中国农业科学 ›› 2020, Vol. 53 ›› Issue (19): 3900-3914.doi: 10.3864/j.issn.0578-1752.2020.19.005
收稿日期:
2020-05-14
接受日期:
2020-08-17
出版日期:
2020-10-01
发布日期:
2020-10-19
通讯作者:
陈国庆
作者简介:
刘肖瑜,E-mail: 基金资助:
LIU XiaoYu(),ZHANG DouDou,JIAO JinYu,CHEN GuoQing(
),LI Yong
Received:
2020-05-14
Accepted:
2020-08-17
Online:
2020-10-01
Published:
2020-10-19
Contact:
GuoQing CHEN
摘要:
【目的】随着耕地面积的减少、人口数量的增加以及社会经济的迅速发展,增加单位面积作物产量是提升粮食总产量、确保我国粮食安全的重要途径。探索农田资源高效利用途径及限制因素,为提高作物单位面积产量提供指导。【方法】本研究以冬小麦、夏玉米为研究对象,在山东省4个生态区域(鲁东、鲁中、鲁西北及鲁西南),利用模拟模型等方法研究2008—2017年不同气候、栽培管理条件下作物产量,提出定量化评价指标,分析并明确影响各生态区域资源利用及产量提升的主要限制因素。【结果】(1)鲁东地区冬小麦生长季受光温资源、品种、栽培模式、水资源、氮肥资源因素影响率分别为16.96%、20.68%、1.39%、60.97%、0;鲁中地区受各因素影响率分别为37.72%、20.16%、1.57%、40.55%、0;鲁西北地区分别为17.90%、19.11%、1.20%、61.79%、0;鲁西南地区分别为33.65%、23.80%、1.65%、40.90%、0。(2)鲁东地区夏玉米生长季受光温资源、品种、栽培模式、水资源、氮肥资源因素影响率分别为49.11%、9.07%、10.64%、31.18%和0;鲁中地区受各限制因素影响率分别为56.62%、10.86%、11.65%、20.87%、0;鲁西北地区各因素影响率分别为43.01%、18.95%、11.26%、26.78%和0;鲁西南地区各因素影响率分别为64.42%、5.44%、15.84%、14.30%和0。【结论】冬小麦生长季鲁东、鲁西北地区农田资源主要受水分资源限制,其次是光温资源和品种的限制,栽培模式和氮肥资源影响不大。鲁中、鲁西南地区则主要受光温资源和水分资源的共同影响,其次受品种因素限制。夏玉米生长季4个地区均受光温资源因素影响最大,水资源次之,品种和栽培模式影响较小。
刘肖瑜,张豆豆,焦进宇,陈国庆,李勇. 冬小麦-夏玉米周年农田资源高效利用限制因素分析[J]. 中国农业科学, 2020, 53(19): 3900-3914.
LIU XiaoYu,ZHANG DouDou,JIAO JinYu,CHEN GuoQing,LI Yong. Analysis on Limiting Factors of Efficient Utilization of Winter Wheat and Summer Maize Farmland Resources[J]. Scientia Agricultura Sinica, 2020, 53(19): 3900-3914.
