中国农业科学 ›› 2021, Vol. 54 ›› Issue (14): 2941-2951.doi: 10.3864/j.issn.0578-1752.2021.14.002
收稿日期:
2020-12-12
接受日期:
2021-02-03
出版日期:
2021-07-16
发布日期:
2021-07-26
通讯作者:
任天恒
作者简介:
范涛,E-mail: 基金资助:
FAN Tao(),LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng(
)
Received:
2020-12-12
Accepted:
2021-02-03
Online:
2021-07-16
Published:
2021-07-26
Contact:
TianHeng REN
摘要:
【目的】小麦单位面积穗数和籽粒粒长是小麦产量相关的重要农艺性状,对其进行遗传改良有利于提高小麦的产量。通过对前期QTL定位鉴定到的提高单位面积穗数的主效QTL位点QSn.sau-2D.2和提高籽粒粒长的主效QTL位点QKl.sau-3D.2开发相应的KASP分子标记,并在川农18和T1208构建的RILs群体中进行验证及评价,为更好地利用这两个QTL以及分子标记辅助育种奠定基础。【方法】利用前期在川农18和T1208构建的高代自交群体中鉴定到的控制小麦单位面积穗数主效QTL位点QSn.sau-2D.2和控制籽粒粒长主效QTL位点QKl.sau-3D.2,结合在这两个QTL区间内的55K SNP分子标记序列,开发设计KASP分子标记,并在亲本间筛选具有多态性的KASP分子标记。将筛选到的KASP分子标记在川农18×T1208的RILs群体中分别进行基因分型和鉴定相应表型性状的高低,并分析这两个主效QTL对于其他农艺性状的影响。【结果】KASP-AX-111151907和KASP-AX-109962767在亲本中具有多态性,KASP-AX-111151907和KASP-AX-109962767在群体中的验证表明这两个分子标记分别与QSn.sau-2D.2和QKl.sau-3D.2连锁。KASP-AX-111151907和KASP-AX-10996276能将群体材料的基因型分为2类,按照表型划分,在3年试验中,KASP-AX-111151907对多穗材料的平均选择率均达到72.58%,对少穗材料的平均选择率达到71.68%;KASP-AX-10996276对长粒材料的平均选择率达到69.86%,对短粒基因型的平均选择率可达61.52%,表明这两个标记的可靠性。基于KASP分子标记的基因分型结果表明,这两个QTL对于株高、千粒重、粒长、粒宽、粒径比、单位面积穗数、穗粒重均具有显著性影响。在川农17×川农11的RILs群体中进行验证也表明这两个分子标记对相应性状的选择具有一定的作用。【结论】针对单位面积穗数主效QTL位点QSn.sau-2D.2和籽粒粒长主效QTL位点QKl.sau-3D.2分别开发了1对与之连锁的KASP分子标记,可用于相应性状的选择,与KASP标记连锁的QTL分别能显著提高单位面积穗数和籽粒粒长。QSn.sau-2D.2对株高、千粒重、粒长、粒宽、粒径比、穗粒重是负向影响,QKl.sau-3D.2对株高、千粒重、粒宽、粒径比和穗粒重是正向影响,但对单位面积穗数是负向影响,这两个QTL及开发的KASP标记可应用于小麦高产育种中。
范涛,李治,蒋庆,陈姝霖,欧霞,陈永艳,任天恒. 小麦单位面积穗数和粒长主效QTL紧密连锁KASP标记的开发及其效应评价[J]. 中国农业科学, 2021, 54(14): 2941-2951.
FAN Tao,LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng. Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat[J]. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951.
