中国农业科学 ›› 2020, Vol. 53 ›› Issue (19): 3915-3927.doi: 10.3864/j.issn.0578-1752.2020.19.006
收稿日期:
2020-05-11
接受日期:
2020-07-13
出版日期:
2020-10-01
发布日期:
2020-10-19
通讯作者:
赵斌
作者简介:
丁相鹏,E-mail: 基金资助:
DING XiangPeng(),BAI Jing,ZHANG ChunYu,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin(
)
Received:
2020-05-11
Accepted:
2020-07-13
Online:
2020-10-01
Published:
2020-10-19
Contact:
Bin ZHAO
摘要:
【目的】探明不同密度下扩行缩株(扩行距缩株距)栽培模式对黄淮海夏玉米产量和群体结构的调控效应。【方法】2018—2019年以密植高产玉米品种郑单958为试验材料,设置3种行距,即60 cm(B1)、80 cm(B2)、100 cm(B3)等行距;2个种植密度,即67 500株/hm2(D1)和82 500株/hm2(D2),采用裂区设计形成不同的栽培模式。【结果】与D1密度相比,D2密度能显著提高夏玉米群体叶面积和光合势,改善群体的光能利用,增加群体的干物质积累量,促进产量的增加。不同种植密度条件下,扩行缩株对夏玉米群体结构的影响存在差异。在67 500株/hm2密度下,扩行缩株对产量的影响不显著,在82 500株/hm2密度下,B2处理较B1和B3处理2年平均增产9.45%和11.48%,主要是由于行粒数增加引起的穗粒数增加。在此密度下,B2处理较B1处理显著提高花后群体叶面积指数(LAI),显著延缓中下部叶片衰老,增加花后夏玉米群体光合势,茎叶夹角增大,叶向值减小,穗位叶层和底层透光率明显增加,消光系数减小,花后干物质积累量增加,花后干物质转移量降低。表明高密度条件下,80 cm扩行的等行距模式有利于构建高效的光合群体结构,延缓叶片衰老,增加夏玉米群体干物质生产与积累,从而提高产量。【结论】黄淮海平原夏玉米通过增加种植密度并适当扩行缩株可实现光能资源高效利用和产量协同提高,本试验条件下,推荐82 500 株/hm2密度搭配80 cm等行距种植模式。
丁相鹏,白晶,张春雨,张吉旺,刘鹏,任佰朝,赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响[J]. 中国农业科学, 2020, 53(19): 3915-3927.
DING XiangPeng,BAI Jing,ZHANG ChunYu,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Population Structure and Yield of Summer Maize[J]. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927.
表1
扩行缩株对夏玉米产量及构成因素的影响"
年份 Year | 密度 Density | 行距 Row space | 穗长 Ear length (cm) | 秃顶长 Bald tip length (cm) | 穗行数 Number of lines per ear | 行粒数 Number of kernels per line | 穗粒数 Spike grain number | 千粒重 Weight of 1000-kernels (g) | 产量 Yield (t·hm-2) |
---|---|---|---|---|---|---|---|---|---|
2018 | D1 | B1 | 17.18a | 0.13c | 15.42a | 33.86a | 522.12a | 316.28a | 10.89c |
B2 | 17.22a | 0.06f | 15.53a | 33.44a | 519.32a | 318.47a | 10.79c | ||
B3 | 17.27a | 0.11e | 15.56a | 32.62bc | 507.57ab | 315.72ab | 10.56c | ||
平均值Average | 17.22 | 0.10 | 15.50a | 33.31 | 516.34 | 316.82 | 10.75 | ||
D2 | B1 | 16.95a | 0.17b | 15.24a | 31.56c | 480.97bc | 309.08bc | 11.99b | |
B2 | 16.95a | 0.10d | 15.36a | 33.25ab | 510.72a | 314.92ab | 13.07a | ||
B3 | 16.84a | 0.23a | 15.17a | 31.23c | 473.76c | 304.75c | 11.66b | ||
平均值 Average | 16.91 | 0.17 | 15.26a | 32.01 | 488.48 | 309.58 | 12.24 | ||
2019 | D1 | B1 | 16.84ab | 0.23d | 15.71a | 34.02a | 534.45a | 312.24ab | 10.99c |
B2 | 17.04ab | 0.28c | 15.77a | 34.57a | 545.17a | 315.18a | 11.16c | ||
B3 | 17.58a | 0.16e | 15.69a | 33.92a | 532.20a | 314.40ab | 11.02c | ||
