中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1642-1656.doi: 10.3864/j.issn.0578-1752.2022.08.014
收稿日期:
2021-07-09
接受日期:
2021-10-09
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
谢意通,Tel:18933567483;E-mail: 2019108022@njau.edu.cn。
基金资助:
XIE YiTong(),ZHANG Fei,SHI Jie,FENG Li,JIANG Li()
Received:
2021-07-09
Accepted:
2021-10-09
Published:
2022-04-16
Online:
2022-05-11
摘要:
【背景】紫背天葵采后生理代谢活跃,加上对低温敏感,采后往往贮藏于略低于室温的黑暗环境中,但紫背天葵长期黑暗贮藏,会出现采后糖饥饿,影响紫背天葵的品质。黑暗贮藏也会抑制光合过程,导致光合同化产物减少,加剧采后糖饥饿,而蔗糖是植物体内光合产物运输的主要形式。【目的】研究采后外源蔗糖处理对紫背天葵采后品质、蔗糖代谢及叶绿体的影响,探讨蔗糖处理延缓采后衰老的相关机制。【方法】在筛选出最佳蔗糖处理浓度的基础上,检测紫背天葵贮藏期间淀粉、可溶性糖、还原糖、可溶性蛋白和叶绿素含量,研究蔗糖处理对紫背天葵采后品质的影响;检测贮藏期间蔗糖、果糖、葡萄糖含量和蔗糖代谢相关酶活性如淀粉酶(Amylase)、蔗糖磷酸合成酶(SPS)、蔗糖酸性水解酶(AI)、蔗糖合成酶(SS-S)和蔗糖分解酶(SS-C),研究蔗糖处理对紫背天葵蔗糖代谢的影响;利用透射电子显微镜观测叶绿体超微结构在贮藏期间的变化,检测贮藏期间叶绿体脂氧合酶(LOX)活性、丙二醛含量(MDA)、最大光化学效率(Fv/Fm)和实际光化学效率(QY),研究蔗糖处理对叶绿体生理和功能的影响。在生化水平和亚细胞水平上探究采后蔗糖处理对紫背天葵的影响。【结果】前期的蔗糖浓度筛选发现,12%的蔗糖保鲜效果最佳,尤其在贮藏后期,12%蔗糖处理组与对照组相比,呼吸强度降低39%、失重率降低7.8%、腐烂率降低15.87%。进一步研究发现,在贮藏后期,处理组与对照组相比,蔗糖含量比为1.82、淀粉含量比为1.10、可溶性糖含量比为1.11、可溶性蛋白含量比为2.20和叶绿素含量比为1.23,蔗糖处理显著延缓了糖类物质和含氮物质的降解。蔗糖处理显著抑制SPS、AI和Amylase活性的上升,说明蔗糖处理抑制了紫背天葵的蔗糖代谢,从而减少了蔗糖和淀粉的分解。后期对紫背天葵叶绿体生理功能研究发现,贮藏结束时,处理组与对照组相比,有效维持了叶绿体结构完整性、叶绿体脂氧合酶活性降低53.13%、叶绿体丙二醛含量降低33.33%、最大和实际光化学效率分别是对照组的1.35倍和1.97倍,说明蔗糖处理显著延缓叶绿体衰老。进一步分析发现,紫背天葵叶绿体功能与淀粉和可溶性糖含量显著正相关,表明糖饥饿引起的碳源匮乏会影响叶绿体功能。【结论】蔗糖处理通过降低紫背天葵采后呼吸强度、失重率和腐烂率、调控蔗糖代谢、降低叶绿体膜脂氧化程度和维持叶绿体结构完整,抑制了紫背天葵采后品质劣变,从而延缓了紫背天葵衰老。
谢意通,张飞,石洁,冯莉,姜丽. 外源蔗糖对紫背天葵采后品质及叶绿体的影响[J]. 中国农业科学, 2022, 55(8): 1642-1656.
XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C[J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
表1
紫背天葵实际光化学效率、LOX活性与相关糖类物质、可溶性蛋白和叶绿素含量的相关性"
指标 Index | 蔗糖 Sucrose | 淀粉 Starch | 还原糖 Reducing sugar | 可溶性蛋白 Soluble protein | 可溶性糖 Soluble sugar | 叶绿素 Chlorophyll | |
---|---|---|---|---|---|---|---|
实际光化学效率 QY | 相关系数r | 0.358 | 0.709* | 0.780** | 0.791** | 0.857** | 0.911** |
P值P value | 0.310 | 0.022 | 0.0081 | 0.006 | 0.002 | 0.001 | |
脂氧合酶 LOX | 相关系数r | -0.700* | 0.302 | 0.209 | 0.175 | 0.066 | 0.111 |
P值P value | 0.024 | 0.397 | 0.562 | 0.630 | 0.857 | 0.760 |
[1] |
QIU X L, GUO Y X, ZHANG Q F. Chemical profile and antioxidant activity of Gynura bicolor DC. ethanolic extract. International Journal of Food Properties, 2018, 21(1): 407-415. doi: 10.1080/10942912.2018.1424199.
doi: 10.1080/10942912.2018.1424199 |
[2] |
BUCKNER B, JANICK-BUCKNER D, GRAY J, JOHAL G S. Cell-death mechanisms in maize. Trends in Plant Science, 1998, 3(6): 218-223. doi: 10.1016/S1360-1385(98)01254-0.
doi: 10.1016/S1360-1385(98)01254-0 |
[3] |
BLEECKER A B, PATTERSON S E. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell, 1997, 9(7): 1169-1179. doi: 10.1105/tpc.9.7.1169.
doi: 10.1105/tpc.9.7.1169 |
[4] | 施衡乐, 吴伟杰, 郜海燕, 韩延超, 陈杭君, 刘瑞玲. 短波紫外线处理对紫背天葵采后贮藏品质的影响. 核农学报, 2018, 32(7): 1377-1383. |
SHI H L, WU W J, GAO H Y, HAN Y C, CHEN H J, LIU R L. Effect of UV-C treatment on post-harvest storage quality of Gynura bicolor. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1377-1383. (in Chinese) | |
[5] |
张飞, 石洁, 谢意通, 姜丽. 1-甲基环丙烯处理对采后紫背天葵抗氧化系统的影响. 食品科学, 2022, 43(1): 164-170. doi: 10.7506/spkx1002-6630-20201219-222.
doi: 10.7506/spkx1002-6630-20201219-222 |
ZHANG F, SHI J, XIE Y T, JIANG L.Effect of 1-methylcyclopropene treatment on the antioxidant system of Gynura bicolor DC. Food Science, 2022, 43(1): 164-170. doi: 10.7506/spkx1002-6630-20201219-222. (in Chinese)
doi: 10.7506/spkx1002-6630-20201219-222 |
|
[6] | 许昕. 紫背天葵铜/锌超氧化物歧化酶基因克隆和采后处理对其表达的影响[D]. 南京: 南京农业大学, 2017: 65. |
XU X. Copper/zinc supperoxide dismutase gene cloning of Gynura bicolor D.C and its expression after various postharvest treatments[D]. Nanjing: Nanjing Agricultural University, 2017: 65. (in Chinese) | |
[7] | JIANG L, FENG L, HOU T Y, YU Z F. Establishment of a mathematical model for treatment of Gynura bicolor DC. by nano-packaging in combination with controlled atmosphere. Food Science, 2014, 35(16): 238-243. (in Chinese) |
[8] |
VICKY B W, TANIA P, ELIZABETH H, EMILY B, OK L P, GIL N H, LIN J F, SHU-HSING W, JODI S, KIMITSUNE I, LEAVER C J. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2005, 42(4): 567-585.
doi: 10.1111/j.1365-313X.2005.02399.x |
[9] |
BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M, SHEEN J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942. doi: 10.1038/nature06069.
doi: 10.1038/nature06069 |
[10] |
YU S M. Cellular and genetic responses of plants to sugar Starvation1. Plant Physiology, 1999, 121(3): 687-693. doi: 10.1104/pp.121.3.687.
doi: 10.1104/pp.121.3.687 |
[11] |
BAENA-GONZÁLEZ E, SHEEN J. Convergent energy and stress signaling. Trends in Plant Science, 2008, 13(9): 474-482. doi: 10.1016/j.tplants.2008.06.006.
