中国农业科学 ›› 2021, Vol. 54 ›› Issue (14): 2952-2964.doi: 10.3864/j.issn.0578-1752.2021.14.003
张硕1,2(),智慧1,唐婵娟1,罗明昭1,汤沙1,贾冠清1,贾彦超1,刁现民1()
收稿日期:
2020-12-11
接受日期:
2021-02-01
出版日期:
2021-07-16
发布日期:
2021-07-26
通讯作者:
刁现民
作者简介:
张硕,E-mail: 基金资助:
ZHANG Shuo1,2(),ZHI Hui1,TANG ChanJuan1,LUO MingZhao1,TANG Sha1,JIA GuanQing1,JIA YanChao1,DIAO XianMin1()
Received:
2020-12-11
Accepted:
2021-02-01
Online:
2021-07-16
Published:
2021-07-26
Contact:
XianMin DIAO
摘要:
【目的】谷子是C4模式植物,其叶色突变体是研究C4光合途径的良好材料。通过研究谷子条纹叶突变体A36-S的细胞学特性并对突变基因进行定位,为克隆突变基因、解析谷子叶绿体合成及发育机理、进一步理解C4光合调控机制奠定基础。【方法】谷子条纹叶突变体A36-S是由育种创制的中间材料A36自然变异而来。对比A36-S及其正常表型等基因系A36-N的表型特征,调查二者的株高、叶宽、叶长、穗重、千粒重、结实率等农艺性状指标;测定A36-S和A36-N的叶绿素含量、净光合速率、胞间CO2浓度、气孔导度、蒸腾速率等光合指标,分析A36-S的光合特性;观察A36-S和对照品种豫谷1号的叶片半薄横截切片和超薄切片,分析A36-S叶片解剖结构特征,分别统计叶肉细胞和维管束鞘细胞中叶绿体的数量和面积,从而分析叶绿体合成及发育情况;构建A36-S×SSR41的F2分离群体,统计群体中正常表型单株与条纹叶单株的数量,进行遗传分析;分别构建F2分离群体正常单株与条纹叶单株的DNA混池,采用集团分离分析法(BSA法)进行突变基因的定位;筛选、开发多个SSR标记及In-Del标记,扫描F2群体中条纹叶单株,进行进一步基因定位。【结果】谷子条纹叶突变体A36-S在全生育期表现出叶片不规则白色条纹的表型。农艺性状分析表明,相比其近等基因系A36-N,A36-S在株高、叶宽、穗重、千粒重、结实率等表型上均显著下降。光合指标测定表明A36-S叶片中叶绿素含量明显降低,尤其是叶绿素b含量下降更为严重,同时净光合速率也明显下降。叶片解剖结构观察发现,与对照豫谷1号相比,A36-S的Kranz结构变化并不明显,但叶绿体数量和大小都显著低于对照。观察叶绿体超微结构,发现A36-S的不同细胞间叶绿体发育状况差异较大,依据叶绿体发育情况可将叶片细胞可分为3类:Ⅰ类细胞具有正常发育的叶绿体;Ⅱ类细胞叶绿体基粒及片层结构减少;Ⅲ类细胞则叶绿体结构严重异常甚至不含有叶绿体。遗传分析表明A36-S表型受隐性单基因控制,利用F2分离群体将突变基因定位在第4染色体7.66—27.90 Mb区间内。【结论】谷子A36-S条纹叶突变体表现为农艺性状及光合能力下降,叶片细胞叶绿体的数量、大小及结构均表现出显著异常。条纹叶性状受隐性单基因控制,利用分子标记将候选基因定位于第4染色体7.66—27.90 Mb区间内。
张硕,智慧,唐婵娟,罗明昭,汤沙,贾冠清,贾彦超,刁现民. 谷子条纹叶突变体A36-S的细胞学特性分析及基因定位[J]. 中国农业科学, 2021, 54(14): 2952-2964.
ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet[J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
表1
A36-S与A36-N的主要农艺性状对比 "
农艺性状 Agronomic traits | A36-N | A36-S | P值 P-value | 相比A36-N Compared to A36-N (%) |
---|---|---|---|---|
株高Plant height (cm) | 94.58±3.00 | 80.32±6.42 | 0.001001 | -15.08** |
叶长Leaf length (cm) | 28.42±0.86 | 28.48±1.39 | 0.468343 | 0.21 |
叶宽Leaf width (cm) | 2.52±0.16 | 1.88±0.19 | 0.000239 | -25.40** |
茎节数Stem nodes number | 11.00±0.71 | 10.40±0.55 | 0.086002 | -5.45 |
穗长Panicle length (cm) | 19.80±1.30 | 18.52±0.69 | 0.044184 | -6.46* |
穗粗Panicle diameter (cm) | 2.98±0.13 | 2.84±0.19 | 0.109332 | -4.70 |
单株穗数Panicle number per plant | 2.20±0.84 | 2.20±0.84 | 0.500000 | 0.00 |
主穗重Weight of main panicle (g) | 13.53±1.86 | 10.31±2.20 | 0.018266 | -23.82* |
码数Branch number | 20.00±2.55 | 21.60±1.14 | 0.118035 | 8.00 |
千粒重Thousand-grain weight (g) | 2.78±0.08 | 2.55±0.11 | 0.011091 | -8.27* |
结实率Seed setting rate (%) | 68.54±3.60 | 42.46±10.05 | 0.000285 | -38.34** |
表3
40株F2代条纹叶单株标记检测结果 "
单株号 Code | In4-3 (2 485 441 bp) | InDel 14[ (4 232 606 bp) | SiCAAS4019[ (9 999 146 bp) | SiCAAS4033[ (23 483 301 bp) | SiCAAS4034[ (30 398 635 bp) |
---|---|---|---|---|---|
3 | H | S | S | S | S |
7 | H | H | S | S | S |
9 | S | S | S | S | H |
11 | H | S | S | S | S |
12 | H | S | S | S | S |
14 | H | S | S | S | S |
18 | H | S | S | S | S |
22 | H | S | S | S | S |
27 | H | H | S | S | S |
29 | H | S | S | S | S |
30 | H | H | S | S | S |
31 | H | H | S | S | S |
32 | H | S | S | S | S |
36 | H | H | S | S | S |
表4
基因定位所用的标记及交换单株数量"
标记名称 Marker name | 位置 Location (bp) | 引物序列 Primer sequence (5’-3’) | 交换株数量 Number of recombinant individuals |
---|---|---|---|
In4-3 | 2485441 | F:GTATTCCCATGTTCGACGCGC R:GTCGGTTATTAGTTGACTTGTTGTG | 167 |
InDel 14[ | 4232606 | F:TACTCATTGCATCCCCTTCAGCAGC R:CACTGGATAACGCATGGACTGACTA | 105 |
In4-17 | 6847221 | F:TGATGCCTTACTCCAGATTTCCAGC R:GATGCATACTCAATACTCTCTAGCA | 26 |
In4-20 | 7661828 | F:GACTGTGAGGAGCCGCGTGTAC R:GGCTCTCTCCCCTAACCGGC | 1 |
In4-21 | 7873802 | F:TGCTTCCCCAAATCAGTCTTTTAGT R:GGGACACCTTAGAAACAAAACCAGA | 0 |
In4-29 | 23538740 | F:AGAAGGACTGCTTTGATCTGGC R:GCCGCACACCATTTTGCATTACCT | 0 |
In4-32 | 27896330 | F:GCAATCGTCGTACACTACTCCA R:GTAGCCAAGTGGTCATTGTTTT | 4 |
In4-33 | 30243701 | F:GGTTGTCTTGTGTGTTCT R:GACAGGCTTCAAGATAAG | 15 |
SiCAAS4034[ | 30398635 | F:CGGTGGGGTACATCGATCCTGCGACAT R:TTTTCCCTTGAATGGCACGCTGCCGGG | 18 |
[1] | 贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29(3):292-301. |
JIA G Q, DIAO X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): A potential model of plant functional genomics studies . Chinese Bulletin of Life Science, 2017, 29(3):292-301. (in Chinese) | |
[2] | BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENKINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X W, WU X M, MITROS T, TRIPLETT J, YANG X H, YE C Y, MAURO-HERRERA M, WANG L, LI P H, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30:556-561. |
[3] |
ZHANG G Y, LIU X, QUAN Z W, CHENG S F, XU X, PAN S K, XIE M, ZENG P, YUE Z, WANG W L. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30:549-554.