平均值 Average | 17.15 | 0.22 | 15.72a | 34.17 | 537.28 | 313.94 | 11.06 | ||
D2 | B1 | 16.59b | 0.48a | 15.61a | 31.95b | 498.76b | 305.04c | 12.41b | |
B2 | 16.85ab | 0.30b | 15.67a | 34.42a | 539.34a | 310.00abc | 13.63a | ||
B3 | 16.71ab | 0.31b | 15.72a | 31.22b | 490.78b | 308.20bc | 12.33b | ||
平均值 Average | 16.68 | 0.36 | 15.67a | 32.53 | 509.63 | 307.75 | 12.79 | ||
变异来源Sources of variation | 年份 Year (Y) | NS | ** | NS | * | ** | NS | ** | |
密度 Density (D) | * | ** | NS | ** | ** | * | ** | ||
行距 Race space (R) | NS | ** | NS | ** | ** | * | ** | ||
年份×密度 Y×D | NS | ** | NS | NS | NS | NS | NS | ||
年份×行距 Y×R | NS | ** | NS | NS | NS | NS | NS | ||
密度×行距 D×R | NS | ** | NS | ** | * | NS | ** | ||
年份×密度×行距 Y×D×R | NS | ** | NS | NS | NS | NS | NS |
表2
扩行缩株对夏玉米各叶层叶面积指数影响"
年份 Year | 密度 Density | 行距 Row space | | 棒三叶Three-ear leaves | 棒三叶以下Under three-ear leaves | |||
---|---|---|---|---|---|---|---|---|
吐丝期Silking | 乳熟期Milking | 吐丝期Silking | 乳熟期Milking | 吐丝期Silking | 乳熟期Milking | |||
2018 | D1 | B1 | 1.30b | 1.22d | 1.45c | 1.42d | 2.59d | 2.24d |
B2 | 1.33b | 1.26cd | 1.48c | 1.38de | 2.76c | 2.36c | ||
B3 | 1.33b | 1.27c | 1.39d | 1.34e | 2.47e | 2.26d | ||
平均值Average | 1.32 | 1.25 | 1.44 | 1.38 | 2.61 | 2.29 | ||
D2 | B1 | 1.52a | 1.48a | 1.74b | 1.72b | 3.15a | 2.48b | |
B2 | 1.48a | 1.41b | 1.81a | 1.77a | 3.22a | 2.74a | ||
B3 | 1.49a | 1.40b | 1.70b | 1.65c | 2.97b | 2.66a | ||
平均值Average | 1.50 | 1.43 | 1.75 | 1.71 | 3.11 | 2.63 | ||
2019 | D1 | B1 | 1.41bc | 1.33c | 1.72b | 1.70c | 2.23d | 1.71d |
B2 | 1.42bc | 1.32cd | 1.73b | 1.71c | 2.31d | 1.73d | ||
B3 | 1.39c | 1.28d | 1.70b | 1.67c | 2.23d | 1.71d | ||
平均值Average | 1.41 | 1.31 | 1.72 | 1.69 | 2.26 | 1.72 | ||
D2 | B1 | 1.49a | 1.39b | 1.88b | 1.85b | 2.71c | 2.02c | |
B2 | 1.46ab | 1.44a | 1.94a | 1.92a | 2.85a | 2.31a | ||
B3 | 1.45ab | 1.40ab | 1.89b | 1.88ab | 2.77b | 2.19b | ||
平均值Average | 1.47 | 1.41 | 1.90 | 1.88 | 2.78 | 2.17 | ||
变异来源 Sources of variation | 年份 Year (Y) | ** | * | ** | ** | ** | ** | |
密度 Density (D) | ** | ** | ** | ** | ** | ** | ||
行距 Race space (R) | NS | NS | ** | ** | ** | ** | ||
年份×密度Y×D | ** | ** | ** | ** | NS | ** | ||
年份×行距Y×R | NS | NS | NS | * | ** | NS | ||
密度×行距D×R | NS | NS | NS | * | NS | ** | ||
年份×密度×行距 Y×D×R | NS | ** | NS | NS | NS | NS |
表3
扩行缩株对夏玉米群体光合势的影响"
年份 Year | 密度 Density | 行距 Row space | 吐丝前光合势 LAD in pre-anthesis (m2·d·m-2) | 吐丝后光合势 LAD in post-anthesis (m2·d·m-2) | 总LAD Total LAD (m2·d·m-2) | ||||
---|---|---|---|---|---|---|---|---|---|
