中国农业科学 ›› 2022, Vol. 55 ›› Issue (21): 4091-4103.doi: 10.3864/j.issn.0578-1752.2022.21.001
逄洪波1(),程露1,于茗兰1,陈强2,李玥莹1,吴隆坤3,王泽1,潘孝武4,郑晓明5,6()
收稿日期:
2022-07-15
接受日期:
2022-08-17
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
逄洪波,郑晓明
基金资助:
PANG HongBo1(),CHENG Lu1,YU MingLan1,CHEN Qiang2,LI YueYing1,WU LongKun3,WANG Ze1,PAN XiaoWu4,ZHENG XiaoMing5,6()
Received:
2022-07-15
Accepted:
2022-08-17
Online:
2022-11-01
Published:
2022-11-09
Contact:
HongBo PANG,XiaoMing ZHENG
摘要:
【目的】水稻是重要的粮食作物,芽期是水稻生长发育过程中最脆弱的时期,直播稻遭遇冷害时发芽率大幅降低,减产严重。深入了解耐冷性的遗传机制,为培育芽期强耐受性水稻品种奠定基础。【方法】以世界范围内14个国家代表性的238份水稻种质资源为试验材料,于2021和2022年在沈阳开展表型鉴定试验,统计不同水稻品种在人工气候培养箱15℃低温条件下第1—10天的发芽率和相对发芽率,利用R语言绘制5—10 d的频率直方图,通过表型丰富度Hill值选择宜作关联分析的天数,将发芽率和相对发芽率表型数据与重测序数据相结合,进行基于混合线性模型MLM(QK)的全基因组关联分析,并对所获得的SNP位点进行耐冷候选基因的预测。【结果】发芽率频数分布直方图和表型丰富度计算结果显示第8天发芽率多态性最好,其Hill值为0.84,高于其他几天发芽率(0.48—0.83),可用于全基因组关联分析;主成分分析结果显示,这些水稻品种可以分为indica、aus、temperate japonica、tropical japonica和aromatic 5个亚群;2个指标进行的GWAS分析检测到3个相同的显著性SNP位点,均位于第4染色体,解释表型的11.9%—25.4%;在上下游各50 kb进行基因搜索,共发现24个相关候选基因,进一步开展LD和单倍型分析,发现LOC_Os04g24840和LOC_Os04g25140的不同单倍型耐冷性之间存在极显著差异。LOC_Os04g24840被编码区SNP分为5个单倍型,且Hap_3的耐冷性显著强于Hap_1;LOC_Os04g25140被编码区SNP分为18个单倍型,且77 bp处的氨基酸变异(S>L)存在籼粳差异。结果表明,编码糖基转移酶的基因LOC_Os04g24840和编码F-box蛋白基因LOC_Os04g25140可能与水稻芽期耐冷性密切相关。【结论】在238份水稻种质资源中共检测到3个与芽期耐冷性显著关联的SNP位点,筛选出2个与水稻芽期耐冷性相关的候选基因。
逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103.
PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice[J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
表1
24个候选基因其基因注释"
染色体 Chr. | 基因号 Gene ID | 基因注释 Annotation |
---|---|---|
Chr.4 | LOC_Os04g24830 | 含锌指、CCHC型结构域的蛋白质 Zinc finger, CCHC-type domain containing protein |
Chr.4 | LOC_Os04g24840 | 糖基转移酶,推测,表达Glycosyltransferase, putative, expressed |
Chr.4 | LOC_Os04g24850 | 细胞分裂素-O-葡糖基转移酶2,假定的,表达Cytokinin-O-glucosyltransferase 2, putative, expressed |
Chr.4 | LOC_Os04g24860 | 逆转录酶子蛋白,推定,未分类,表达Retrotransposon protein, putative, unclassified, expressed |
Chr.4 | LOC_Os04g24870 | 逆转录酶子蛋白,推定,未分类Retrotransposon protein, putative, unclassified |
Chr.4 | LOC_Os04g24880 | 逆转录酶子蛋白,推定,未分类,表达Retrotransposon protein, putative, unclassified, expressed |
Chr.4 | LOC_Os04g24900 | 表达蛋白Expressed protein |
Chr.4 | LOC_Os04g24910 | 表达蛋白Expressed protein |
Chr.4 | LOC_Os04g24920 | 转座子蛋白,推定,CACTA,En/Spm亚类,表达 Transposon protein, putative, CACTA, En/Spm sub-class, expressed |
Chr.4 | LOC_Os04g24930 | 表达蛋白Expressed protein |
Chr.4 | LOC_Os04g24940 | 表达蛋白Expressed protein |
Chr.4 | LOC_Os04g24950 | 假定的蛋白质Hypothetical protein |
Chr.4 | LOC_Os04g24960 | 转座子蛋白,推定,CACTA,En/Spm亚类,表达 Transposon protein, putative, CACTA, En/Spm sub-class, expressed |
Chr.4 | LOC_Os04g25100 | 转座子蛋白,推定,未分类,表达Transposon protein, putative, unclassified, expressed |
Chr.4 | LOC_Os04g25110 | Ulp1蛋白酶家族,含有C端催化域的蛋白,表达式ulp1; Ulp1 protease family, C-terminal catalytic domain containing protein, expressedulp1 |
Chr.4 | LOC_Os04g25120 | 表达蛋白Expressed protein |
Chr.4 | LOC_Os04g25130 | 逆转录子蛋白,推定,LINE亚类,表达Retrotransposon protein, putative, LINE subclass, expressed |
Chr.4 | LOC_Os04g25140 | OsFBDUF20-含有F-box和DUF结构域的蛋白,已表达; OsFBDUF20- F-box and DUF domain containing protein, expressed |
Chr.4 | LOC_Os04g25150 | 花粉过敏原,推定,表达Pollen allergen, putative, expressed |
Chr.4 | LOC_Os04g25160 | 花粉过敏原,推定,表达Pollen allergen, putative, expressed |