表1
4个生态区冬小麦季、夏玉米季气候条件"
生长季 Growth season | 参数 Parameter | 鲁东 ES | 鲁中 CS | 鲁西北 NS | 鲁西南 SS |
---|---|---|---|---|---|
冬小麦季 Winter wheat season | 太阳辐射Solar radiation (MJ·m-2) | 3362.75 | 3141.43 | 3387.37 | 3136.13 |
平均温度Average temperature (℃) | 7.92 | 8.91 | 7.77 | 8.73 | |
降水量Precipitation (mm) | 182.32 | 193.05 | 127.56 | 190.86 | |
夏玉米季 Summer maize season | 太阳辐射Solar radiation (MJ·m-2) | 2389.75 | 2083.91 | 2340.37 | 2113.68 |
平均温度Average temperature (℃) | 24.47 | 25.12 | 24.70 | 24.90 | |
降水量Precipitation (mm) | 462.01 | 463.10 | 453.65 | 491.45 |
表3
各生态区冬小麦、夏玉米适宜生育期内GDD、产量、光温生产潜力及匹配系数"
生态区 Ecological region | 适宜生育期内有效积温 GDD (℃·d) | 适宜生育期获得产量 Available yield (kg·hm-2) | 光温生产潜力 Light-temperature potential productivity (kg·hm-2) | 匹配系数 Matching coefficient | |
---|---|---|---|---|---|
冬小麦季 Wheat season | 鲁东ES | 2289.22 | 9845.51 | 11172.61 | 0.8812 |
鲁中CS | 2377.91 | 8369.21 | 11792.80 | 0.7097 | |
鲁西北NS | 2191.03 | 9692.29 | 11310.78 | 0.8569 | |
鲁西南SS | 2239.41 | 8419.19 | 11375.36 | 0.7401 | |
夏玉米季 Maize season | 鲁东ES | 2697.94 | 11531.90 | 21039.04 | 0.5481 |
鲁中CS | 2740.21 | 10616.70 | 18997.41 | 0.5589 | |
鲁西北NS | 2802.96 | 11441.68 | 20836.07 | 0.5491 | |
鲁西南SS | 2724.02 | 10848.45 | 19031.06 | 0.5701 |
表4
作物品种参数设置"
品种参数 Variety parameter | 冬小麦Winter wheat | 夏玉米Summer maize | |||
---|---|---|---|---|---|
春化敏感性参数 Vern_sens | 光周期敏感性参数 Photop_sens | 出苗-拔节积温 tt_emerg_to_endjuv (℃·d) | 开花-成熟积温 tt_flower_to_maturity (℃·d) | ||
处理1 Level1 | 0.3 (VS1) | 0.3 (PS1) | 200 (EE1) | 600 (FM1) | |
处理2 Level2 | 0.7 (VS2) | 0.7 (PS2) | 215 (EE2) | 650 (FM2) | |
处理3 Level3 | 1.1 (VS3) | 1.1 (PS3) | 225 (EE3) | 700 (FM3) | |
处理4 Level4 | 1.5 (VS4) | 1.5 (PS4) | 245 (EE4) | 750 (FM4) | |
处理5 Level5 | 1.9 (VS5) | 1.9 (PS5) | 250 (EE5) | 800 (FM5) | |
处理6 Level6 | 2.3 (VS6) | 2.3 (PS6) | 255 (EE6) | 850 (FM6) | |
处理7 Level7 | 2.7 (VS7) | 2.7 (PS7) | 265 (EE7) | 900 (FM7) | |
处理8 Level8 | 3.1 (VS8) | 3.1 (PS8) | 275 (EE8) | 950 (FM8) | |
处理9 Level9 | 3.5 (VS9) | 3.5 (PS9) | 285 (EE9) | 1000 (FM9) | |
处理10 Level10 | 3.9 (VS10) | 3.9 (PS10) | 300 (EE10) | 1050 (FM10) | |
处理11 Level11 | 4.3 (VS11) | 4.3 (PS11) | 325 (EE11) | 1100 (FM11) | |
处理12 Level12 | 4.7 (VS12) | 4.7 (PS12) | 350 (EE12) | 1150 (FM12) | |
处理13 Level13 | 5.0 (VS13) | 5.0 (PS13) | 375 (EE13) | 1200 (FM13) | |
处理14 Level14 | — | — | 400 (EE14) | 1250 (FM14) |
表5
各生态区冬小麦、夏玉米最佳品种参数组合、获得产量及匹配系数"
作物Crop | 参数Parameter | 鲁东ES | 鲁中CS | 鲁西北NS | 鲁西南SS |
---|---|---|---|---|---|
冬小麦 Winter wheat | 春化敏感性系数 Vern_sens | 3.5 | 4.3 | 3.1 | 4.3 |
光周期敏感性系数 Photop_sens | 3.5 | 3.9 | 3.9 | 3.9 | |
产量 Yield (kg·hm-2) | 10298.38 | 9508.68 | 10344.53 | 9999.54 | |