doi: 10.1038/nbt.2195 |
[4] |
JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L F, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E H, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B J, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45:957-961.
doi: 10.1038/ng.2673 |
[5] |
YANG Z Y, ZHANG H S, LI X K, SHEN H M, GAO J H, HOU S Y, ZHANG B, MAYES S, BENNETT M, MA J X, WU C Y, SUI Y, HAN Y H, WANG X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 system. Nature Plants, 2020, 6(9):1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[6] |
LI P H, BRUTNELL T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experiment Botany, 2011, 62:3031-3037.
doi: 10.1093/jxb/err096 |
[7] |
DIAO X M, SCHNABLE J, BENNETZEN J L, LI J Y. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering, 2014, 1:16-20.
doi: 10.15302/J-FASE-2014011 |
[8] |
CAEMMERER S VON, QUICK W P, FURBANK R T. The development of C4 rice: Current progress and future challenges. Science, 2012, 336:1671-1672.
doi: 10.1126/science.1220177 |
[9] |
LUO M Z, ZHANG S, TANG C J, JIA G Q, TANG S, ZHI H, DIAO X M. Screening of mutants related to the C4 photosynthetic Kranz structure in foxtail millet. Frontiers in Plant Science, 2018, 9:1650.
doi: 10.3389/fpls.2018.01650 |
[10] | 罗明昭, 唐婵娟, 张硕, 智慧, 汤沙, 贾冠清, 刁现民. 利用低CO2浓度培养箱筛选谷子(Setaria italica) C4光合作用相关突变体. 植物遗传资源学报, 2018, 19(3):554-560. |
LUO M Z, TANG C J, ZHANG S, ZHI H, TANG S, JIA G Q, DIAO X M. Screening of C4 photosynthesis-related mutants in foxtail millet (Setaria italica) by employmeny of low CO2 concentration incubator . Journal of Plant Genetic Resources, 2018, 19(3):554-560. (in Chinese) | |
[11] |
ZHANG H T, LI J J, YOO J H, YOO H C, CHO S H, KOH H J, SEO H S, PAEK N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006, 62(3):325-337.
doi: 10.1007/s11103-006-9024-z |
[12] |
ZHOU S X, SAWICKI A, WILLOWS R D, LUO M Z. C-terminal residues of oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Letters, 2012, 586:205-210.
doi: 10.1016/j.febslet.2011.12.026 |
[13] | YANG Y L, XU. J, HUANG L C, LENG Y J, DAI L P, RAO Y C, CHEN L, TU Z J, HU J, REN D Y, ZHANG G H, ZHU L, GUO L B, QIAN Q, ZENG D L. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 5:1297-1310. |
[14] |
KUSABA M, ITO H, MORITA R, IIDA S, SATO Y, FUJIMOTO M, KAWASAKI S, TANAKA R, HIROCHIKA H, NISHIMURA M, TANAKA A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. The Plant Cell, 2017, 19:1362-1375.
doi: 10.1105/tpc.106.042911 |
[15] |
DONG H, FEI G L, WU C Y, WU F Q, SUN Y Y, CHEN M J, REN Y L, ZHOU K N, CHENG Z Y, WANG J L, JIANG L, ZHANG X, GUO X P, LEI C L, SU N, WANG H Y, WAN J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013, 162:1867-1880.
doi: 10.1104/pp.113.217604 |
[16] |
LI J J, PANDEYA D, NATH K, ZULFUGAROV I S, YOO S C, ZHANG H T, YOO J H, CHO S H, KOH H J, KIM D S, SEO H S, KANG B C, LEE Z H, PAEK N C. ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. The Plant Journal, 2010, 62:713-725.
doi: 10.1111/tpj.2010.62.issue-4 |
[17] |
SONG J, WEI X J, SHAO G N, SHENG Z H, CHEN D B, LIU C L, JIAO G A, XIE L H, TANG S Q, HU P S. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Molecular Biology, 2014, 84:301-314.