VE-V12 | V12-R1 | Total | R1-R3 | R3-R6 | Total | ||||
2018 | D1 | B1 | 65.76b | 93.38c | 159.14b | 148.37cd | 118.62c | 267.00c | 426.14c |
B2 | 67.63b | 95.51c | 163.15b | 151.39c | 118.37c | 269.75c | 432.90c | ||
B3 | 67.09b | 92.50c | 159.59b | 145.64d | 117.31c | 262.95c | 422.54c | ||
平均值Average | 66.83 | 93.80 | 160.63 | 148.47 | 118.10 | 266.57 | 427.20 | ||
D2 | B1 | 80.75a | 113.06ab | 193.81a | 175.40ab | 131.51b | 306.91b | 500.73b | |
B2 | 81.64a | 114.54a | 196.18a | 180.30a | 140.68a | 320.98a | 517.16a | ||
B3 | 80.61a | 110.50b | 191.11a | 172.45b | 134.11b | 306.57b | 497.68b | ||
平均值Average | 81.00 | 112.70 | 193.70 | 176.05 | 135.44 | 311.49 | 505.19 | ||
2019 | D1 | B1 | 83.33c | 104.09b | 187.42b | 141.36c | 118.04d | 259.40c | 446.82c |
B2 | 83.18c | 105.02b | 188.21b | 143.05c | 117.43d | 260.07c | 448.28c | ||
B3 | 81.75c | 102.77b | 184.52b | 139.79c | 117.06d | 256.85c | 441.36c | ||
平均值Average | 82.75 | 103.96 | 186.72 | 141.40 | 117.04 | 258.44 | 445.16 | ||
D2 | B1 | 93.80b | 117.69a | 211.50a | 164.48b | 127.13c | 291.61b | 503.11b | |
B2 | 95.64ab | 120.44a | 216.08a | 172.78a | 137.22a | 309.99a | 526.07a | ||
B3 | 97.06a | 119.06a | 216.12a | 166.70b | 131.63b | 298.33b | 514.45ab | ||
平均值Average | 95.50 | 119.06 | 214.57 | 167.99 | 131.99 | 299.98 | 514.54 | ||
变异来源 Sources of variation | 年份 Year (Y) | ** | ** | ** | ** | ** | ** | ** | |
密度 Density (D) | ** | ** | ** | ** | ** | ** | ** | ||
行距 Race space (R) | NS | ** | NS | ** | ** | ** | ** | ||
年份×密度Y×D | NS | ** | ** | NS | NS | NS | NS | ||
年份×行距Y×R | NS | NS | NS | NS | NS | NS | NS | ||
密度×行距D×R | NS | NS | NS | NS | ** | ** | NS | ||
年份×密度×行距 Y×D×R | * | NS | NS | NS | NS | NS | NS |
表4
扩行缩株对夏玉米植株形态特征的影响"
年份 Year | 密度 Density | 行距 Row space | 株高 Plant height (cm) | 穗位高 Ear height (cm) | 穗位系数 Ear ratio (%) | 茎秆横截面积 Stalk area (cm2) | 茎叶夹角 Leaf angle (°) | 叶向值 LOV |
---|---|---|---|---|---|---|---|---|
2018 | D1 | B1 | 247.00a | 122.50a | 49.60a | 4.36a | 24.33bc | 61.79bc |
B2 | 248.75a | 121.25a | 48.74a | 4.45a | 25.64b | 59.50c | ||
B3 | 251.25a | 122.50a | 48.76a | 4.31a | 27.64a | 56.22d | ||
平均值Average | 249.00 | 122.08 | 49.03 | 4.37 | 25.87 | 59.17 | ||
D2 | B1 | 252.67a | 127.50a | 50.46a | 3.32c | 21.23d | 66.36a | |
B2 | 252.25a | 124.23a | 49.25a | 3.59b | 23.91c | 62.94b | ||
B3 | 254.17a | 124.62a | 49.03a | 3.46bc | 25.50b | 60.32bc | ||
平均值Average | 253.03 | 125.78 | 49.71 | 3.46 | 23.55 | 63.21 | ||
