中国农业科学 ›› 2020, Vol. 53 ›› Issue (9): 1756-1772.doi: 10.3864/j.issn.0578-1752.2020.09.006
• 专题:限制性两阶段多位点全基因组关联分析法的应用 • 上一篇 下一篇
刘再东,孟珊,贺建波(),邢光南,王吴彬,赵团结,盖钧镒(
)
收稿日期:
2019-09-09
接受日期:
2020-01-02
出版日期:
2020-05-01
发布日期:
2020-05-13
通讯作者:
贺建波,盖钧镒
作者简介:
刘再东,E-mail:2714699171@qq.com。|孟珊,E-mail:mshan84@163.com。
基金资助:
ZaiDong LIU,Shan MENG,JianBo HE(),GuangNan XING,WuBin WANG,TuanJie ZHAO,JunYi GAI(
)
Received:
2019-09-09
Accepted:
2020-01-02
Online:
2020-05-01
Published:
2020-05-13
Contact:
JianBo HE,JunYi GAI
摘要:
【目的】异黄酮是大豆等豆类植物中富含的一类次生代谢产物,对食品和保健产业有重要作用。大豆籽粒可分离出12种异黄酮组分,可归为三大类:大豆苷类异黄酮、染料木苷类异黄酮和黄豆苷类异黄酮。通过鉴定大豆籽粒异黄酮总含量及3个组分含量性状的加性及上位性QTL,进而全面解析其复杂的遗传构成。【方法】利用先进2号和赶泰2-2双亲衍生的大豆重组自交系群体NJRSXG,在5个环境下测定4个异黄酮含量性状:异黄酮总含量(total isoflavone content,SIFC)、大豆苷类异黄酮总含量(total daidzin group content,TDC)、染料木苷类异黄酮总含量(total genistin group content,TGC)和黄豆苷类异黄酮总含量(total glycitin group content,TGLC)。选用混合模型复合区间作图法(mixed-model-based composite interval mapping,MCIM)和限制性两阶段多位点全基因组关联分析方法(restricted two-stage multi-locus genome-wide association analysis,RTM-GWAS)进行异黄酮含量QTL检测。【结果】2个亲本在4个异黄酮含量性状上均存在较大差异,重组自交系群体异黄酮含量在高值、低值2个方向上均出现超亲分离,低值方向分离趋势强于高值方向。利用连锁定位MCIM方法共检测到4个异黄酮含量性状的19个加性QTL和16对上位性QTL,分布于15条染色体上。第14染色体重要标记区间GNE186b—Sat020内检测到3个新加性QTL:qSifc-14-1、qTdc-14-2和qTgc-14-1,且表型变异解释率最高。利用关联定位RTM-GWAS方法分别检测到4个异黄酮含量性状的51、66、42和36个关联标记位点,表型变异解释率为39.7%—52.5%,检测到的位点中覆盖了MCIM方法检测的19个加性QTL中的11个以及11个上位性QTL。候选基因分析分别在加性QTL区域和上位性QTL区域检测到93和100个候选基因,富集分析显示在第14染色体重要标记区间GNE186b—Satt020内,Glyma14g33227、Glyma14g33244和Glyma14g33715的功能与异黄酮代谢有关。【结论】连锁定位和关联定位2种方法结合能相对全面地检测异黄酮含量QTL。与连锁定位方法MCIM相比,关联定位方法RTM-GWAS检测的QTL更多,总遗传贡献率更高,但尚不能检测上位性QTL,2种方法定位结果可相互验证补充,大豆籽粒异黄酮含量由大量QTL/基因控制。
刘再东,孟珊,贺建波,邢光南,王吴彬,赵团结,盖钧镒. 大豆重组自交系群体异黄酮含量QTL连锁定位与关联定位的比较研究[J]. 中国农业科学, 2020, 53(9): 1756-1772.
ZaiDong LIU,Shan MENG,JianBo HE,GuangNan XING,WuBin WANG,TuanJie ZHAO,JunYi GAI. A Comparative Study on Linkage and Association QTL Mapping for Seed Isoflavone Contents in a Recombinant Inbred Line Population of Soybean[J]. Scientia Agricultura Sinica, 2020, 53(9): 1756-1772.
