[1] |
XING Y, ZHANG Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209
pmid: 20192739
|
[2] |
TEO Z W N, SONG S, WANG Y Q, LIU J, YU H. New insights into the regulation of inflorescence architecture. Trends in Plant Science, 2014, 19(3): 158-165.
doi: 10.1016/j.tplants.2013.11.001
pmid: 24315403
|
[3] |
IKEDA-KAWAKATSU K, YASUNO N, OIKAWA T, IIDA S, NAGATO Y, MAEKAWA M, KYOZUKA J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiology, 2009, 150(2): 736-747.
doi: 10.1104/pp.109.136739
|
[4] |
IKEDA K, ITO M, NAGASAWA N, KYOZUKA J, NAGATO Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. The Plant Journal, 2007, 51(6): 1030-1040.
doi: 10.1111/j.1365-313X.2007.03200.x
|
[5] |
IKEDA K, NAGASAWA N, NAGATO Y. ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Developmental Biology, 2005, 282(2): 349-360.
doi: 10.1016/j.ydbio.2005.03.016
|
[6] |
LI M, TANG D, WANG K, WU X, LU L, YU H, GU M, YAN C, CHENG Z. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9(9): 1002-1013.
doi: 10.1111/j.1467-7652.2011.00610.x
|
[7] |
HUANG X, QIAN Q, LIU Z, SUN H, HE S, LUO D, XIA G, CHU C, LI J, FU X. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497.
doi: 10.1038/ng.352
|
[8] |
KOMATSU M, MAEKAWA M, SHIMAMOTO K, KYOZUKA J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Developmental Biology, 2001, 231(2): 364-373.
doi: 10.1006/dbio.2000.9988
|
[9] |
WANG H, TANG S, ZHI H, XING L, ZHANG H, TANG C, WANG E, ZHAO M, JIA G, FENG B, DIAO X. The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet. The Crop Journal, 2022, 10(2): 342-353.
doi: 10.1016/j.cj.2021.05.002
|
[10] |
PEI Y, DENG Y, ZHANG H, ZHANG Z, LIU J, CHEN Z, CAI D, LI K, DU Y, ZANG J, XIN P, CHU J, CHEN Y, ZHAO L, LIU J, CHEN H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. The Plant Cell, 2022, 34(6): 2222-2241.
doi: 10.1093/plcell/koac093
pmid: 35294020
|
[11] |
BAI J, ZHU X, WANG Q, ZHANG J, CHEN H, DONG G, ZHU L, ZHENG H, XIE Q, NIAN J, CHEN F, FU Y, QIAN Q, ZUO J. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 2015, 169(2): 1179-1191.
doi: 10.1104/pp.15.00229
|
[12] |
陈惠哲, 朱德峰, 林贤青, 张玉屏. 穗肥施氮量对两优培九枝梗及颖花分化和退化的影响. 浙江农业学报, 2008, 20(3): 181-185.
|
|
CHEN H Z, ZHU D F, LIN X Q, ZHANG Y P. Effect of nitrogen levels in spike stage on differentiation and degeneration of branches and spikelet of hybrid rice cultivar Liangyoupeijiu. Acta Agriculturae Zhejiangensis, 2008, 20(3): 181-185. (in Chinese)
|
[13] |
王亚梁, 张玉屏, 朱德峰, 向镜, 武辉, 陈惠哲, 张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响. 作物学报, 2016, 42(9): 1402-1410.
doi: 10.3724/SP.J.1006.2016.01402
|
|
WANG Y L, ZHANG Y P, ZHU D F, XIANG J, WU H, CHEN H Z, ZHANG Y K. Effect of heat stress on spikelet degeneration and grain filling at panicle initiation period of rice. Acta Agronomica Sinica, 2016, 42(9): 1402-1410. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01402
|
[14] |
张兴元, 罗胜, 王敏, 丛楠, 赵志超, 程治军. 与SP1互作的水稻穗顶部退化基因qPAA3的精细定位. 中国农业科学, 2015, 48(12): 2287-2295.
|
|
ZHANG X Y, LUO S, WANG M, CONG N, ZHAO Z C, CHENG Z J. Fine mapping of rice panicle apical abortion gene qPAA3interacting with SP1. Scientia Agricultura Sinica, 2015, 48(12): 2287-2295. (in Chinese)
|
[15] |
TAN C J, SUN Y J, XU H S, YU S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011, 130(2): 177-184.
doi: 10.1111/j.1439-0523.2010.01770.x
|
[16] |
徐华山, 孙永建, 周红菊, 余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007, 33(6): 979-986.
|
|
XU H S, SUN Y J, ZHOU H J, YU S B. Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agronomica Sinica, 2007, 33(6): 979-986. (in Chinese)
|
[17] |
CHENG Z J, MAO B G, GAO S W, ZHANG L, WANG J L, LEI C L, ZHANG X, WU F Q, GUO X P, WAN J M. Fine mapping of qPAA8, a gene controlling panicle apical development in rice. Journal of Integrative Plant Biology, 2011, 53(9): 710-718.
|
[18] |
HENG Y, WU C, LONG Y, LUO S, MA J, CHEN J, LIU J, ZHANG H, REN Y, WANG M, TAN J, ZHU S, WANG J, LEI C, ZHANG X, GUO X, WANG H, CHENG Z, WAN J. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. The Plant Cell, 2018, 30(4): 889-906.