Chr.4 | LOC_Os04g25170 | 逆转录酶原蛋白,推定,未分类,表达Retrotransposon protein, putative, unclassified, expressed |
Chr.4 | LOC_Os04g25180 | 假定的蛋白质Hypothetical protein |
Chr.4 | LOC_Os04g25190 | 花粉过敏原,推定,表达Pollen allergen, putative, expressed |
Chr.4 | LOC_Os04g25210 | 转座子蛋白,推定,未分类,表达Transposon protein, putative, unclassified, expressed |
[1] | ZHENG S, LIU S, FENG J, WANG W, WANG Y, YU Q, LIAO Y, MO Y, XU Z, LI L, GAO X, JIA X, ZHU J, CHEN R. Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environmental and Experimental Botany, 2021, 182: 104327. |
[2] | WANG H, LEE A R, PARK S Y, JIN S H, LEE J, HAM T H, PARK Y, ZHAO W G, KWON S W. Genome-wide association study reveals candidate genes related to low temperature tolerance in rice (Oryza sativa) during germination. 3 Biotech, 2018, 8(5): 1-13. |
[3] | CHENG S H, CAO L Y, ZHUANG J Y, CHEN S G, ZHAN X D, FAN Y Y, ZHU D F, MIN S K. Super hybrid rice breeding in China: Achievements and prospects. Journal of Integrative Plant Biology, 2007, 49(6): 805-810. |
[4] | VILAS J M, CORIGLIANO M G, CLEMENTE M, MAIALE S J, RODRIGUEZ A A. Close relationship between the state of the oxygen evolving complex and rice cold stress tolerance. Plant Science, 2020, 296: 110488. |
[5] | SIPASEUTH, BASNAYAKE J, FUKAI S, FARRELL T C, SENTHONGHAE M, SENGKEO, PHAMIXAY S, LINQUIST B, CHANPHENGSAY M. Opportunities to increasing dry season rice productivity in low temperature affected areas. Field Crops Research, 2007, 102(2): 87-97. |
[6] | ZHANG M, YE J, XU Q, FENG Y, YUAN X, YU H, WANG Y, WEI X, YANG Y. Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. Plant Cell Reports, 2018, 37(3): 529-539. |
[7] | SUH J P, JEUNG J U, LEE J I, CHOI Y H, YEA J D, VIRK P S, MACKILL D J, JENA K K. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2010, 120(5): 985-995. |
[8] | FUJINO K, MATSUDA Y. Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice. Plant Molecular Biology, 2010, 72(1): 137-152. |
[9] | FUJINO K, SEKIGUCHI H, MATSUDA Y, SUGIMOTO K, ONO K, YANO M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12623-12628. |
[10] | SAITO K, HAYANO-SAITO Y, MARUYAMA-FUNATSUKI W, SATO Y, KATO A. Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theoretical and Applied Genetics, 2004, 109(3): 515-522. |
[11] | FUJINO K, SEKIGUCHI H, SATO T, KIUCHI H, NONOUE Y, TAKEUCHI Y, ANDO T, LIN S Y, YANO M. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2004, 108(5): 794-799. |
[12] | ANDAYA V C, TAI T H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theoretical and Applied Genetics, 2006, 113(3): 467-475. |
[13] | LOU Q, CHEN L, SUN Z, XING Y, LI J, XU X, MEI H, LUO L. A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica, 2007, 158(1): 87-94. |
[14] | KUMAR V, LADHA J K. Direct seeding of rice. recent developments and future research needs. Advances in Agronomy, 2011, 111: 297-413. |
[15] | IWATA N, SHINADA H, KIUCHI H, SATO T, FUJINO K. Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breeding Science, 2010, 60(4): 353-360. |
[16] | ZHANG Z H, QU X S, WAN S, CHEN L H, ZHU Y G. Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Annals of Botany, 2005, 95(3): 423-429. |
[17] | CHEN L, LOU Q J, SUN Z X, XING Y Z, XIN-QIAO Y U, LUO L J. QTL mapping of low temperature on germination rate of rice. Rice Science, 2006, 13(2): 93-98. |