doi: 10.1016/j.tplants.2008.06.006 |
[12] |
MCDOWELL N, POCKMAN W T, ALLEN C D, BRESHEARS D D, COBB N, KOLB T, PLAUT J, SPERRY J, WEST A, WILLIAMS D G, YEPEZ E A. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? The New Phytologist, 2008, 178(4): 719-739. doi: 10.1111/j.1469- 8137.2008.02436.x.
doi: 10.1111/j.1469- 8137.2008.02436.x. |
[13] |
IZUMI M, NAKAMURA S, LI N. Autophagic turnover of chloroplasts: Its roles and regulatory mechanisms in response to sugar starvation. Frontiers in Plant Science, 2019, 10: 280. doi: 10.3389/fpls.2019.00280.
doi: 10.3389/fpls.2019.00280 |
[14] |
IZUMI M, WADA S, MAKINO A, ISHIDA H. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiology, 2010, 154(3): 1196-1209. doi: 10.1104/pp.110.158519.
doi: 10.1104/pp.110.158519 |
[15] |
IZUMI M, HIDEMA J, WADA S, KONDO E, KURUSU T, KUCHITSU K, MAKINO A, ISHIDA H. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiology, 2015, 167(4): 1307-1320. doi: 10.1104/pp.114.254078.
doi: 10.1104/pp.114.254078 |
[16] | 姚迪. 光照和可溶性糖处理对青花菜保鲜效果及其机理研究[D]. 南京: 南京农业大学, 2013: 53. |
YAO D. Effects of light and soluble sugar treatments on quality maintenance and mechanism in postharvest broccoli florets[D]. Nanjing: Nanjing Agricultural University, 2013: 53. (in Chinese) | |
[17] | 任亚梅. 猕猴桃果实叶绿素代谢及生理特性研究[D]. 杨凌: 西北农林科技大学, 2009. |
REN Y M. Study on chlorophyll metabolism and physiology characteristics of kiwifruit[D]. Yangling: Northwest A & F University, 2009. (in Chinese) | |
[18] |
SITBON F, HENNION S, LITTLE C H A, SUNDBERG B. Enhanced ethylene production and peroxidase activity in IAA-overproducing transgenic tobacco plants is associated with increased lignin content and altered lignin composition. Plant Science, 1999, 141(2): 165-173. doi: 10.1016/S0168-9452(98)00236-2.
doi: 10.1016/S0168-9452(98)00236-2 |
[19] |
吕恩利, 陆华忠, 杨松夏, 赵俊宏, 田庆立. 气调运输包装方式对荔枝保鲜品质的影响. 现代食品科技, 2016, 32(4): 156-160, 93. doi: 10.13982/j.mfst.1673-9078.2016.4.025.
doi: 10.13982/j.mfst.1673-9078.2016.4.025 |
LÜ E L, LU H Z, YANG S X, ZHAO J H, TIAN Q L. Effects of packaging methods on fresh-keeping quality of Litchi during controlled atmosphere transport. Modern Food Science and Technology, 2016, 32(4): 156-160, 93. doi: 10.13982/j.mfst.1673-9078.2016.4.025. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2016.4.025 |
|
[20] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2017: 56-78. |
CAO J K, JIANG W W, ZHAO Y M. Guidance on postharvest physiological and biochemical experiments of fruits and vegetables. Beijing: China Light Industry Press, 2017: 56-78. (in Chinese) | |
[21] | 潘俨, 孟新涛, 车凤斌, 薛素琳, 张婷, 赵世荣, 廖康. 库尔勒香梨果实发育成熟的糖代谢和呼吸代谢响应特征. 中国农业科学, 2016, 49(17): 3391-3412. |
PAN Y, MENG X T, CHE F B, XUE S L, ZHANG T, ZHAO S R, LIAO K. Metabolic profiles of sugar metabolism and respiratory metabolism of Korla pear (Pyrus sinkiangensis Yu) throughout fruit development and ripening. Scientia Agricultura Sinica, 2016, 49(17): 3391-3412. (in Chinese) | |
[22] |
WU Z F, TU M M, YANG X P, XU J H, YU Z F. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biology and Technology, 2020, 161(C): 111081. doi: 10.1016/j.postharvbio.2019.111081.