2019 | D1 | B1 | 253.89a | 118.50c | 46.67a | 4.79a | 24.35bc | 60.91b |
B2 | 256.75a | 121.20bc | 47.21a | 4.64a | 25.66b | 56.93c | ||
B3 | 252.60a | 116.80c | 46.24a | 4.75a | 27.65a | 55.25c | ||
平均值Average | 254.41 | 118.83 | 46.71 | 4.73 | 25.89 | 57.70 | ||
D2 | B1 | 257.75a | 128.13a | 49.71a | 3.66c | 21.22d | 64.96a | |
B2 | 259.29a | 125.83ab | 48.53a | 3.99b | 23.93c | 62.30ab | ||
B3 | 265.10a | 127.90a | 48.25a | 4.05b | 25.51b | 60.35b | ||
平均值Average | 260.71 | 127.29 | 48.82 | 3.90 | 23.55 | 62.54 | ||
变异来源 Sources of variation | 年份 Year (Y) | * | NS | ** | ** | NS | NS | |
密度 Density (D) | NS | ** | NS | ** | ** | ** | ||
行距 Race space (R) | NS | NS | NS | * | ** | ** | ||
年份×密度Y×D | NS | NS | NS | NS | NS | NS | ||
年份×行距Y×R | NS | NS | NS | NS | NS | NS | ||
密度×行距D×R | NS | NS | NS | ** | NS | NS | ||
年份×密度×行距 Y×D×R | NS | NS | NS | NS | NS | NS |
表5
扩行缩株对夏玉米透光率及消光系数的影响"
年份 Year | 密度 Density | 行距 Row space | 透光率 (%) | 消光系数 Extinction coefficient equation | ||||
---|---|---|---|---|---|---|---|---|
吐丝期 Silking | 乳熟期 Milking | |||||||
穗位层Ear layer | 底层Bottom | 穗位层Ear layer | 底层Bottom | 吐丝期Silking | 乳熟期Milking | |||
2018 | D1 | B1 | 25.19d | 9.61c | 25.94d | 11.38c | 0.44c | 0.43b |
B2 | 26.34c | 14.94b | 27.22c | 17.19b | 0.35e | 0.35d | ||
B3 | 36.69 a | 20.83a | 37.09a | 22.46a | 0.30f | 0.31e | ||
平均值Average | 29.41 | 15.13 | 30.08 | 17.34 | 0.36 | 0.36 | ||
D2 | B1 | 15.45f | 3.19f | 16.46f | 5.92f | 0.54a | 0.50a | |
B2 | 19.31e | 4.92e | 20.22e | 6.82e | 0.46b | 0.45b | ||
B3 | 29.32b | 8.64d | 31.23b | 10.76d | 0.40d | 0.39c | ||
平均值Average | 21.36 | 5.58 | 22.64 | 7.83 | 0.47 | 0.45 | ||
2019 | D1 | B1 | 23.19d | 8.35c | 24.39d | 12.84c | 0.46c | 0.43c |
B2 | 25.22c | 16.03b | 25.93c | 18.03b | 0.34e | 0.36d | ||
B3 | 33.93a | 18.01a | 35.05a | 21.37a | 0.32f | 0.33e | ||
平均值Average | 27.45 | 14.13 | 28.46 | 17.41 | 0.37 | 0.37 | ||
D2 | B1 | 14.45f | 3.01f | 17.23f | 5.46f | 0.58a | 0.55a | |
B2 | 19.49e | 4.56e | 20.62e | 6.22e | 0.49b | 0.49b | ||
B3 | 27.75b | 7.83d | 29.92b | 9.05d | 0.42d | 0.44c | ||
平均值Average | 20.56 | 5.13 | 22.59 | 6.91 | 0.50 | 0.49 | ||
变异来源 Sources of variation | 年份 Year (Y) | ** | * | ** | NS | ** | ** | |
密度 Density (D) | ** | ** | ** | ** | ** | ** | ||
行距 Race space (R) | ** | ** | ** | ** | ** | ** | ||
年份×密度Y×D | ** | ** | ** | ** | ** | ** | ||
年份×行距Y×R | ** | ** | ** | ** | ** | ** | ||
密度×行距D×R | ** | ** | ** | ** | ** | ** | ||
年份×密度×行距 Y×D×R | NS | ** | NS | NS | NS | NS |
表6
扩行缩株对夏玉米干物质积累与转运的影响"