表1
试验中涉及的SNP标记及序列"
SNP标记 SNP marker | 染色体 Chromosome | 变异碱基 Base | 序列 Sequence (5′-3′) |
---|---|---|---|
AX-109283238 | 2D | C//T | CCCTTGTCTCTTCCATCTATTTTCCCACCATCGTA[C/T]GGTTCCTTCTTTAATATTGTGTCTCTTTCCTCGAT |
AX-111151907 | 2D | G//T | GCCACCTACCTAGAAACCCTACCCAGCAGCCACAA[G/T]ATCCCCCAAAAATCGGATTCCTTTGCTGGACTAAC |
AX-86163992 | 2D | A//G | TTGCTCAGCTTCTGGAAATACTGCTGCTTCTGAAC[A/G]AGCTTCTCGCGTGGGTAAAATGGTGCTTCTTCGAG |
AX-108802182 | 2D | A//G | TGCAGGATAATCCTAGAGCCAGGGGGATGTACGGT[A/G]TTCCATTTCCGCATTTCGATGTGTTTGATGCGGTG |
AX-110073027 | 2D | G//T | TCGATATGAAGTCTGGTGAAACCGATGGGTACGAC[G/T]CTGTTTTCTTGAGTCCTCACAAATTTGTCGGGGGA |
AX-109962767 | 3D | A//G | AACTATCGGATTGGAAACAAATTGACTCACATACA[A/G]CAAATGATATGTGAGGCCGAGTAGCACAAGCTAGG |
AX-108923200 | 3D | A//G | CTCGAACAAATGAGTTGAAGAAACTGCCATCATCA[A/G]AAGACTGAAGCAAAACAAGTTTGAGACAACCACTG |
表2
试验中涉及的KASP分子标记引物序列"
QTL | 分子标记 Molecular marker | 引物序列 Primer sequence (5′-3′) |
---|---|---|
QSn.sau-2D.2 | KASP-AX-109283238-1 | GAAGGTGACCAAGTTCATGCTCCATCTATTTTCCCACCATCGTAC |
KASP-AX-109283238-2 | GAAGGTCGGAGTCAACGGATTCCATCTATTTTCCCACCATCGTAT | |
KASP-AX-109283238-3 | ACCTTTATCGAGGAAAGAGACACA | |
KASP-AX-111151907-1 | GAAGGTGACCAAGTTCATGCTCCTACCCAGCAGCCACAAG | |
KASP-AX-111151907-2 | GAAGGTCGGAGTCAACGGATTCCTACCCAGCAGCCACAAT | |
KASP-AX-111151907-3 | AAGGCCAGTGTTAGTCCAGC | |
KASP-AX-86163992-1 | GAAGGTGACCAAGTTCATGCTGGAAATACTGCTGCTTCTGAACA | |
KASP-AX-86163992-2 | GAAGGTCGGAGTCAACGGATTGGAAATACTGCTGCTTCTGAACG | |
KASP-AX-86163992-3 | TTGTATGCAGGATGACGCTC | |
KASP-AX-108802182-1 | GAAGGTGACCAAGTTCATGCTCATCGAAATGCGGAAATGGAAT | |
KASP-AX-108802182-2 | GAAGGTCGGAGTCAACGGATTCATCGAAATGCGGAAATGGAAC | |
KASP-AX-108802182-3 | GTGTCTTTGTGTTGATTTGTTTCA | |
KASP-AX-110073027-1 | GAAGGTGACCAAGTTCATGCTTGTGAGGACTCAAGAAAACAGC | |
KASP-AX-110073027-2 | GAAGGTCGGAGTCAACGGATTTGTGAGGACTCAAGAAAACAGA | |
KASP-AX-110073027-3 | ATCCTTTCTGCAGTGGACCC | |
QKl.sau-3D.2 | KASP-AX-109962767-1 | GAAGGTGACCAAGTTCATGCTTGGAAACAAATTGACTCACATACAA |
KASP-AX-109962767-2 | GAAGGTCGGAGTCAACGGATTTGGAAACAAATTGACTCACATACAG | |
KASP-AX-109962767-3 | GTGCTACTCGGCCTCACATA | |
KASP-AX-108923200-1 | GAAGGTGACCAAGTTCATGCTGTTGAAGAAACTGCCATCATCAA | |
KASP-AX-108923200-2 | GAAGGTCGGAGTCAACGGATTGTTGAAGAAACTGCCATCATCAG | |
KASP-AX-108923200-3 | CGTCCAGTGGTTGTCTCAAAC |
表3
基于KASP分子标记验证QSn.sau-2D.2和QKl.sau-3D.2对相应性状的影响 "
QTL | 环境 Environment | 基因型A Genotype A | 基因型B Genotype B | 差值 Difference | P值 P value |
---|---|---|---|---|---|
QSn.sau-2D.2 | 2015 | 311.60(n=158) | 275.56(n=211) | 36.04 | <0.001 |
2016 | 303.41(n=158) | 263.75(n=211) | 39.66 | <0.001 | |
2017 | 290.50(n=158) | 234.36(n=211) | 56.14 | <0.001 | |
QKl.sau-3D.2 | 2016 | 7.11(n=188) | 7.43(n=175) | 0.32 | <0.001 |
2018 | 6.98(n=188) | 7.45(n=175) | 0.47 | <0.001 | |
2019 | 7.01(n=188) | 7.64(n=175) | 0.63 | <0.001 |
表4
基于KASP分子标记验证QSn.sau-2D.2和QKl.sau-3D.2对产量相关性状的影响 "