doi: 10.1007/s11103-013-0134-0 |
[18] |
LV Y S, SHAO G N, QIU J H, JIAO G A, SHENG Z H, XIE L H, WU Y W, TANG S Q, WEI X J, HU P S. White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice. Journal of Experiment Botany, 2017, 68:5147-5160.
doi: 10.1093/jxb/erx332 |
[19] |
TANG J P, ZHANG W W, WEN K, CHEN G M, SUN J, TIAN Y L, TANG W J, YU J, AN H Z, WU T T, KONG F, TERZAGHI W, WANG C M, WAN J M. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Molecular Biology, 2017, 95:345-357.
doi: 10.1007/s11103-017-0654-0 |
[20] |
LEE S, CHIECKO C J, KIM S A, WALKER E L, LEE Y, GUERINOT M L, ANN G G. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 2009, 150:786-800.
doi: 10.1104/pp.109.135418 |
[21] |
SHENG P K, TAN J J, JIN M N, WU F Q, ZHOU K N, MA W W, HENG Y Q, WANG J L, GUO X P, ZHANG X, CHENG Z J, LIU L L, WANG C M, LIU X M, WAN J M. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 2014, 33:1581-1594.
doi: 10.1007/s00299-014-1639-y |
[22] |
ZHU X Y, GUO S, WANG Z W, XING Y D, ZHANG T Q, SHEN W Q, SANG X C, LING Y H, HE G H. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biology, 2016, 16:134-148.
doi: 10.1186/s12870-016-0821-5 |
[23] |
QIN R, ZENG D D, LIANG R, YANG C C, AKHTER D, ALAMIN M, JIN X L, SHI C H. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development. Gene, 2017, 627:351-362.
doi: 10.1016/j.gene.2017.05.059 |
[24] |
LI W, TANG S, ZHANG S, SHAN J G, TANG C J, CHEN Q N, JIA G Q, HAN Y H, ZHI H, DIAO X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv.]. Physiologia Plantarum, 2015, 157:24-37.
doi: 10.1111/ppl.2016.157.issue-1 |
[25] |
TANG C J, TANG S, ZHANG S, LUO M Z, JIA G Q, ZHI H, DIAO X M. SiSTL1, encoding a large subunit of ribonucleotide reductase, is crucial for plant growth, chloroplast biogenesis, and cell cycle progression in Setaria italica. Journal of Experimental Botany, 2019, 70(4):1167-1182.
doi: 10.1093/jxb/ery429 |
[26] |
ZHANG S, TANG S, TANG C J, LUO M Z, JIA G Q, ZHI H, DIAO X M. SiSTL2 is required for cell cycle leaf organ development, chloroplast biogenesis and influences C4 photosynthesis in Setaria italica (L.) P. Beauv. Frontiers in Plant Science, 2018, 9:1308.
doi: 10.3389/fpls.2018.01308 |
[27] |
ZHANG S, ZHI H, LI W, SHAN J G, TANG C J, JIA G Q, TANG S, DIAO X M. SiYGL2 is involved in the regulation of leaf senescence and photosystem II efficiency in Setaria italica (L.) P. Beauv. Frontiers in Plant Science, 2018, 9:1103.
doi: 10.3389/fpls.2018.01103 |
[28] | 王秋兰, 王智兰, 韩芳, 杜晓芬, 连世超, 韩康妮, 周雪, 李慧娟, 张林义, 王军, 郭二虎. 谷子条纹叶突变体wsl2的鉴定及候选基因分析. 华北农学报, 2020, 35(1):214-221. |
WANG Q L, WANG Z L, HAN F, DU X F, LIAN S C, HAN K N, ZHOU X, LI H J, ZHANG L Y, WANG J, GUO E H. Identified and candidate gene analysis of a white stripe leaf mutant wsl2 in foxtail millet . Acta Agriculturae Boreali-Sinica, 2020, 35(1):214-221. (in Chinese) | |
[29] | LICHTENTHALER H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148:350-382. |
[30] |
XIANG J S, TANG S, ZHI H, JIA G Q, WANG H J, DIAO X M. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.]. PLoS ONE, 2017, 12(6):e0178730.