年份 Year | 密度 Density | 行距 Row space | 吐丝期干物质 积累量 DMAS (t·hm-2) | 成熟期干物质积累量DMAM (t·hm-2) | 花后干物质积累量DMAAS (t·hm-2) | 花后干物质转运量TADM (t·hm-2) | 花后干物质转运对 籽粒的贡献率 CGDMT (%) |
---|---|---|---|---|---|---|---|
2018 | D1 | B1 | 10.91b | 18.67cd | 7.75b | 1.75b | 18.42c |
B2 | 10.94b | 18.62d | 7.68b | 1.72b | 18.25c | ||
B3 | 10.92b | 18.58d | 7.66b | 1.76b | 18.64c | ||
平均值Average | 10.92 | 18.62 | 7.70 | 1.74 | 18.44 | ||
D2 | B1 | 11.39a | 19.27bc | 7.88b | 2.72a | 31.32a | |
B2 | 11.72a | 19.99a | 8.28a | 2.65a | 29.64b | ||
B3 | 11.60a | 19.40ab | 7.81b | 2.69a | 31.31a | ||
平均值Average | 11.57 | 19.56 | 7.99 | 2.68 | 30.76 | ||
2019 | D1 | B1 | 10.46c | 18.07c | 7.61c | 1.98d | 20.64c |
B2 | 10.58c | 18.25c | 7.67c | 2.03d | 20.91c | ||
B3 | 10.50c | 18.12c | 7.62c | 1.98d | 20.61c | ||
平均值Average | 10.51 | 18.15 | 7.63 | 2.00 | 20.72 | ||
D2 | B1 | 11.47ab | 19.60b | 8.13b | 2.69a | 30.40a | |
B2 | 11.73a | 20.25a | 8.53a | 2.59b | 28.50b | ||
B3 | 11.22b | 19.38b | 8.15b | 2.42c | 28.00b | ||
平均值Average | 11.47 | 19.74 | 8.27 | 2.57 | 28.97 | ||
变异来源 Sources of variation | 年份 Year (Y) | ** | NS | NS | ** | NS | |
密度 Density (D) | ** | ** | ** | ** | ** | ||
行距 Race space (R) | NS | * | ** | ** | ** | ||
年份×密度Y×D | * | * | ** | ** | ** | ||
年份×行距Y×R | NS | NS | NS | ** | ** | ||
密度×行距D×R | NS | NS | ** | ** | ** | ||
年份×密度×行距 Y×D×R | NS | NS | NS | * | * |
[1] |
XUE J, XIE R Z, ZHANG W F, WANG K R, HOU P, MING B, GOU L, LI S K. Research progress on reduced lodging of high yield and density maize. Journal of Integrative Agriculture, 2017, 16(12): 2717-2725.
doi: 10.1016/S2095-3119(17)61785-4 |
[2] |
TILMAN D, BALZER C, HILL J, BEFFORT B L. From the cover: Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260.
pmid: 22106295 |
[3] |
YANG H S, DOBERMANN A, LINDQUIST J L, WALTEB D T, ARKEBAUER T J, CASSMAN K G. Hybrid-maize-A maize simulation model that combines two crop modeling approaches. Field Crops Research, 2004, 87(2/3): 131-154.
doi: 10.1016/j.fcr.2003.10.003 |
[4] |
MANDIC V, BIJELIC Z, KRNJAJA V, TOMIC Z, CARO-PETROVIC V. The effect of crop density on maize grain yield. Biotechnology in Animal Husbandry, 2016, 32(1): 83-90.
doi: 10.2298/BAH1601083M |
[5] |
LIU G Z, HOU P, XIE R Z, MING B, WANG K R, XU W J, LIU W M, YANG Y S, LI S K. Canopy characteristics of high-yield maize with yield potential of 22.5 t·ha-1. Field Crops Research, 2017, 213: 221-230.
doi: 10.1016/j.fcr.2017.08.011 |
[6] |
陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38(1): 80-85.