QTL | 基因型 Genotype | 株高 Plant height (cm) | 千粒重 1000 kernel weight (g) | 粒长 Kernel length (mm) | 粒宽 Kernel width (mm) | 粒径比 Kernel diameter ratio | 单位面积穗数 Spike numbers per unit area/m2 | 每穗粒重 Kernel weight per spike (g) |
---|---|---|---|---|---|---|---|---|
QSn.sau-2D.2 | A | 78.85*** | 45.77*** | 6.89*** | 3.45*** | 1.99*** | 290.67*** | 2.26*** |
B | 88.47 | 49.58 | 7.30 | 3.50 | 2.09 | 234.49 | 2.62 | |
QKl.sau-3D.2 | A | 80.25 | 45.89 | 6.90 | 3.46 | 1.99 | 281.48 | 2.29 |
B | 88.26*** | 49.95*** | 7.34*** | 3.50*** | 2.10*** | 235.13*** | 2.62*** |
[1] |
CHAVES M S, MARTINELLI J A, WESP-GUTERRES C, GRAICHEN F, BRAMMER S P, SCAGLIUSI S M, SILVA P R, WIETHOLTER P, TORRES G, LAU E Y, CONSOLI L, CAVES A. The importance for food security of maintaining rust resistance in wheat. Food Security, 2013, 5(2):157-176.
doi: 10.1007/s12571-013-0248-x |
[2] |
RAY D K, MUELLER N D, WEST P C, FOLEY J A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 2013, 8(6):e66428.
doi: 10.1371/journal.pone.0066428 |
[3] |
CAO S, XU D, HANIF M, XIA X, HE Z. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics, 2020, 133(6):1811-1823.
doi: 10.1007/s00122-020-03562-8 |
[4] |
YANG J, ZHOU Y, WU Q, CHEN Y, ZHANG P, ZHANG Y, HU W, WANG X, ZHAO H, DONG L, HAN J, LIU Z, CAO T. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132(6):1799-1814.
doi: 10.1007/s00122-019-03316-1 |
[5] |
SU Z, HAO C, WANG L, DONG Y, ZHANG X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122:211-223.
doi: 10.1007/s00122-010-1437-z |
[6] |
ZHANG P, HE Z, TIAN X, GAO F, XU D, LIU J, WEN W, FU L, LI G, SUI X, XIA X, WANG C, CAO S. Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker. Molecular Breeding, 2017, 37:78.
doi: 10.1007/s11032-017-0676-y |
[7] |
QIN L, HAO C, HOU J, WANG Y, LI T, WANG L, MA Z, ZHANG X. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biology, 2014, 14(1):1-36.
doi: 10.1186/1471-2229-14-1 |
[8] | 张福彦, 范家霖, 陈晓杰, 陈锋, 齐红志, 王嘉欢, 程仲杰, 杨保安, 张建伟. 小麦粒重相关基因的遗传定位和分子标记辅助育种进展. 植物遗传资源学报, 2020, 21(3):507-516. |
ZHANG F Y, FAN J L, CHEN X J, CHEN F, QI H Z, WANG J H, CHENG Z J, YANG B A, ZHANG J W. Genetic localization and marker assisted breeding of grain weight-related genes in common wheat. Journal of Plant Genetic Resources, 2020, 21(3):507-516. (in Chinese) | |
[9] | GAO F, WEN W, LIU J, RASHEED A, YIN G, XIA X, WU X, HE Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 2015, 6:1099. |
[10] | 胡洋山, 汤颖子, 李治, 晏本菊, 任正隆, 任天恒. 小麦分蘖成穗数相关分子标记在重组自交系(RIL)群体中的有效性验证及实用性评价. 麦类作物学报, 2018, 38(1):8-15. |
HU Y S, TANG Y Z, LI Z, YAN B J, REN Z L, REN T H. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population. Journal of Triticeae Crops, 2018, 38(1):8-15. (in Chinese) | |
[11] |
FAN X, CUI F, JI J, ZHANG W, ZHAO X, LIU J, MENG D, TONG Y, WANG T, LI J. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10:187.
doi: 10.3389/fpls.2019.00187 |
[12] |
MOHLER V, ALBRECHT T, CASTELL A, DIETHELM M, SCHWEIZER G, HARTL L. Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics, 2016, 57:467-476.
