10.1016/j.fcr.2015.07.014 |
[32] |
BLANDINO M, PEILA A, REYNERI A. Timing clorpirifos + cypermethrin and indoxacarb applications to control European corn borer damage and fumonisin contamination in maize kernels. Journal of the Science of Food and Agriculture, 2010, 90(3): 521-529.
doi: 10.1002/jsfa.v90:3 |
[33] | PARSONS M W, MUNKVOLD G P. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Additives and Contaminants Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27(5): 591-607. |
[34] |
BLANDINO M, REYNERI A, VANARA F, PASCALE M, HAIDUKOWSKI M, SAPORITI M. Effect of sowing date and insecticide application against European corn borer (Lepidoptera: Crambidae) on fumonisin contamination in maize kernels. Crop Protection, 2008, 27(11): 1432-1436.
doi: 10.1016/j.cropro.2008.06.005 |
[35] | PAPST C, UTZ H F, MELCHINGER A E, EDER J, MAGG T, KLEIN D, BOHN M. Mycotoxins produced by Fusarium spp. in isogenic Bt vs. non-Bt maize hybrids under European corn borer pressure. Agronomy Journal, 2005, 97(1): 219-224. |
[36] |
BAKAN B, MELCION D, RICHARD-MOLARD D, CAHAGNIER B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Journal of Agricultural and Food Chemistry, 2002, 50(4): 728-731.
doi: 10.1021/jf0108258 |
[37] |
MAGG T, MELCHINGER A E, KLEIN D, BOHN M. Relationship between European corn borer resistance and concentration of mycotoxins produced by Fusarium spp. in grains of transgenic Bt maize hybrids, their isogenic counterparts, and commercial varieties. Plant Breeding, 2002, 121(2): 146-154.
doi: 10.1046/j.1439-0523.2002.00659.x |
[38] |
NCUBE E, FLETT B C, VAN DEN BERG J, ERASMUS A, VILJOEN A. Fusarium ear rot and fumonisins in maize kernels when comparing a Bt hybrid with its non-Bt isohybrid and under conventional insecticide control of Busseola fusca infestations. Crop Protection, 2018, 110: 183-190.
doi: 10.1016/j.cropro.2017.09.015 |
[39] |
SANTIAGO R, CAO A, MALVAR R A, BUTRON A. Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean corn borer?. Journal of Economic Entomology, 2013, 106(5): 2241-2246.
doi: 10.1603/EC13084 |
[40] |
CLEMENTS M J, CAMPBELL K W, MARAGOS C M, PILCHER C, HEADRICK J M, PATAKY J K, WHITE D G. Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and Fusarium ear rot of corn. Crop Science, 2003, 43(4): 1283-1293.
doi: 10.2135/cropsci2003.1283 |
[41] |
PARKER N S, ANDERSON N R, RICHMOND D S, LONG E Y, WISE K A, KRUPKE C H. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn. Pest Management Science, 2017, 73(3): 546-553.
doi: 10.1002/ps.2017.73.issue-3 |
[42] |
MUNKVOLD G P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 2003, 109(7): 705-713.
doi: 10.1023/A:1026078324268 |
[43] |
MUNKVOLD G P, MCGEE D C, CARLTON W M. Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology, 1997, 87(2): 209-217.
doi: 10.1094/PHYTO.1997.87.2.209 |
[44] |
DUNCAN K E, HOWARD R J. Biology of maize kernel infection by Fusarium verticillioides. Molecular Plant-Microbe Interactions, 2010, 23(1): 6-16.
doi: 10.1094/MPMI-23-1-0006 |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[8] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[14] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[15] | 李文慧,贺依静,姜瑶,赵红宇,彭磊,李佳,芮荣,剧世强. 伏马毒素B1对猪体外成熟卵母细胞凋亡与自噬的影响[J]. 中国农业科学, 2022, 55(6): 1241-1252. |
|