匹配系数 Matching coefficient | 0.8552 | 0.8449 | 0.8473 | 0.8162 | |
夏玉米 Summer maize | 出苗至拔节期积温tt_emerg_to_endjuv (℃·d) | 200 | 200 | 200 | 255 |
开花至成熟积温 tt_flower_to_maturity (℃·d) | 1150 | 1200 | 1250 | 1100 | |
产量 Yield (kg·hm-2) | 12582.62 | 11598.12 | 14279.07 | 11256.58 | |
匹配系数 Matching coefficient | 0.9165 | 0.9154 | 0.8013 | 0.9637 |
表6
各生态区最佳播种密度水平下可获得产量及匹配系数"
生态区 Ecological region | 冬小麦Winter wheat | 夏玉米Summer maize | |||
---|---|---|---|---|---|
可获得产量 Available yield (kg·hm-2) | 匹配系数 Matching coefficient | 可获得产量 Available yield (kg·hm-2) | 匹配系数 Matching coefficient | ||
鲁东ES | 10049.86 | 0.9903 | 11531.94 | 0.9021 | |
鲁中CS | 8471.68 | 0.9879 | 10616.74 | 0.9092 | |
鲁西北NS | 9825.92 | 0.9904 | 11441.68 | 0.8820 | |
鲁西南SS | 8527.92 | 0.9873 | 10848.51 | 0.8943 |
表7
山东省各生态区冬小麦季水资源利用系数"
生态区 Ecological region | 参数 Parameter | 生育阶段Growth stage | ||
---|---|---|---|---|
播种—拔节 Sowing-jointing stage | 拔节—开花 Jointing-flowering stage | 开花—成熟 Flowering-maturing stage | ||
鲁东ES | 降水量P (mm) 需水量ET (mm) 水资源利用系数WI | 89.5 255.2 | 24.5 184.3 0.5730 | 69.0 269.4 |
鲁中CS | 降水量P (mm) 需水量ET (mm) 水资源利用系数WI | 86.2 216.9 | 23.8 156.7 0.6880 | 83.0 229.0 |
鲁西北NS | 降水量P (mm) 需水量ET (mm) 水资源利用系数WI | 56.2 251.2 | 16.8 181.4 0.5062 | 55.0 265.2 |
鲁西南SS | 降水量P (mm) 需水量ET (mm) 水资源利用系数WI | 90.9 218.2 | 30.1 157.6 0.6841 | 69.0 230.3 |
表8
山东省各生态区夏玉米季水资源利用系数"
生态区 Ecological region | 参数 Parameter | 生育阶段Growth stage | ||
---|---|---|---|---|
播种—拔节 Sowing-jointing stage | 拔节—吐丝 Jointing-silking stage | 吐丝—成熟 Silking-maturing stage | ||
鲁东ES | 降水量P (mm) 需水量ET (mm) | 117.0 125.0 | 145.0 264.0 | 200.0 305.8 |
水资源利用系数WI | 0.7131 | |||
鲁中CS | 降水量P (mm) 需水量ET (mm) | 161.0 116.0 | 108.0 245.0 | 194.0 283.8 |
水资源利用系数WI | 0.8374 | |||
鲁西北NS | 降水量P (mm) 需水量ET (mm) | 137.0 127.0 | 113.0 268.0 | 204.0 310.2 |
水资源利用系数WI | 0.7193 | |||
鲁西南SS | 降水量P (mm) 需水量ET (mm) | 198.0 120.0 | 107.0 253.0 | 188.0 293.3 |
水资源利用系数WI | 0.9046 |
表9
山东省各生态区冬小麦季、夏玉米季养分资源利用系数"
生态区 Ecological region | 参数 Parameter | 冬小麦季 Winter wheat season | 夏玉米季 Summer maize season |
---|---|---|---|
鲁东ES | 土壤氮含量N0 (mg·kg-1) | 78.0 | |
作物需氮量NC (kg·hm-2) | 305.2 | 288.3 | |
养分资源利用系数FI | 1 | 1 | |
鲁中CS | 土壤氮含量N0 (mg·kg-1) | 91.7 | |
作物需氮量NC (kg·hm-2) | 259.4 | 265.4 | |
养分资源利用系数FI | 1 | 1 | |
鲁西北NS | 土壤氮含量N0 (mg·kg-1) | 81.0 | |
作物需氮量NC (kg·hm-2) | 300.5 | 286.0 | |
养分资源利用系数FI | 1 | 1 | |
鲁西南SS | 土壤氮含量N0(mg·kg-1) | 90.2 | |
作物需氮量NC (kg·hm-2) | 261.0 | 271.2 | |
养分资源利用系数FI | 1 | 1 |
[1] |
RAY D K, RAMANKUTTY N, MUELLER N D, WEST P C, FOLEY J A. Recent patterns of crop yield growth and stagnation. Nature Communications, 2012, 3: 1293.
