[1] |
刘丽娜, 缪锦来, 郑洲. 共轭亚油酸的生理功能综述. 食品安全质量检测学报, 2020. 11(8):2552-2557.
|
|
LIU L N, MIAO J L, ZHENG Z. Review on the physiological function of conjugated linoleic acid. Journal of Food Safety & Quality, 2020, 11(8):2552-2557. (in Chinese)
|
[2] |
戚登斐, 张润光, 韩海涛, 杨涛, 张有林. 核桃油中亚油酸分离纯化技术研究及其降血脂功能评价. 中国油脂, 2019, 44(2):104-108.
|
|
QI D F, ZHANG R G, HAN H T, YANG T, ZHANG Y L. Separation and purification of linoleic acid from walnut oil and its hypolipidemic function evaluation. China Oils and Fats, 2019, 44(2):104-108. (in Chinese)
|
[3] |
欧阳建勋. 米糠油资源开发应用探讨. 粮食科技与经济, 2011, 36(3):24-26, 33.
|
|
OUYAN J X. Discussion on development and application of rice bran oil resources. Grain Science and Technology and Economy, 2011, 36(3):24-26, 33. (in Chinese)
|
[4] |
ABE K, ARAKI E, SUZUKI Y, TOKI S, SAIKA H. Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 2018, 131:58-62.
doi: 10.1016/j.plaphy.2018.04.033
|
[5] |
HANNA R E, DOENCH J G. Design and analysis of CRISPR-Cas experiments. Nature Biotechnology, 2020, 38:813-823.
doi: 10.1038/s41587-020-0490-7
|
[6] |
MING M, REN Q, PAN C, HE Y, ZHANG Y, LIU S, ZHONG Z, WANG J, MALZAHN A A, WU J, ZHENG X, ZHANG Y, QI Y. CRISPR-Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6(3):202-208.
doi: 10.1038/s41477-020-0614-6
|
[7] |
TOMLINSON L, YANG Y, EMENECKER R, SMOKER M, TAYLOR J, PERKINS S, SMITH J, MACLEAN D, OLSZEWSKI N E, JONES J D G. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnology Journal, 2019, 17(1):132-140.
doi: 10.1111/pbi.2019.17.issue-1
|
[8] |
NADAKUDUTI S S, STARKER C G, VOYTAS D F, BUELL C R, DOUCHES D S. Genome editing in potato with CRISPR/Cas9. Methods Molecular Biology, 2019, 1917:183-201.
|
[9] |
LI T, YANG X, YU Y, SI X, ZHAI X, ZHANG H, DONG W, GAO C, XU C. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36:1160-1163.
doi: 10.1038/nbt.4273
|
[10] |
WANG X, TU M, WANG D, LIU J, LI Y, LI Z, WANG Y, WANG X. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 2018, 16(4):844-855.
doi: 10.1111/pbi.2018.16.issue-4
|
[11] |
LIN Q, ZONG Y, XUE C, WANG S, JIN S, ZHU Z, WANG Y, ANZALONE A V, RAGURAM A, DOMAN J L, LIU D R, GAO C. Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38(5):582-585.
doi: 10.1038/s41587-020-0455-x
|
[12] |
HUA K, JIANG Y, TAO X, ZHU J K. Precision genome engineering in rice using prime editing system. Plant Biotechnology Journal, 2020, 18(11):2167-2169.
doi: 10.1111/pbi.v18.11
|
[13] |
LI H, LI J, CHEN J, YAN L, XIA L. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Molecular Plant, 2020, 13(5):671-674.
doi: 10.1016/j.molp.2020.03.011
|
[14] |
TANG X, SRETENOVIC S, REN Q, JIA X, LI M, FAN T, YIN D, XIANG S, GUO Y, LIU L, ZHENG X, QI Y, ZHANG Y. Plant prime editors enable precise gene editing in rice cells. Molecular Plant, 2020, 13(5):667-670.
doi: 10.1016/j.molp.2020.03.010
|
[15] |
TOKI S, HARA N, ONO K, ONODERA H, TAGIRI A, OKA S, TANAKA H. Early infection of scutellum tissue with Agrobacteriumallows high-speed transformation of rice. The Plant Journal, 2006, 47(6):969-976.
doi: 10.1111/tpj.2006.47.issue-6
|
[16] |
陈晓军, 王敬东, 宋海丽, 李树华, 樊云芳. 一种简单、极快的植物叶片DNA提取方法. 种子, 2018, 37(11):26-29, 34.