doi: 10.1016/j.postharvbio.2019.111081 |
[23] | 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 188-191. |
GAO J F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2006: 188-191. (in Chinese) | |
[24] |
AUSTIN J, WEBBER A N. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number. Photosynthesis Research, 2005, 85(3): 373-384. doi: 10.1007/s11120-005-7708-x.
doi: 10.1007/s11120-005-7708-x |
[25] |
SONG L L, YI R X, LUO H B, JIANG L, GU S M, YU Z F.Postharvest 1-methylcyclopropene application delays leaf yellowing of pak choi (Brassica rapa subsp. chinensis) by improving chloroplast antioxidant capacity and maintaining chloroplast structural integrity during storage at 20℃. Scientia Horticulturae, 2020, 270: 109466. doi: 10.1016/j.scienta.2020.109466.
doi: 10.1016/j.scienta.2020.109466 |
[26] |
吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014, 38(7): 740-748.
doi: 10.3724/SP.J.1258.2014.00069 |
WU Z F, SUN X W, WANG C B, ZHENG Y P, WAN S B, LIU J H, ZHENG Y M, WU J X, FENG H, YU T Y. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chinese Journal of Plant Ecology, 2014, 38(7): 740-748. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00069 |
|
[27] |
田雨, 王旭文, 韩焕勇, 罗宏海, 王方永. 施氮量对等行距密植棉花气体交换和叶绿素荧光特性的影响. 新疆农业科学, 2020, 57(11): 1987-1997.
doi: 10.6048/j.issn.1001-4330.2020.11.004 |
TIAN Y, WANG X W, HAN H Y, LUO H H, WANG F Y. Effects of nitrogen application rates on gas exchange and chlorophyll fluorescence parameters of cotton under wide-row spacing with high density. Xinjiang Agricultural Sciences, 2020, 57(11): 1987-1997. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2020.11.004 |
|
[28] |
BÜCHERT A M, CIVELLO P M, MARTÍNEZ G A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. Journal of Plant Physiology, 2011, 168(4): 337-343. doi: 10.1016/j.jplph.2010.07.011.
doi: 10.1016/j.jplph.2010.07.011 |
[29] |
LESHEM Y Y. Plant senescence processes and free radicals. Free Radical Biology & Medicine, 1988, 5(1): 39-49. doi: 10.1016/0891-5849(88)90060-3.
doi: 10.1016/0891-5849(88)90060-3 |
[30] |
DAIE J. Cytosolic fructose-1, 6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway. Photosynthesis Research, 1993, 38(1): 5-14. doi: 10.1007/BF00015056.
doi: 10.1007/BF00015056 |
[31] |
KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004, 7(3): 235-246. doi: 10.1016/j.pbi.2004.03.014.
doi: 10.1016/j.pbi.2004.03.014 |
[32] |
CAMPOS P S, QUARTIN V, RAMALHO J C, NUNES M A. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp plants. Journal of Plant Physiology, 2003, 160(3): 283-292. doi: 10.1078/0176-1617-00833.
doi: 10.1078/0176-1617-00833 |
[33] |
姜丽, 冯莉, 侯田莹, 郁志芳. 植酸处理对冷藏期间紫背天葵品质的影响. 食品工业科技, 2015, 36(7): 336-341. doi: 10.13386/j.issn1002-0306.2015.07.062.
doi: 10.13386/j.issn1002-0306.2015.07.062 |
JIANG L, FENG L, HOU T Y, YU Z F. Effect of phytic acid on Gynura bicolor D. C quality during cold storage. Science and Technology of Food Industry, 2015, 36(7): 336-341. doi: 10.13386/j.issn1002-0306.2015.07.062. (in Chinese)
doi: 10.13386/j.issn1002-0306.2015.07.062 |
|
[34] | ARAUJO W L, TOHGE T, ISHIZAKI K, LEAVER C J, FERNIE A R. Protein degradation - an alternative respiratory substrate for stressed plants. Trends in Plant Science, 2011, 16(9): 489-498. |
[35] |
ONO Y, WADA S, IZUMI M, MAKINO A, ISHIDA H. Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant, Cell & Environment, 2013, 36(6): 1147-1159. doi: 10.1111/pce.12049.
doi: 10.1111/pce.12049 |
[36] |
HIROYUKI I, KOHKI Y, MASANORI I, DANIEL R, YUICHI Y, AMANE M, YOSHINORI O, HANSON M R, TADAHIKO M. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology, 2008, 148(1): 142-55. doi: 10.1104/pp.108.122770.