doi: 10.1038/ncomms2296 pmid: 23250423 |
[2] |
陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49(6): 1117-1131.
doi: 10.3864/j.issn.0578-1752.2016.06.008 |
CHEN Y J, YI X Y, FANG L N, YANG R Z. Analysis of cultivated land and grain production potential in China. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.06.008 |
|
[3] |
李克南, 杨晓光, 刘园, 荀欣, 刘志娟, 王静, 吕硕, 王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素. 作物学报, 2012, 38(8): 1483-1493.
doi: 10.3724/SP.J.1006.2012.01483 |
LI K N, YANG X G, LIU Y, XUN X, LIU Z J, WANG J, LÜ S, WANG E L. Distribution characteristics of winter wheat yield and its influenced factors in North China. Acta Agronomica Sinica, 2012, 38(8): 1483-1493. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01483 |
|
[4] | 李克南. 华北地区冬小麦-夏玉米作物生产体系产量差特征解析[D]. 北京: 中国农业大学, 2014. |
LI K N. Yield gap analysis focused on winter wheat and summer maize rotation in the North China Plain[D]. Beijing: China Agricultural University, 2014. (in Chinese) | |
[5] |
BAI H Z, TAO F L, XIAO D P, LIU F S, ZHANG H. Attribution of yield change for rice-wheat rotation system in China to climate cultivars and agronomic management in the past three decades. Climatic Change, 2016, 135(3/4): 539-553.
doi: 10.1007/s10584-015-1579-8 |
[6] |
KIRKRGAARD J A, HUNT J R. Increasing productivity by matching farming system management and genotype in water-limited environments. Journal of Experimental Botany, 2010, 61(15): 4129-4143.
pmid: 20709725 |
[7] |
XIAO D, TAO F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy, 2014, 52: 112-122.
doi: 10.1016/j.eja.2013.09.020 |
[8] |
AHRENS T D, LOBELL D B, ORTIZ-MONASTERIO J L, LI Y, MATSON P A. Narrowing the agronomic yield gap with improved nitrogen use efficiency: A modeling approach. Ecological Applications, 2010, 20(1): 91-100.
doi: 10.1890/08-0611.1 pmid: 20349832 |
[9] |
LICKER R, JOHNSTON M, FOLEY J A, BARFORD C, KUCHARIK C J, MONFREDA C, RAMANHUTTY N. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world?. Global Ecology and Biogeography, 2010, 19(6): 769-782.
doi: 10.1111/geb.2010.19.issue-6 |
[10] |
NEUMANN K, VERBURG P H, STEHFEST E, MULLER C. The yield gap of global grain production: A spatial analysis. Agricultural Systems, 2010, 103(5): 316-326.
doi: 10.1016/j.agsy.2010.02.004 |
[11] |
MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143(1): 91-97.