doi: 10.1371/journal.pone.0178730 |
[31] |
ZHANG S, TANG C J, ZHAO Q, LI J, YANG L F, QIE L F, FAN X K, LI L, ZHANG N, ZHAO M C, LIU X T, CHAI Y, ZHANG X, WANG H L, LI Y T, LI W, ZHI H, JIA G Q, DIAO X M. Development of highly polymorphic simple sequence repeat markers using genome- wide microsatellite variant analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2014, 15:78.
doi: 10.1186/1471-2164-15-78 |
[32] | 李传宗, 智慧, 汤沙, 贾冠清, 唐婵娟, 贾彦超, 刁现民. 黄金苗谷子苗期黄色的生理基础和黄苗基因初定位. 植物遗传资源学报, 2020, 21(5):1068-1077. |
LI C Z, ZHI H, TANG S, JIA G Q, TANG C J, JIA Y C, DIAO X M. Physiological basis and and linkage analysis of elite foxtail millet variety Huangjinmiao that shows yellow seedling leaves. Journal of Plant Genetic Resources, 2020, 21(5):1068-1077. (in Chinese) | |
[33] | 周黄磊, 黄升谋. 库源关系对水稻叶绿素含量及叶绿素a/b值的影响. 绿色科技, 2017, 24:147-149. |
ZHOU H L, HUANG S M. Effects of sink source relationship on chlorophyll content and photosynthetic characteristics of rice. Journal of Green Science and Technology, 2017, 24:147-149. (in Chinese) | |
[34] | 战吉成, 王利军, 黄卫东. 弱光环境下葡萄叶片的生长及其在强光下的光合特性. 中国农业大学学报, 2002, 7(3):75-78. |
ZHAN J C, WANG L J, HUANG W D. Effects of low light environment on the growth and photosynthetic characteristics of grape leaves. Journal of China Agricultural University, 2002, 7(3):75-78. (in Chinese) | |
[35] | 张明生, 谈锋. 水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系. 种子, 2001, 4:23-25. |
ZHANG M S, TAN F. Relationship between ratio of chlorophyll a and b under water stress and drought resistance of different sweet potato varieties. Seed, 2001, 4:23-25. (in Chinese) | |
[36] | 王建华, 徐同. 模拟酸雨对棉花子叶叶绿素a、b含量及其比值的影响. 湖北农学院学报, 1991, 11(2):1-10. |
WANG J H, XU T. Effects of simulated acid rain on content of chlorophyll a, b and their ratio in cotton cotyledon. Journal of Hubei Agricultural College, 1991, 11(2):1-10. (in Chinese) | |
[37] |
GE C L, WANG L, YE W J, WU L W, CUI Y T, CHEN P, PAN J J, ZHANG D, HU J, ZENG D L, DONG G J, QIAN Q, GUO L B, XUE D W. Single-point mutation of an histidine-aspartic domain containing gene involving in chloroplast ribosome biogenesis leads to white fine stripe leaf in rice. Scientific Reports, 2017, 7:2398.
doi: 10.1038/s41598-017-02724-x |
[38] |
WANG Y, REN Y L, ZHOU K N, LIU L L, WANG J L, XU Y, ZHANG H, ZHANG L, FENG Z M, WANG L W, MA W W, WANG Y L, GUO X P, ZHANG X, LEI C L, WAN J M. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science, 2017, 8:1116.
doi: 10.3389/fpls.2017.01116 |
[39] |
NIU M, WANG Y H, WANG C M, LYU J, WANG Y L, DONG H, LONG W H, WANG D, KONG W Y, WANG L W, GUO X P, SUN L T, HU T T, ZHAI H Q, WANG H Y, WAN J M. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. Journal of Experimental Botany, 2017, 68:5773-5786.
doi: 10.1093/jxb/erx380 |
[40] |
LIU L L, YOU J, ZHU Z, CHEN K Y, ·HU M M, GU H, LIU Z W, WANG Z Y, WANG Y H, LIU S J, CHEN L M, LIU X, TIAN Y L, ZHOU S R, JIANG L, WAN J M. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. Plant Cell Reports, 2020, 39:19-33.