doi: 10.1104/pp.108.122770 |
[37] |
NAKAMURA S, IZUMI M. Regulation of chlorophagy during photoinhibition and senescence: Lessons from mitophagy. Plant and Cell Physiology, 2018, 59(6): 1135-1143. doi: 10.1093/pcp/pcy096.
doi: 10.1093/pcp/pcy096 |
[38] |
田梦瑶, 周宏胜, 唐婷婷, 张映曈, 凌军, 罗淑芬, 李鹏霞. 外源蔗糖处理对采后桃果皮色泽形成的影响. 食品科学, 2022, 43(1): 177-183. doi: 10.7506/spkx1002-6630-20201112-135.
doi: 10.7506/spkx1002-6630-20201112-135 |
TIAN M Y, ZHOU H S, TANG T T, ZHANG Y T, LING J, LUO S F, LI P X. Effect of exogenous sucrose treatment on the peel coloration in postharvest peaches. Food Science, 2022, 43(1): 177-183. doi: 10.7506/spkx1002-6630-20201112-135. (in Chinese)
doi: 10.7506/spkx1002-6630-20201112-135 |
|
[39] |
BALIBREA LARA M E, GONZALEZ GARCIA M C, FATIMA T, EHNESS R, LEE T K, PROELS R, TANNER W, ROITSCH T. Extracellular invertase is an essential component of cytokinin- mediated delay of senescence. The Plant Cell, 2004, 16(5): 1276-1287. doi: 10.1105/tpc.018929.
doi: 10.1105/tpc.018929 |
[40] |
BISWAL B, PANDEY J K. Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: role of cell wall hydrolases. Photosynthetica, 2018, 56(1): 404-410. doi: 10.1007/s11099-018-0784-x.
doi: 10.1007/s11099-018-0784-x |
[41] |
FELLER U, ANDERS I, MAE T. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 2007, 59(7): 1615-1624. doi: 10.1093/jxb/erm242.
doi: 10.1093/jxb/erm242 |
[42] |
TERCÉ-LAFORGUE T, MÄCK G, HIREL B. New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. Physiologia Plantarum, 2004, 120(2): 220-228. doi: 10.1111/j.0031-9317.2004.0241.x.
doi: 10.1111/j.0031-9317.2004.0241.x. |
[43] |
WITTENBACH V A, LIN W, HEBERT R R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiology, 1982, 69(1): 98-102. doi: 10.1104/pp.69.1.98.
doi: 10.1104/pp.69.1.98 |
[44] |
CHIBA A, ISHIDA H, NISHIZAWA N K, MAKINO A, MAE T. Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant and Cell Physiology, 2003, 44(9): 914-921. doi: 10.1093/pcp/ pcg118.
doi: 10.1093/pcp/ pcg118 |
[45] | KRUPINSKA K. HOOBER J K. Fate and activities of plastids during leaf senescence//WISE R R, Structure and Function of Plastids. Aa Dordrecht, Netherlands: Springer, 2006: 433. |
[46] |
赵晓帼, 朱毅, 罗云波. 外源蔗糖对萝卜幼苗品质及代谢酶活性的影响. 食品科学, 2015, 36(9): 7-11. doi: 10.7506/spkx1002-6630-201509002.
doi: 10.7506/spkx1002-6630-201509002 |
ZHAO X G, ZHU Y, LUO Y B. Effect of exogenous sucrose on quality and metabolic enzyme activities of radish sprouts. Food Science, 2015, 36(9): 7-11. doi: 10.7506/spkx1002-6630-201509002. (in Chinese)
doi: 10.7506/spkx1002-6630-201509002 |
|
[47] |
胡月, 王鸿飞, 董栓泉, 程佑声, 许凤, 邵兴锋, 李和生. 蔗糖处理对费菜黄酮含量及其抗氧化性的影响. 现代食品科技, 2016, 32(1): 250-255. doi: 10.13982/j.mfst.1673-9078.2016.1.039.