doi: 10.1016/j.fcr.2012.09.023 |
[12] | LIU Z J, Yang X G, LIN X M, HUBBARD K G, LV S, WANG J. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of Northeast China. Earth Interactions, 2016, 20(12): 1-18. |
[13] |
TANAKA A, SAITO K, AZOMA K, KOBAYASHI K. Factors affecting variation in farm yields of irrigated lowland rice in southern-central Benin. European Journal of Agronomy, 2013, 44: 46-53.
doi: 10.1016/j.eja.2012.08.002 |
[14] |
ZHANG W F, CAO G X, LI X L, ZHANG H Y, WANG C, LIU Q Q, CHEN X P, CUI Z L, SHEN J B, JIANG R F, MI G H, MIAO Y X, ZHANG F S, DOU Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537: 671-674.
doi: 10.1038/nature19368 pmid: 27602513 |
[15] |
CHEN G F, CAO H Z, LIANG J, MA W Q, GUO L F, ZHANG S H, JIANG R F, ZHANG H Y, KEITH W T G, ZHANG F S. Factors affecting nitrogen use efficiency and grain yield of summer maize on smallholder farms in the North China Plain. Sustainability, 2018, 10(2): 363.
doi: 10.3390/su10020363 |
[16] | 肖登攀, 陶福禄 . 过去 30年气候变化对华北平原冬小麦物候的影响研究. 中国生态农业学报, 2012, 20(11): 1539-1545. |
XIAO D P, TAO F L. Impact of climate change in 1981-2009 on winter wheat phenology in the North China Plain. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1539-1545. (in Chinese) | |
[17] |
SUN H Y, ZHANG X Y, WANG E L, CHEN S Y, SHAO L W, QIN W L. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain. Field Crops Research, 2016, 194: 94-102.
doi: 10.1016/j.fcr.2016.05.007 |
[18] | WANG J, WANG E L, YIN H, FENG L P, ZHANG J P. Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agricultural & Forest Meteorology, 2014, 195/196: 89-101. |
[19] |
LI K N, YANG X G, LIU Z J, ZHANG T Y, LU S, LIU Y. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy, 2014, 59: 1-12.
doi: 10.1016/j.eja.2014.04.007 |
[20] |
WANG J, WANG E L, FENG L P, YIN H, YU W D. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Research, 2013, 144(6): 135-144.
doi: 10.1016/j.fcr.2012.12.020 |
[21] | XIAO D P, TAO F L. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009. International Journal of Biometeorology, 2015, 67(2): 1-12. |
[22] | XIAO D P, QI Y Q, SHEN Y J, TAO F L, MOIWO J, LIU J F, REMDE W, ZHANG H, LIU F S. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theoretical & Applied Climatology, 2015, 124(3/4): 1-9. |
[23] |
LI K N, YANG X G, TIAN H Q, PAN S F, LIU Z J, LU S. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. International Journal of Biometeorology, 2015, 60(1): 1-12.
pmid: 26156832 |
[24] |
ZHANG Y, FENG L P, WANG E L, WANG J, LI B G. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science, 2012, 92(5): 937-949.
doi: 10.4141/CJPS2011-266 |
[25] |
SUN H Y, ZHANG X Y, WANG E L, CHEN S Y, SHAO L W. Quantifying the impact of irrigation on groundwater reserve and crop production - A case study in the North China Plain. European Journal of Agronomy, 2015, 70: 48-56.
doi: 10.1016/j.eja.2015.07.001 |
[26] |
OORT P A J V, WANG G, VOS J, MEINKE H, LI B G, HUANG J K, Werf W. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain. Agricultural Water Management, 2016, 165: 131-140.