表1
异黄酮含量(102 μg·g-1)的次数分布"
性状 Trait | 组中值及频数 Midpoint and frequency | N | P1 | P2 | 平均值 Mean | 变幅 Range | GCV (%) | h2 (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SIFC | 22 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 62 | 67 | |||||||
2 | 8 | 32 | 23 | 36 | 24 | 10 | 7 | 3 | 1 | 146 | 63.0 | 34.0 | 40.6 | 21.9—67.7 | 20.9 | 94.1 | |
TDC | 7.0 | 9.5 | 12.0 | 14.5 | 17.0 | 19.5 | 22.0 | 24.5 | 27.0 | 29.5 | |||||||
5 | 13 | 33 | 40 | 27 | 11 | 11 | 3 | 2 | 1 | 146 | 28.4 | 12.8 | 15.1 | 7.3—29.5 | 26.9 | 95.4 | |
TGC | 12.0 | 14.5 | 17.0 | 19.5 | 22.0 | 24.5 | 27.0 | 29.5 | 32.0 | 34.5 | |||||||
1 | 7 | 14 | 27 | 34 | 21 | 21 | 12 | 6 | 3 | 146 | 28.9 | 19.1 | 23.1 | 12.6—35.6 | 19.5 | 92.7 | |
TGLC | 1.2 | 1.6 | 2.0 | 2.4 | 2.8 | 3.2 | 3.6 | 4.0 | 4.4 | 4.8 | |||||||
9 | 22 | 30 | 24 | 23 | 13 | 10 | 10 | 2 | 3 | 146 | 5 .8 | 2.2 | 2.5 | 1.1—5.0 | 32.3 | 94.0 |
表3
异黄酮含量MCIM方法遗传解析"
性状 Trait | 基因型变异 h2 Genotype variation (%) | 基因型×环境变异 h2 Genotype×Env. variation (%) | ||||
---|---|---|---|---|---|---|
总计Total | Add.QTL | Epi.QTL | 总计Total | Add.QTL×Env. | Epi.QTL×Env. | |
SIFC | 94.1 | 25.8 (4) | 1.0 (1) | 3.9 | 0.5 | 0.1 |
TDC | 95.4 | 23.7 (5) | 12.0 (6) | 3.1 | 0.6 | 0.7 |
TGC | 92.7 | 27.3 (6) | 5.4 (4) | 5.0 | 1.4 | 0.8 |
TGLC | 94.0 | 15.9 (4) | 15.0 (5) | 3.3 | 0.8 | 0.9 |
表4
MCIM方法检测的异黄酮含量QTL"
性状 Trait | QTL | 连锁群 Group | 位置 Position(cM) | 标记区间 Marker interval | 区间长度 Interval length (cM) | h2Add (%) | 互作QTL Epistatic QTL | h2Epi (%) | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|
SIFC | qSifc-03-1 | 3 | 32.4 | Satt521—GNE324 | 11.1 | 4.2 | [11,14] | ||
qSifc-10-1 | 10 | 33.6 | GNE061—GNB130 | 4.0 | qSifc-17-1 | 1.0 | |||
qSifc-14-1 | 14 | 13.9 | GNE186b—Satt020 | 2.9 | 10.6 | [15] | |||
qSifc-17-1 | 17 | 20.4 | Sat_022—Satt186 | 10.2 | qSifc-10-1 | 1.0 | [11] | ||
qSifc-18-1 | 18 | 1.4 | Sat_210—Sat_168 | 1.1 | 4.4 | [41] | |||
qSifc-19-1 | 19 | 38.1 | Satt481—GNE091 | 0.1 | 6.6 | [13] | |||
TDC | qTdc-01-1 | 1-1 | 9.1 | Sat_353—Satt532b | 3.4 | qTdc-10-1 | 1.3 | ||
qTdc-02-1 | 2 | 57.1 | BF070293—Satt634 | 0.9 | qTdc-02-2 | 2.7 | |||