doi: 10.3724/SP.J.1006.2012.00080 |
CHEN G P, GAO J L, ZHAO M, DONG S T, LI S K, YANG Q F, LIU Y H, WANG L C, XUE J Q, LIU J G, LI C H, WANG Y H, WANG Y D, SONG H X, ZHAO J R. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agronomica Sinica, 2012, 38(1): 80-85. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00080 |
|
[7] | 卫丽, 熊友才, 马超, 张慧琴, 邵阳, 李朴芳, 程正国, 王同朝. 不同群体结构夏玉米灌浆期光合特征和产量变化. 生态学报, 2011, 31(9): 2524-2531. |
WEI L, XIONG Y C, MA C, ZHANG H Q, SHAO Y, LI P F, CHENG Z G, WANG T Z. Photosynthetic characterization and yield of summer corn (Zea mays L.) during grain filling stage under different planting pattern and population densities. Acta Ecologica Sinica, 2011, 31(9): 2524-2531. (in Chinese) | |
[8] | 高英波, 陶洪斌, 黄收兵, 田北京, 王丽君, 李芸, 任建宏, 王璞. 密植和行距配置对夏玉米群体光分布及光合特性的影响. 中国农业大学学报, 2015, 20(6): 9-15. |
GAO Y B, TAO H B, HUANG S B, TIAN B J, WANG L J, LI Y, REN J H, WANG P. Effects of high planting density and row spacing on canopy light distribution and photosynthetic characteristics of summer maize. Journal of China Agricultural University, 2015, 20(6): 9-15. (in Chinese) | |
[9] |
GONG F P, WU X L, ZHANG H Y, CHEN Y H, WANG W. Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science, 2015, 6: 835.
pmid: 26500671 |
[10] |
YANG Y S, XU W J, HOU P, LIU G Z, LIU W M, WANG Y H, ZHAO R L, MING B, XIE R Z, WANG K R, LI S K. Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports, 2019, 9(1): 3635.
doi: 10.1038/s41598-019-40081-z pmid: 30842514 |
[11] |
明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 50(11): 1960-1972.
doi: 10.3864/j.issn.0578-1752.2017.11.002 |
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K. Changes of maize planting density in China. Scientia Agricultura Sinica, 2017, 50(11): 1960-1972. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.002 |
|
[12] |
吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
doi: 10.3724/SP.J.1006.2008.00447 |
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomical Sinica, 2008, 34(3): 447-455. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00447 |
|
[13] |
SONG Q F, ZHANG G L, ZHU X G. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2-A theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 2013, 40(2): 109-124.
doi: 10.1071/FP12056 |
[14] |
HUANG S B, GAO Y B, LI Y B, XU L N, TAO H B, WANG P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop Journal , 2017, 5(1): 52-62.
doi: 10.1016/j.cj.2016.06.018 |
[15] |
WEI S S, WANG X Y, JIANG D, DONG S T. Physiological and proteome studies of maize ( Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biology, 2018, 18: 378.
pmid: 30594144 |
[16] |
杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36(7), 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226 |
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010, 36(7): 1226-1233. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01226 |
|
[17] | 梁熠, 齐华, 王敬亚, 白向历, 王晓波, 刘明, 孟显华, 许晶. 宽窄行栽培对玉米生长发育及产量的影响. 玉米科学, 2009, 17(4): 97-100. |
LIANG Y, QI H, WANG J Y, BAI X L, WANG X B, LIU M, MENG X H, XU J. Effects of growth and yield of maize under wide and narrow row cultivation. Journal of Maize Sciences, 2009, 17(4): 97-100. (in Chinese) | |
[18] |
苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42(1): 104-112.
doi: 10.3724/SP.J.1006.2016.00104 |
CHANG J F, ZHANG H H, LI H P, DONG P F, LI C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agronomical Sinica, 2016, 42(1): 104-112. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00104 |
|
[19] | 刘永忠, 李万星, 曹晋军, 靳鲲鹏. 高密度条件下行距配置对春玉米光合特性及产量的影响. 华北农学报, 2017, 32(3): 111-117. |
LIU Y Z, LI W X, CAO J J, JIN K P. Effects of row spacing on photosynthetic characteristics and yield of spring maize under high density. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 111-117. (in Chinese) | |
[20] |
徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44(3): 414-422.
doi: 10.3724/SP.J.1006.2018.00414 |
XU T J, LÜ T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinica, 2018, 44(3): 414-422. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00414 |
|
[21] |
任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50(11): 2093-2103.
doi: 10.3864/j.issn.0578-1752.2017.11.015 |
REN B Z, ZHANG J W, DONG S T, ZHAO B, LIU P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2093-2103. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.015 |
|
[22] |
TESTA G, REYNERI A, BLANDINO M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 2016, 72: 28-37.
doi: 10.1016/j.eja.2015.09.006 |
[23] |
张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011, 44(21): 4367-4376.