[18] | JI S L, JIANG L, WANG Y H, ZHANG W W, LIU X, LIU S J, CHEN L M, ZHAI H Q, WAN J M. Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breeding, 2009, 128(4): 387-392. |
[19] | WAN J M, JIANG L, TANG J Y, WANG C M, HOU M Y, JING W, ZHANG L X. Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Plant Science, 2006, 170(4): 786-792. |
[20] | SUGIMOTO K, TAKEUCHI Y, EBANA K, MIYAO A, HIROCHIKA H, HARA N, ISHIYAMA K, KOBAYASHI M, BAN Y, HATTORI T, YANO M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797. |
[21] | SHARIFI P. Evaluation on sixty-eight rice germplasms in cold tolerance at germination stage. Rice Science, 2010, 17(1): 77-81. |
[22] | LI L, LIU X, XIE K, WANG Y, LIU F, LIN Q, WANG W, YANG C, LU B, LIU S, CHEN L, JIANG L, WAN J. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2013, 126(9): 2313-2322. |
[23] | ALBINANA C, GROVE J, MCGRATH J J, AGERBO E, WRAY N R, BULIK C M, NORDENTOFT M, HOUGAARD D M, WERGE T, BORGLUM A D, MORTENSEN P B, PRIVE F, VILHJALMSSON B J. Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction. American Journal of Human Genetics, 2021, 108(6): 1001-1011. |
[24] | HUANG X, WEI X, SANG T, ZHAO Q, FENG Q, ZHAO Y, LI C, ZHU C, LU T, ZHANG Z, LI M, FAN D, GUO Y, WANG A, WANG L, DENG L, LI W, LU Y, WENG Q, LIU K, HUANG T, ZHOU T, JING Y, LI W, LIN Z, BUCKLER E S, QIAN Q, ZHANG Q F, LI J, HAN B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967. |
[25] | HUANG X, ZHAO Y, WEI X, LI C, WANG A, ZHAO Q, LI W, GUO Y, DENG L, ZHU C, FAN D, LU Y, WENG Q, LIU K, ZHOU T, JING Y, SI L, DONG G, HUANG T, LU T, FENG Q, QIAN Q, LI J, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011, 44(1): 32-39. |
[26] | ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H, NORTON G J, ISLAM M R, REYNOLDS A, MEZEY J, MCCLUNG A M, BUSTAMANTE C D, MCCOUCH S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2(1): 1-10. |
[27] | HSIAO C F, CHIU Y F, CHIANG F T, HO L T, LEE W J, HUNG Y J, CHEN Y D, DONLON T A, JORGENSON E, CURB D, RISCH N, HSIUNG C A, GROUP S A S. Genome-wide linkage analysis of lipids in nondiabetic Chinese and Japanese from the SAPPHIRe family study. American Journal of Hypertension, 2006, 19(12): 1270-1277. |
[28] | NICOLAE D L, GAMAZON E, ZHANG W, DUAN S, DOLAN M E, COX N J. Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance discovery from GWAS. PLoS Genetics, 2010, 6(4): e1000888. |
[29] | YANG J, FERREIRA T, MORRIS A P, MEDLAND S E, GENETIC INVESTIGATION OF A T C, REPLICATION D I G, META ANALYSIS C, MADDEN P A, HEATH A C, MARTIN N G, MONTGOMERY G W, WEEDON M N, LOOS R J, FRAYLING T M, MCCARTHY M I, HIRSCHHORN J N, GODDARD M E, VISSCHER P M. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genetics, 2012, 44(4): 369-375. |
[30] | LI Y H, LI D, JIAO Y Q, SCHNABLE J C, LI Y F, LI H H, CHEN H Z, HONG H L, ZHANG T, LIU B, LIU Z X, YOU Q B, TIAN Y, GUO Y, GUAN R X, ZHANG L J, CHANG R Z, ZHANG Z, REIF J, ZHOU X A, SCHNABLE P S, QIU L J. Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnology Journal, 2020, 18(2): 389-401. |
[31] | HWANG E Y, SONG Q, JIA G, SPECHT J E, HYTEN D L, COSTA J, CREGAN P B. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014, 15(1): 1-12. |