doi: 10.13982/j.mfst.1673-9078.2016.1.039 |
HU Y, WANG H F, DONG S Q, CHENG Y S, XU F, SHAO X F, LI H S. Effect of sucrose treatment on flavonoid content and antioxidant activity of Sedum aizoon leaves. Modern Food Science and Technology, 2016, 32(1): 250-255. doi: 10.13982/j.mfst.1673-9078.2016.1.039. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2016.1.039 |
|
[48] |
IZUMI M, ISHIDA H, NAKAMURA S, HIDEMA J. Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell, 2017, 29(2): 377-394. doi: 10.1105/tpc.16.00637.
doi: 10.1105/tpc.16.00637 |
[1] | 王宛如, 曹跃芬, 盛况, 陈进红, 赵天伦, 祝水金. 转1174AALdico-2+CTP耐草甘膦优异棉花种质系的创制及其特性[J]. 中国农业科学, 2023, 56(17): 3261-3276. |
[2] | 宋江涛,谌丹丹,公旭晨,商祥明,李春龙,蔡永喜,岳建平,王帅玲,张卜芬,谢宗周,刘继红. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688-4701. |
[3] | 王朝,方东路,张攀容,姜雯,裴斐,胡秋辉,马宁. 基于TMT定量蛋白质组学揭示纳米包装双孢蘑菇采后冷藏生理代谢规律[J]. 中国农业科学, 2022, 55(23): 4728-4742. |
[4] | 杨程,龚桂芝,彭祝春,常珍珍,易璇,洪棋斌. 基于cpInDel标记和cpSSR标记的柑橘属及近缘属植物亲缘关系[J]. 中国农业科学, 2022, 55(16): 3210-3223. |
[5] | 胡斐斐,钱书意,黄峰,姜薇,强宇,江峰,胡海梅,李侠,张春晖. 低压静电场辅助短期冻藏对猪肉品质的影响[J]. 中国农业科学, 2021, 54(9): 1993-2005. |
[6] | 孟宪敏,季延海,孙旺旺,武占会,储昭胜,刘明池. 两个番茄品种叶绿体超微结构及光合生理对弱光胁迫的响应[J]. 中国农业科学, 2021, 54(5): 1017-1028. |
[7] | 许子怡,程行,沈奇,赵亚男,汤佳玉,刘喜. 水稻黄绿叶突变体ygl3的鉴定与基因功能分析[J]. 中国农业科学, 2021, 54(15): 3149-3157. |
[8] | 张硕,智慧,唐婵娟,罗明昭,汤沙,贾冠清,贾彦超,刁现民. 谷子条纹叶突变体A36-S的细胞学特性分析及基因定位[J]. 中国农业科学, 2021, 54(14): 2952-2964. |
[9] | 朱智锋,刘萍,许让伟,陈传武,邓崇岭,牛英,朱壹,王鹏蔚,邓秀新,程运江. 树冠覆膜对沙糖橘采后保鲜性能的影响[J]. 中国农业科学, 2021, 54(12): 2630-2643. |
[10] | 刘敏,房玉林. 高温胁迫对葡萄幼树生理指标和超显微结构的影响[J]. 中国农业科学, 2020, 53(7): 1444-1458. |
[11] | 王霆,张雨,刘宏,何田田,毕阳,贠建民. 臭氧熏蒸处理联合PE包装对金针菇采后贮藏品质 及抗氧化能力的影响[J]. 中国农业科学, 2020, 53(4): 823-835. |
[12] | 高源,王大江,王昆,丛佩华,张彩霞,李连文,朴继成. 基于叶绿体DNA变异的山荆子种质遗传多样性和系统演化[J]. 中国农业科学, 2020, 53(3): 600-611. |
[13] | 谢海坤,焦健,樊秀彩,张颖,姜建福,孙海生,刘崇怀. 基于高通量测序组装‘赤霞珠’叶绿体基因组及其特征分析[J]. 中国农业科学, 2017, 50(9): 1655-1665. |
[14] | 朱迎春,王洋,樊晓盼,马俪珍,王凯丽. 基于宏基因组学技术分析不同贮藏条件下鲶鱼片中的菌相变化[J]. 中国农业科学, 2017, 50(5): 913-923. |
[15] | 刘云鹏,梁效贵,申思,周丽丽,高震,周顺利. 梯度干旱胁迫下玉米光合碳的日变化及品种偏向性[J]. 中国农业科学, 2017, 50(11): 2083-2092. |
|