doi: 10.3864/j.issn.0578-1752.2011.21.005 |
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, YANG S H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Scientia Agricultura Sinica, 2011, 44(21): 4367-4376. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.21.005 |
|
[24] |
王洪章, 刘鹏, 董树亭, 张吉旺, 赵斌, 任佰朝. 夏玉米产量与光温生产效率差异分析——以山东省为例. 中国农业科学, 2019, 52(8): 1355-1367.
doi: 10.3864/j.issn.0578-1752.2019.08.006 |
WANG H Z, LIU P, DONG S T, ZHANG J W, ZHAO B, REN B Z. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize-Taking Shandong province as an example. Scientia Agricultura Sinica, 2019, 52(8): 1355-1367. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.08.006 |
|
[25] |
刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011, 37(7): 1301-1307.
doi: 10.3724/SP.J.1006.2011.01301 |
LIU W, ZHANG J W, LÜ P, YANG J S, LIU P, DONG S T, LI D H, SUN Q Q. Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai 661. Acta Agronomica Sinica, 2011, 37(7): 1301-1307. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01301 |
|
[26] | 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630. |
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese) | |
[27] |
MOHAMMADI G R, GHOBADI M E, SHEIKHEHPOOR S. Phosphate biofertilizer, row spacing and plant density effects on corn yield and weed growth. American Journal of Plant Sciences, 2012, 3: 425-429.
doi: 10.4236/ajps.2012.34051 |
[28] |
魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25(2): 441-450.
pmid: 24830244 |
WEI S S, WANG X Y, DONG S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chinese Journal of Applied Ecology, 2014, 25(2): 441-450. (in Chinese)
pmid: 24830244 |
|
[29] | 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15000 kg·ha-1以上夏玉米灌浆期间的光合特性. 中国农业科学, 2007, 40(9): 1898-1906. |
HUANG Z X, WANG Y J, WANG K J, LI D H, ZHAO M, LIU J G, DONG S T, WANG H J, WANG J H, YANG J S. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg·ha-1. Scientia Agricultura Sinica, 2007, 40(9): 1898-1906. (in Chinese) | |
[30] |
MA D L, XIE R Z, NIU X K, LI S K, LONG H L, LIU Y E. Changes in the morphological traits of maize genotypes in China between the 1950 and 2000. European Journal of Agronomy, 2014, 58: 1-10.
doi: 10.1016/j.eja.2014.04.001 |
[31] | 张旺锋, 王振林, 余松烈, 李少昆, 曹连莆, 任丽彤. 膜下滴灌对新疆高产棉花群体光合作用、冠层结构和产量形成的影响. 中国农业科学, 2002, 35(6): 632-637. |
ZHANG W F, WANG Z L, YU S L, LI S K, CAO L P, REN L T. Effect of under-mulch-drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high-yield cotton of Xinjiang. Scientia Agricultura Sinica, 2002, 35(6): 632-637. (in Chinese) | |
[32] | 刘广周. 产量潜力22.5 t hm-2玉米理想株型及群体结构研究[D]. 北京: 中国农业科学院, 2019. |
LIU G Z. Research on maize (Zea mays L.) ideotype and canopy structure with yield potential of 22.5 t hm-2[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[33] | 徐克章, 武志海, 王珍. 玉米群体冠层内光和CO2分布特性的初步研究. 吉林农业大学学报, 2001, 23(3): 9-12. |
XU K Z, WU Z H, WANG Z. The primary study on the distribution character of irradiance and CO2 of maize canopies. Journal of Jilin Agricultural University, 2001, 23(3): 9-12. (in Chinese) | |
[34] |
胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44(6): 920-930.
doi: 10.3724/SP.J.1006.2018.00920 |
HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018, 44(6): 920-930. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00920 |
|
[35] |
柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45(12): 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011 |
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)
doi: 10.3724/SP.J.1006.2019.93011 |
|
[36] | 杨克军, 萧常亮, 李明, 李振华. 栽培方式与群体结构对玉米生长发育及产量的影响. 黑龙江八一农垦大学学报, 2005, 17(4), 9-12. |
YANG K J, XIAO C L, LI M, LI Z H. Study on the influence of cultivation methods and community construction to growth and yield of corn. Journal of Heilongjiang Bayi Agricultural University, 2005, 17(4): 9-12. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[8] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[14] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[15] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
|