[32] | WU S, ALSEEKH S, CUADROS-INOSTROZA A, FUSARI C M, MUTWIL M, KOOKE R, KEURENTJES J B, FERNIE A R, WILLMITZER L, BROTMAN Y. Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in Arabidopsis thaliana. PLoS Genetics, 2016, 12(10): e1006363. |
[33] | WENG J, XIE C, HAO Z, WANG J, LIU C, LI M, ZHANG D, BAI L, ZHANG S, LI X. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE, 2011, 6(12): e29229. |
[34] | WU J, FENG F, LIAN X, TENG X, WEI H, YU H, XIE W, YAN M, FAN P, LI Y, MA X, LIU H, YU S, WANG G, ZHOU F, LUO L, MEI H. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biology, 2015, 15: 218. |
[35] | LI Z, WANG X, CUI Y, QIAO K, ZHU L, FAN S, MA Q. Comprehensive genome-wide analysis of thaumatin-like gene family in four cotton species and functional identification of GhTLP19 involved in regulating tolerance to Verticillium dahlia and drought. Frontiers in Plant Science, 2020, 11: 575015. |
[36] | FUJINO K, OBARA M, SHIMIZU T, KOYANAGI K O, IKEGAYA T. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. Breeding Science, 2015, 65(5): 403-410. |
[37] | PAN Y, ZHANG H, ZHANG D, LI J, XIONG H, YU J, LI J, RASHID M A, LI G, MA X, CAO G, HAN L, LI Z. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS ONE, 2015, 10(3): e0120590. |
[38] | HAN L Z, ZHANG Y Y, QIAO Y L, CAO G L, ZHANG S Y, KIM J H, KOH H J. Genetic and QTL analysis for low-temperature vigor of germination in rice. Acta Genetica Sinica, 2006, 33(11): 998-1006. |
[39] | ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824. |
[40] | PEET R K. The measurement of species diversity. Annual Review of Ecology and Systematics, 1974, 5(1): 285-307. |
[41] | YANG J, YANG M, SU L, ZHOU D, HUANG C, WANG H, GUO T, CHEN Z. Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice. Plant Science, 2020, 301: 110669. |
[42] | LIN J, ZHU W Y, ZHANG Y D, ZHU Z, ZHAO L, CHEN T, ZHAO Q Y, ZHOU L H, FANG X W, WANG Y P, WANG C L. Detection of QTL for cold tolerance at bud bursting stage using chromosome segment substitution lines in rice (Oryza sativa). Rice Science, 2011, 18(1): 71-74. |
[43] | XIAO H, CHEN J F, ZHANG Z X. Influence of deposition temperature on the structure of Si3N4 thin film prepared by MWECR-PECVD. Plasma Science & Technology, 2004, 6(5): 2485-2488. |
[44] | 纪素兰, 江玲, 王益华, 刘世家, 刘喜, 翟虎渠, 吉村醇, 万建民. 水稻种子耐低温发芽力的QTL定位及上位性分析. 作物学报, 2008, 34(4): 551-556. |
JI S L, JIANG L, WANG Y H, LIU S J, LIU X, ZHAI H Q, YOSHIMURA A, WAN J M. QTL and epistasis for low temperature germinability in rice. Acta Agronomica Sinica, 2008, 34(4): 551-556. (in Chinese) | |
[45] | MIURA K, LIN S Y, YANO M, NAGAMINE T. Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breeding Science, 2001, 51(4): 293-299. |
[46] | HYUN D Y, OH M, CHOI Y M, LEE S, LEE M C, OH S. Morphological and molecular evaluation for germinability in rice varieties under low-temperature and anaerobic conditions. Journal of Crop Science and Biotechnology, 2017, 20(1): 21-27. |
[47] | ANGAJI S A, SEPTININGSIH E M, MACKILL D J, ISMAIL A M. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 2009, 172(2): 159-168. |
[48] | CRUZ R P, MILACH S C K. Cold tolerance at the germination stage of rice: Methods of evaluation and characterization of genotypes. Scientia Agricola, 2004, 61(1): 1-8. |