doi: 10.1105/tpc.17.00998
pmid: 29610210
|
[19] |
ZAFAR S A, PATIL S B, UZAIR M, FANG J, ZHAO J, GUO T, YUAN S, UZAIR M, LUO Q, SHI J, SCHREIBER L, LI X. DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytologist, 2020, 225(1): 356-375.
doi: 10.1111/nph.16133
|
[20] |
PENG Y B, HOU F X, BAI Q, XU P Z, LIAO Y X, ZHANG H Y, GU C J, DENG X S, WU T K, CHEN X Q, ALI A, WU X J. Rice calcineurin b-like protein-interacting protein kinase 31 (OsCIPK31) is involved in the development of panicle apical spikelets. Frontiers in Plant Science, 2018, 9.
|
[21] |
王中豪. 水稻钙氢离子交换蛋白基因CAX1a的图位克隆和功能分析[D]. 北京: 中国农业科学院, 2021.
|
|
WANG Z H. Map-based cloning and functional analysis of the Ca2+/H+ exchanger gene CAX1a in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
|
[22] |
LOOR G, KONDAPALLI J, SCHRIEWER J M, CHANDEL N S, VANDEN HOEK T L, SCHUMACKER P T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radical Biology and Medicine, 2010, 49(12): 1925-1936.
doi: 10.1016/j.freeradbiomed.2010.09.021
pmid: 20937380
|
[23] |
MITTLER R. ROS are good. Trends in Plant Science, 2017, 22(1): 11-19.
doi: S1360-1385(16)30112-1
pmid: 27666517
|
[24] |
LI Z, MO W, JIA L, XU Y C, TANG W, YANG W, GUO Y L, LIN R. Rice FLUORESCENT1 is involved in the Regulation of Chlorophyll. Plant Cell Physiology, 2019, 60(19): 2307-2318.
doi: 10.1093/pcp/pcz129
|
[25] |
SU T, WANG P, LI H, ZHAO Y, LU Y, DAI P, REN T, WANG X, LI X, SHAO Q, ZHAO D, ZHAO Y, MA C. The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome- derived signaling in plant development. Journal of Integrative Plant Biology, 2018, 60(7): 591-607.
doi: 10.1111/jipb.12649
|
[26] |
DENG M, BIAN H, XIE Y, KIM Y, WANG W, LIN E, ZENG Z, GUO F, PAN J, HAN N, WANG J, QIAN Q, ZHU M. Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. The FEBS Journal, 2011, 278(24): 4797-4810.
doi: 10.1111/j.1742-4658.2011.08380.x
|
[27] |
LU W Y, DENG M J, GUO F, WANG M Q, ZENG Z H, HAN N, YANG Y N, ZHU M Y, BIAN H W. Suppression of OsVPE3 enhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice, 2016, 9.
|
[28] |
DAI D, ZHANG H, HE L, CHEN J, DU C, LIANG M, ZHANG M, WANG H, MA L. Panicle apical abortion 7 regulates panicle development in rice (Oryza sativa L.). International Journal of Molecular Sciences, 2022, 23(16): 9487.
doi: 10.3390/ijms23169487
|
[29] |
HU P, TAN Y Q, WEN Y, FANG Y X, WANG Y Y, WU H, WANG J G, WU K X, CHAI B Z, ZHU L, ZHANG G H, GAO Z Y, REN D Y, ZENG D L, SHEN L, XUE D W, QIAN Q, HU J. LMPA regulates lesion mimic leaf and panicle development through ROS-induced PCD in rice. Frontiers in Plant Science, 2022, 13.
|
[30] |
YANG F, XIONG M, HUANG M, LI Z, WANG Z, ZHU H, CHEN R, LU L, CHENG Q, WANG Y, TANG J, ZHUANG H, LI Y. Panicle apical abortion 3 controls panicle development and seed size in rice. Rice, 2021, 14(1): 68.
doi: 10.1186/s12284-021-00509-5
pmid: 34264425
|
[31] |
WANG Q L, SUN A Z, CHEN S T, CHEN L S, GUO F Q. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nature Plants, 2018, 4(5): 280-288.
doi: 10.1038/s41477-018-0131-z
|
[32] |
ALI A, XU P, RIAZ A, WU X. Current advances in molecular mechanisms and physiological basis of panicle degeneration in rice. International Journal of Molecular Sciences, 2019, 20(7): 1613.
doi: 10.3390/ijms20071613
|
[33] |
彭永彬. 水稻穗顶退化突变体paa1019和paa74的基因克隆与功能分析[D]. 成都: 四川农业大学, 2018.
|
|
PENG Y B. Cloning and functional charactization of panicle apical abortion 1019 and panicle apical abortion 74 in rice[D]. Chengdu: Sichuan Agriculture University, 2018. (in Chinese)
|
[34] |
WASZCZAK C, CARMODY M, KANGASJÄRVI J. Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 2018, 69(1): 209-236.
doi: 10.1146/annurev-arplant-042817-040322
|
[35] |
MHAMDI A, VAN BREUSEGEM F. Reactive oxygen species in plant development. Development, 2018, 145(15).
|