doi: 10.1007/s13353-016-0349-2 |
[13] | 刘子会, 刘畅, 彭义峰, 李国良, 张华宁, 张红梅, 段硕楠, 郭秀林. 小麦耐热分子标记Xwmc44的鉴定及分析. 植物遗传资源学报, 2021, 22(1):95-101. |
LIU Z H, LIU C, PENG Y F, LI G L, ZHANG H N, ZHANG H M, DUAN S N, GUO X L. Identification and analysis of heat-tolerant molecular marker Xwmc44 in wheat . Journal of Plant Genetic Resources, 2021, 22(1):95-101. (in Chinese) | |
[14] | 陈泠, 高春保, 王翠, 朱展望, 佟汉文, 刘易科, 张宇庆, 邹娟, 何伟杰. 穗发芽抗性相关分子标记Tamyb10D和Vp1B3在红白粒小麦中的有效性验证. 湖北农业科学, 2018, 57(24):66-69. |
CHEN L, GAO C B, WANG C, ZHU Z W, TONG H W, LIU Y K, ZHANG Y Q, ZOU J, HE W J. Validation of Tamyb10D and Vp1B3 associated with pre-harvest sprouting tolerance in red-grained and white-grained wheat varieties . Hubei Agricultural Sciences, 2018, 57(24):66-69. (in Chinese) | |
[15] |
LI C, TANG H P, LUO W, ZHANG X M, MU Y, DENG M, LIU Y X, JIANG Q T, CHEN G Y, WANG J R, QI P F, PU Z E, JIANG Y F, WEI Y M, ZHENG Y L, LAN X J, MA J. A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theoretical and Applied Genetics, 2020, 133:3381-3393.
doi: 10.1007/s00122-020-03675-0 |
[16] |
MA J, ZHANG H, LI S, ZOU Y Y, LI T, LIU J J, DING P Y, MU Y, TANG H P, DENG M, LIU Y X, JIANG Q T, CHEN G Y, KANG H Y, LI W, PU Z E, WEI Y M, ZHENG Y L, LAN X J. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genetics, 2019, 20(1):77.
doi: 10.1186/s12863-019-0782-4 |
[17] | REN T H, FAN T, CHEN S L, LI C S, CHEN Y Y, OU X, JIANG Q, REN Z L, TAN F Q, LUO P G, CHEN C, LI Z. Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theoretical and Applied Genetics, 2020, https://doi.org/10.1007/s00122-020-03732-8. |
[18] |
REN T H, HU Y S, TANG Y Z, LI C S, YAN B J, REN Z L, TAN F Q, TANG Z X, FU S L, LI Z. Utilization of a wheat55K SNP Array for mapping of major QTL for memporal expression of the tiller number. Frontiers in Plant Science, 2018, 9:333.
doi: 10.3389/fpls.2018.00333 |
[19] | 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9):14-16. |
LI R H, XIA Y S, LIU S Z, SUN L L, GUO P G, MIAO S Y, CHEN J H. CTAB-improved method of DNA extraction in plant. Research and Exploration in Laboratory, 2009, 28(9):14-16. (in Chinese) | |
[20] | 李聪, 马建, 刘航, 丁浦洋, 杨聪聪, 张涵, 秦娜娜, 兰秀锦. 基于小麦55K SNP芯片检测小麦穗长和株高性状QTL. 麦类作物学报, 2019, 39(11):1284-1292. |
LI C, MA J, LIU H, DING F Y, YANG C C, ZHANG H, QIN N N, LAN X J. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 2019, 39(11):1284-1292. (in Chinese) | |
[21] | 任正隆. 雨养农业区的小麦育种. 北京: 科学出版社, 2011: 534. |
REN Z L. Rain-Fed Agricultural Region of Wheat Breeding. Beijing: Science Press, 2011: 534. (in Chinese) | |
[22] | 任正隆. 中国南方小麦优质高效生产的若干问题. 四川农业大学学报, 2002, 20(3):302. |
REN Z L. Several limiting factors of wheat production in south area of China and the new approach of wheat breeding. Journal of Sichuan Agricultural University, 2002, 20(3):302. (in Chinese) | |
[23] | 谭飞泉, 张怀琼, 任正隆. “协调型”小麦新品种的产量潜力及其构成的研究. 四川农业大学学报, 2003, 21(3):189-192. |
TAN F Q, ZHANG H Q, REN Z L. Study on yield potential and its components of the "Coordination-type" wheat new cultivars. Journal of Sichuan Agricultural University, 2003, 21(3):189-192. (in Chinese) | |
[24] | 郝艳玲, 张紫晋, 粟永英, 张怀渝, 任正隆. 西南麦区高产多穗型小麦单株分蘖特征研究. 核农学报, 2016, 30(11):2248-2257. |
HAO Y L, ZHANG Z J, SU Y Y, ZHANG H Y, REN Z L. Morphological characteristics of tillers per plant in high-yield and multi-spike type wheat in Southwest China. Journal of Nuclear Agricultural Sciences, 2016, 30(11):2248-2257. (in Chinese) | |
[25] |
SUN C W, DONG Z D, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6):1354-1360.