doi: 10.1007/s00299-019-02470-6 |
[41] |
YE W J, HU S K, WU L W, GE C W, CUI Y T, CHEN P, WANG X, XU J, REN D Y, DONG G J, QIAN Q, GUO L B. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Molecular Breeding, 2016, 36:57.
doi: 10.1007/s11032-016-0479-6 |
[42] |
WANG P, KHOSHRAVESH R, KARKI S, TAPIA R, BALAHADIA C P, BANDYOPADHYAY A, QUICK W P, FURBANK R, SAGE T L, LANGDALE J A. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Current Biology, 2017, 27(21):3278-3287.
doi: 10.1016/j.cub.2017.09.040 |
[43] |
SLEWINSKI T L, ANDERSON A A, ZHANG C K. Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiology, 2012, 53(12):2030-2037.
doi: 10.1093/pcp/pcs147 |
[1] | 谢意通,张飞,石洁,冯莉,姜丽. 外源蔗糖对紫背天葵采后品质及叶绿体的影响[J]. 中国农业科学, 2022, 55(8): 1642-1656. |
[2] | 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665. |
[3] | 杨程,龚桂芝,彭祝春,常珍珍,易璇,洪棋斌. 基于cpInDel标记和cpSSR标记的柑橘属及近缘属植物亲缘关系[J]. 中国农业科学, 2022, 55(16): 3210-3223. |
[4] | 郭淑青,宋慧,柴少华,郭岩,石兴,杜丽红,邢璐,解慧芳,张扬,李龙,冯佰利,刘金荣,杨璞. 谷子生育期及穗相关性状的QTL定位[J]. 中国农业科学, 2022, 55(15): 2883-2898. |
[5] | 武翠卿,孙静鑫,郭平毅,王宏富,武新慧. 农艺措施对谷子产量及抗倒伏力学性能的影响[J]. 中国农业科学, 2021, 54(6): 1127-1142. |
[6] | 孟宪敏,季延海,孙旺旺,武占会,储昭胜,刘明池. 两个番茄品种叶绿体超微结构及光合生理对弱光胁迫的响应[J]. 中国农业科学, 2021, 54(5): 1017-1028. |
[7] | 张婷,王根平,罗焱杰,李琳,高翔,程汝宏,师志刚,董立,张喜瑞,杨伟红,许立闪. 色差分析在优质小米选育中的应用[J]. 中国农业科学, 2021, 54(5): 901-908. |
[8] | 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 459-470. |
[9] | 郭淑青,宋慧,杨清华,高金锋,高小丽,冯佰利,杨璞. 谷子株高及穗部性状主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2021, 54(24): 5177-5193. |
[10] | 刁卫楠,袁平丽,龚成胜,赵胜杰,朱红菊,路绪强,何楠,杨东东,刘文革. 西瓜果肉柠檬黄色的遗传分析和基因定位[J]. 中国农业科学, 2021, 54(18): 3945-3958. |
[11] | 许子怡,程行,沈奇,赵亚男,汤佳玉,刘喜. 水稻黄绿叶突变体ygl3的鉴定与基因功能分析[J]. 中国农业科学, 2021, 54(15): 3149-3157. |
[12] | 许昕阳,沈佳,张跃建,李国景,牛晓伟,寿伟松. 甜瓜幼果果皮颜色基因GR的精细定位[J]. 中国农业科学, 2021, 54(15): 3308-3319. |
[13] | 张林林,智慧,汤沙,张仁梁,张伟,贾冠清,刁现民. 谷子抽穗时间基因SiTOC1的表达与单倍型变异分析[J]. 中国农业科学, 2021, 54(11): 2273-2286. |
[14] | 马建, 李丛丛, 黄亚婷, 谢雨黎, 程玲玲, 王建设. 甜瓜种皮颜色控制基因CmSC1的精细定位及候选基因分析[J]. 中国农业科学, 2021, 54(10): 2167-2178. |
[15] | 杨延兵,秦岭,王润丰,陈二影,尹秀波,刘玉芹,张素梅,丛新军,李国瑜,王乐政,管延安. 山东省不同生态条件气候因素对谷子产量的影响[J]. 中国农业科学, 2020, 53(7): 1348-1358. |
|