[49] | YE C, FUKAI S, GODWIN I, REINKE R, SNELL P, SCHILLER J, BASNAYAKE J. Cold tolerance in rice varieties at different growth stages. Crop and Pasture Science, 2009, 60(4): 328-338. |
[50] | WANG X, WANG H, LIU S, FERJANI A, LI J, YAN J, YANG X, QIN F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48(10): 1233-1241. |
[51] | WAN H, CHEN L, GUO J, LI Q, WEN J, YI B, MA C, TU J, FU T, SHEN J. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8: 593. |
[52] | JIA L, YAN W, ZHU C, AGRAMA H A, JACKSON A, YEATER K, LI X, HUANG B, HU B, MCCLUNG A, WU D. Allelic analysis of sheath blight resistance with association mapping in rice. PLoS ONE, 2012, 7(3): e32703. |
[53] | KANG H, WANG Y, PENG S, ZHANG Y, XIAO Y, WANG D, QU S, LI Z, YAN S, WANG Z, LIU W, NING Y, KORNILIEV P, LEUNG H, MEZEY J, MCCOUCH S R, WANG G L. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae. Molecular Plant Pathology, 2016, 17(6): 959-972. |
[54] | YANG W, GUO Z, HUANG C, DUAN L, CHEN G, JIANG N, FANG W, FENG H, XIE W, LIAN X, WANG G, LUO Q, ZHANG Q, LIU Q, XIONG L. Combining high-throughput phenotyping and genome- wide association studies to reveal natural genetic variation in rice. Nature Communications, 2014, 5(1): 1-9. |
[55] | WANG D, LIU J, LI C, KANG H, WANG Y, TAN X, LIU M, DENG Y, WANG Z, LIU Y, ZHANG D, XIAO Y, WANG G L. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice, 2016, 9(1): 61. |
[56] | JIANG L, LIU S, HOU M, TANG J, CHEN L, ZHAI H, WAN J. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Research, 2006, 98(1): 68-75. |
[57] | LI J, ZENG Y, PAN Y, ZHOU L, ZHANG Z, GUO H, LOU Q, SHUI G, HUANG H, TIAN H, GUO Y, YUAN P, YANG H, PAN G, WANG R, ZHANG H, YANG S, GUO Y, GE S, LI J, LI Z. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. New Phytologist, 2021, 231(3): 1056-1072. |
[58] | LI P, LI Y J, ZHANG F J, ZHANG G Z, JIANG X Y, YU H M, HOU B K. Arabidopsis UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal, 2017, 89(1): 85-103. |
[59] | SHI Y, HUY P, LIU Y, CAO S, ZHANG Z, CHU C, SCHLPPI M R. Glycosyltransferase OsUGT90A1 helps protect the plasma membrane during chilling stress in rice. Journal of Experimental Botany, 2020, 71(9): 2723-2739. |
[60] | SAITO K, HAYANO-SAITO Y, KUROKI M, SATO Y. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Science, 2010, 179(1/2): 97-102. |
[61] | CALLIS D J. Ubiquitin,hormones and biotic stress in plants. Annals of Botany, 2007, 99(5): 787-822. |
[62] | YAN Y S, CHEN X Y, YANG K., SUN Z X, FU Y P, ZHANG Y M, FANG R X. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Molecular Plant, 2011, 4(1): 190-197. |
[63] | KOCH K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004, 7(3): 235-246. |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[5] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[6] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[7] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[8] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[9] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[10] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[11] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[12] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[13] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[14] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[15] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
|