doi: 10.1111/pbi.v18.6 |
[26] | 张兆萍, 周丽敏, 宋晓朋, 连俊方, 孙道杰. 小麦穗发芽抗性鉴定及相关分子标记的有效性验证. 麦类作物学报, 2015, 35(3):300-305. |
ZHANG Z P, ZHOU L M, SONG X P, LIAN J F, SUN D J. Identification of PHS tolerance in wheat varieties and validation of molecular markers associated with PHS tolerance. Journal of Triticeae Crops, 2015, 35(3):300-305. (in Chinese) | |
[27] | WANG S S, ZHANG X F, CHEN F, CUI D Q. A Single-Nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Frontiers in Plant Science, 2015, 6(1166):1166. |
[28] |
CUI F, ZHANG N, FAN X L, ZHANG W, ZHAO C H, YANG L J, PAN R Q, CHEN M, HAN J, ZHAO X Q, JI J, TONG Y P, ZHANG H X, JIA J Z, ZHAO G Y, LI J M. Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 2017, 7(1):3788.
doi: 10.1038/s41598-017-04028-6 |
[29] | 魏广辉, 李执, 陈强, 李阳, 陈诗豪, 裴英, 周勇, 程梦萍, 唐豪, 王际睿, 魏育明, 刘登才, 陈黎, 郑有良, 蒲至恩. 人工合成小麦SHW-L1高硒含量KASP分子标记开发及其应用. 中国农业科学, 2020, 53(20):4103-4112. |
WEI G H, LI Z, CHEN Q, LI Y, CHEN S H, PEI Y, ZHOU Y, CHENG M P, TANG H, WANG J R, WEI Y M, LIU D C, CHEN L, ZHENG Y L, PU Z E. Development and utilization of KASP marker for Se concentration in synthetic wheat SHW-L1. Scientia Agricultura Sinica, 2020, 53(20):4103-4112. (in Chinese) | |
[30] |
SALAMEH A, BUERSTMAYR M, STEINER B, NEUMAYER A, LEMMENS M, BUERSTMAYRET H. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Molecular Breeding, 2011, 28(4):485-494.
doi: 10.1007/s11032-010-9498-x |
[31] |
GRIFFITHS S, WINGEN L, PIETRAGALLA J, GARCIA G, HASAN A, MIRALLES D, CALDERINI D F, ANKLESHWARIA J B, WAITE M L, SIMMONDS J, SNAPE J, REYNOLDS M. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE, 2015, 10(3):e0118847.
doi: 10.1371/journal.pone.0118847 |
[32] |
PINTHUS M J, MILLET E. Interactions among number of spikelets, number of grains and grain weight in the spikes of wheat (Triticum aestivum L.). Annals of Botany, 1978, 42(4):839-848.
doi: 10.1093/oxfordjournals.aob.a085523 |
[33] |
CALDERINI D F, SAVIN R, ABELEDO L G, REYNOLDS M P, SLAFER G A. The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica, 2001, 119(1/2):199-204.
doi: 10.1023/A:1017597923568 |
[34] |
LI F J, WEN W E, HE Z H, LIU J D, JIN H, CAO S H, GENG H W, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics, 2018, 131:1-22.
doi: 10.1007/s00122-017-2954-9 |
[35] |
LIN Y, JIANG X J, TAO Y, YANG X L, WANG Z Q, WU F K, LIU S H, LI C X, DENG M, MA J, CHEN G D, WEI Y M, ZHENG Y L, LIU Y X. Identification and validation of stable quantitative trait loci for grain filling rate in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133:2377-2385.
doi: 10.1007/s00122-020-03605-0 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[14] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[15] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
|