qTdc-02-2 | 2 | 23.8 | Satt282—Satt124c | 18.2 | qTdc-02-1 | 2.7 | |||
qTdc-03-1 | 3 | 67.3 | Satt584—GNE333 | 2.2 | qTdc-10-2 | 3.4 | |||
qTdc-03-2 | 3 | 20.1 | Satt339—Satt660 | 1.3 | 3.1 | ||||
qTdc-08-1 | 8-2 | 2.2 | Satt089—Satt455b | 0.6 | 3.8 | ||||
qTdc-08-2 | 8-2 | 82.3 | Satt409—GNE376 | 10.3 | 2.3 | [18] | |||
qTdc-10-1 | 10 | 22.1 | Satt153—Satt188 | 6.3 | qTdc-01-1 | 1.3 | |||
qTdc-10-2 | 10 | 1.8 | GNB134—Sat_282 | 1.2 | qTdc-03-1 | 3.4 | |||
qTdc-10-3 | 10 | 29.9 | GNE262—GNE057 | 0.9 | qTdc-17-1 | 1.2 | |||
qTdc-12-1 | 12 | 17.2 | GNE229—Satt192 | 9.3 | qTdc-16-1 | 0.5 | [18,21-22] | ||
qTdc-14-1 | 14 | 0.0 | Satt304—Sat_191a | 3.4 | qTdc-15-1 | 3.3 | |||
qTdc-14-2 | 14 | 13.9 | GNE186b—Satt020 | 2.9 | 8.7 | ||||
qTdc-15-1 | 15-2 | 0.0 | Satt651—Satt691 | 20.2 | qTdc-14-1 | 3.3 | [15] | ||
qTdc-16-1 | 16 | 52.1 | Sat_151—Satt529 | 0.2 | qTdc-12-1 | 0.5 | [22] | ||
qTdc-17-1 | 17 | 99.8 | Satt002—GNE158 | 12.5 | qTdc-10-3 | 1.2 | |||
qTdc-18-1 | 18 | 1.0 | Satt038—Sat_210 | 1.4 | 5.8 | ||||
TGC | qTgc-02-1 | 2 | 2.0 | GNE278—Satt141 | 9.4 | qTgc-19-3 | 3.3 | ||
qTgc-03-1 | 3 | 31.4 | Satt521—GNE324 | 11.1 | 4.1 | ||||
qTgc-03-2 | 3 | 5.4 | Sat_306—Sat_239 | 3.9 | qTgc-08-1 | 0.2 | |||
qTgc-08-1 | 8-1 | 3.4 | Satt177a—Sat_406 | 12.5 | qTgc-03-2 | 0.2 | [14-15] | ||
qTgc-10-1 | 10 | 2.8 | GNB134—Sat_282 | 1.2 | qTgc-19-2 | 1.1 | |||
qTgc-10-2 | 10 | 33.6 | GNE061—GNB130 | 4.0 | qTgc-17-1 | 0.8 | |||
qTgc-13-1 | 13 | 21.4 | GNB007—Satt362 | 4.3 | 2.5 | ||||
qTgc-14-1 | 14 | 13.9 | GNE186b—Satt020 | 2.9 | 10.3 | ||||
qTgc-17-1 | 17 | 23.4 | Sat_022—Satt186 | 10.2 | qTgc-10-2 | 0.8 | [12-13] | ||
qTgc-18-1 | 18 | 19.4 | GNE001b—Satt324 | 21.4 | 3.9 | ||||
qTgc-19-1 | 19 | 58.5 | Satt232—Satt681 | 8.4 | 0.2 | ||||
qTgc-19-2 | 19 | 48.1 | GNE091—GNE397b | 14.7 | qTgc-10-1 | 1.1 | |||
qTgc-19-3 | 19 | 38.1 | Satt481—GNE091 | 0.1 | 6.3 | qTgc-02-1 | 3.3 | [13,21-22] | |
TGLC | qTglc-01-1 | 1-1 | 9.1 | Sat_353—Satt532b | 3.4 | qTglc-14-1 | 3.6 | [41] | |
qTglc-02-1 | 2 | 14.0 | Satt483—Satt579 | 0.2 | qTglc-14-2 | 2.4 | |||
qTglc-05-1 | 5 | 47.2 | Satt619a—GNE055 | 1.7 | qTglc-12-1 | 3.6 | |||