|
|
CHEN X J, WANG J D, SONG H L, LI S H, FAN Y F. A simple and rapid method of DNA extraction from plant leaf. seed. 2018, 37(11):26-29, 34. (in Chinese)
|
[17] |
E Z, CHEN C, YANG J, TONG H, LI T, WANG L, CHEN H. Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativaL.). Science Report, 2019, 9(1):19445.
doi: 10.1038/s41598-019-55648-z
|
[18] |
ARONDEL V, LEMIEUX B, HWANG I, GIBSON S, GOODMAN H M, SOMERVILLE C R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation inArabidopsis. Science, 1992, 258(5086):1353-1355.
doi: 10.1126/science.1455229
|
[19] |
LIU K, ZHAO S, WANG S, WANG H, ZHANG Z. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data. BMC Genomics, 2020, 21(1):299.
doi: 10.1186/s12864-020-6692-z
|
[20] |
XUE Y, CHEN B, WIN A N, FU C, LIAN J, LIU X, WANG R, ZHANG X, CHAI Y. Omega-3 fatty acid desaturase gene family from two ω-3 sources, S alvia hispanicaand Perilla frutescens: Cloning, characterization and expression. PLoS ONE, 2018, 13(1):e0191432.
doi: 10.1371/journal.pone.0191432
|
[21] |
LEE K R, LEE Y, KIM E H, LEE S B, ROH K H, KIM J B, KANG H C, KIM H U. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. Plant Cell Report, 2016, 35(12):2523-2537.
doi: 10.1007/s00299-016-2053-4
|
[22] |
YUAN L, LI R. Metabolic engineering a model oilseed camelina sativa for the sustainable production of high-value designed oils. Front Plant Science, 2020, 11:11.
doi: 10.3389/fpls.2020.00011
|
[23] |
ZHAO Q, WU J, CAI G, YANG Q, SHAHID M, FAN C, ZHANG C, ZHOU Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnology Journal, 2019, 17(12):2313-2324.
doi: 10.1111/pbi.v17.12
|
[24] |
DAMPANABOINA L, JIAO Y, CHEN J, GLADMAN N, CHOPRA R, BUROW G, HAYES C, CHRISTENSEN S A, BURKE J, WARE D, XIN Z. Sorghum MSD3 encodes an ω-3 fatty acid desaturase that increases grain number by reducing jasmonic acid levels. International Journal of Molecular Sciences, 2019, 20(21):5359-5370.
doi: 10.3390/ijms20215359
|
[25] |
YEOM W W, KIM H J, LEE K R, CHO H S, KIM J Y, JUNG H W, OH S W, JUN S E, KIM H U, CHUNG Y S. Increased production of α-linolenic acid in soybean seeds by overexpression of lesquerella FAD3-1. Front Plant Science, 2019, 10:1812.
doi: 10.3389/fpls.2019.01812
|
[26] |
曹英萍, 石金磊, 李钟, 明凤. 水稻OsFAD2、OsFAD6的克隆及其家族成员对非生物胁迫的响应. 遗传, 2010, 32(8):839-847.
|
|
CAO Y P, SHI J L, LI Z, MING F. Isolation of OsFAD2, OsFAD6 and FAD family members response to abiotic stresses in Oryza sativaL . Hereditas(Beijing), 2010, 32(8):839-847. (in Chinese)
|
[27] |
KODAMA1 H, AKAGI H, KUSUMI K, FUJIMURA T, IBA1 K. Structure, chromosomal location and expression of a rice gene encoding the microsome ω-3 fatty acid desaturase. Plant Molecular Biology, 1997(33):493-502.
|
[28] |
YIN Z J, LIU H L, DONG X, TIAN L, XIAO L, XU Y N, QU L Q. Increasing α-linolenic acid content in rice bran by embryo-specific expression of ω3/Δ15-desaturase gene. Molecular Breeding, 2014, 33(4):987-996.
doi: 10.1007/s11032-013-0014-y
|
[29] |
LIU H L, YIN Z J, XIAO L, XU Y N, QU L Q. Identification and evaluation of omega-3 fatty acid desaturase genes for hyperfortifying alpha-linolenic acid in transgenic rice seed. Journal of Experiment Botany, 2012, 63(8):3279-3287.
doi: 10.1093/jxb/ers051
|
[30] |
MIAO C, WANG D, HE R, LIU S, ZHU J K. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. Plant Biotechnology Journal, 2020, 18(2):491-501.
doi: 10.1111/pbi.v18.2
|