doi: 10.1016/j.agwat.2015.11.005 |
[27] | 赵彦茜, 齐永青, 朱骥, 肖登攀, 安塞, 陈睿. APSIM模型的研究进展及其在中国的应用. 中国农学通报, 2017, 33(18): 1-6. |
ZHAO Y X, QI Y Q, ZHU J, XIAO D P, AN S, CHEN R. Research progress of APSIM model and its application in China. Chinese Agricultural Science Bulletin, 2017, 33(18): 1-6. (in Chinese) | |
[28] | 廉丽姝, 李志富, 李梅, 李庆, 李长军. 山东省主要粮食作物气候生产潜力时空变化特征. 气象科技, 2012, 40(6): 1030-1038. |
LIAN L S, LI Z F, LI M, LI Q, LI C J. Spatial-temporal variation characteristics of climatic potential productivity for grain crops in Shandong province. Meteorological Science and Technology, 2012, 40(6): 1030-1038. (in Chinese) | |
[29] | 于振文. 作物栽培学各论. 北京: 中国农业出版社, 2013: 58-59, 119-121. |
YU Z W. On Crop Cultivation. Beijing: China Agricultural Press, 2013: 58-59, 119-121. (in Chinese) | |
[30] | LIU Y, HOU P, XIE R, LI S, ZHANG H, MING B, MA D, LIANG S. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sience, 2013, 53(4): 1693-1703. |
[31] | 黄玲, 高阳, 邱新强, 李新强, 申孝军, 孙景生, 巩文军, 段爱旺. 灌水量和时期对不同品种冬小麦产量和耗水特性的影响. 农业工程学报, 2013, 29(14): 99-108. |
HUANG L, GAO Y, QIU X Q, LI X Q, SHEN X J, SUN J S, GONG W J, DUAN A W. Effects of irrigation amount and stage on yield and water consumption of different winter wheat cultivars. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 99-108. (in Chinese) | |
[32] |
XU C L, TAO H B, TIAN B J, GAO Y B, REN J H, WANG P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Research, 2016, 196: 268-275.
doi: 10.1016/j.fcr.2016.07.009 |
[33] | 赵鑫, 任伟, 王云奇, 晋鹏宇, 陶洪斌, 王璞. 冬小麦灌水模式和农艺措施对夏玉米土壤含水量及水分利用效率的影响. 水土保持学报, 2014, 28(2): 100-104, 111. |
ZHAO X, REN W, WANG Y Q, JIN P Y, TAO H B, WANG P. Impact of irrigation modes of winter wheat season and agronomy managements on soil water content and WUE of summer maize. Journal of Soil and Water Conservation, 2014, 28(2): 100-104, 111. (in Chinese) | |
[34] |
CHEN C Q, LEI C X, DENG A X, QIAN C R, HOOGMOED W, ZHANG W J. Will higher minimum temperatures increases corn production in Northeast China? An analysis of historical data over 1965-2008. Agricultural and Forest Meteorology, 2011, 151(12): 1580-1588.
doi: 10.1016/j.agrformet.2011.06.013 |
[35] |
LIU Y E, XIE R Z, HOU P, LI S K, ZHANG H B, MING B, LONG H L, LIANG S M. Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Research, 2013, 144: 192-199.
doi: 10.1016/j.fcr.2013.01.003 |
[36] |
胡实, 莫兴国, 林忠辉. 气候变化对黄淮海平原冬小麦产量和耗水量的影响及品种适应性评估. 应用生态学报, 2015, 26(4): 1153-1161.
pmid: 26259458 |
HU S, MO X G, LIN Z H. Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain. Chinese Journal of Applied Ecology, 2015, 26(4): 1153-1161. (in Chinese)
pmid: 26259458 |
|
[37] | 刘建刚. 黄淮海农作区冬小麦-夏玉米产量差及其限制因素解析[D]. 北京: 中国农业大学, 2015. |
LIU J G. Yield gap of winter wheat and summer maize and limiting factors in Huang-Huai-Hai farming region[D]. Beijing: China Agricultural University, 2015. (in Chinese) | |
[38] | 周宝元. 黄淮海冬小麦-夏玉米资源优化配置及其节水高产技术模式研究[D]. 北京: 中国农业科学院, 2017. |
Zhou B Y. Study on optimizing resource distribution of winter wheat-summer maize and its water saving and high yield cropping system[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[8] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|