qTglc-05-2 | 5 | 12.6 | GNE041—Satt174 | 3.8 | qTglc-12-2 | 1.2 | [21] | ||
qTglc-06-1 | 6 | 78.8 | Satt079—GNB215a | 13.0 | 5.3 | [15,21] | |||
qTglc-08-1 | 8-2 | 4.8 | GNE072b—Satt525 | 3.9 | 4.5 | [13,41] | |||
qTglc-10-1 | 10 | 50.9 | Satt259—Satt455a | 10.9 | 2.9 | qTglc-17-1 | 4.6 | ||
qTglc-12-1 | 12 | 15.2 | GNE229—Satt192 | 9.3 | qTglc-05-1 | 3.6 | [14] | ||
qTglc-12-2 | 12 | 40.8 | GNE351—Satt279 | 15.1 | qTglc-05-2 | 1.2 | [14] | ||
qTglc-14-1 | 14 | 3.4 | Sat_191a—Sat_355 | 0.6 | qTglc-01-1 | 3.6 | |||
qTglc-14-2 | 14 | 11.3 | Satt556—GNE421 | 2.0 | qTglc-02-1 | 2.4 | |||
qTglc-17-1 | 17 | 80.8 | Sat_220—Satt397 | 7.1 | 3.2 | qTglc-10-1 | 4.6 | [15-16,22] |
表5
异黄酮含量关联标记/QTL"
性状 Trait | 标记/QTL Marker/QTL | 连锁群 Group | 位置 Position (cM) | Model a -lgP | QTL | QTL×Env. b | ||
---|---|---|---|---|---|---|---|---|
-lgP | R2 (%) | -lgP | R2 (%) | |||||
SIFC | GNE332 | 2 | 78.5 | 5.5 | 21.8 | 1.3 | - | - |
Sat_239 | 3 | 6.3 | 13.3 | 31.4 | 2.0 | - | - | |
Satt339 | 3 | 20.1 | 2.8 | 32.0 | 2.0 | 1.9 | 0.2 | |
Satt521 | 3 | 29.4 | 5.2 | 21.8 | 1.3 | 3.5 | 0.3 | |
Satt718 | 4 | 13.2 | 3.4 | 19.1 | 1.1 | - | - | |
Satt225 | 5 | 19.1 | 6.4 | 26.3 | 1.6 | - | - | |
GNE397a | 6 | 5.2 | 8.5 | 27.3 | 1.7 | 2.9 | 0.2 | |
Sat_418b | 6 | 47.1 | 4.1 | 17.3 | 1.0 | - | - | |
GNE072b | 8-2 | 4.8 | 9.8 | 29.0 | 1.8 | 2.4 | 0.2 | |
Satt460 | 10 | 13.8 | 5.0 | 31.0 | 1.9 | 3.1 | 0.3 | |
Satt549b* | 10 | 29.7 | 7.0 | 15.3 | 0.9 | 5.4 | 0.4 | |
GNE262* | 10 | 29.9 | 3.4 | 3.7 | 0.2 | - | - | |
GNE057* | 10 | 30.9 | 6.4 | 3.0 | 0.2 | - | - | |
GNE187* | 10 | 32.6 | 4.8 | 18.4 | 1.1 | - | - | |
Satt420a* | 10 | 33.1 | 3.7 | 8.6 | 0.5 | - | - | |
Satt192 | 12 | 20.5 | 3.5 | 22.2 | 1.3 | - | - | |
Satt030 | 13 | 91.6 | 23.3 | 89.2 | 6.3 | - | - | |
Satt556 | 14 | 10.3 | 3.6 | 29.1 | 1.8 | - | - | |
Sat_168 | 18 | 2.5 | 4.5 | 15.5 | 0.9 | - | - | |
Sat_141 | 18 | 5.7 | 6.0 | 6.2 | 0.3 | - | - | |
GNE397b | 19 | 52.8 | 5.8 | 17.7 | 1.1 | - | - | |
LC QTL | 15 | 27.4 | ||||||
SC QTL | 30 | 12.3 | ||||||
总Total | 51 (3/4;1/2) | 45 | 39.7 | 21 | 4.7 | |||
TDC | GNE498 | 1-1 | 19.6 | 8.8 | 35.4 | 1.8 | - | - |
Satt506 | 2 | 10.4 | 11.1 | 67.0 | 3.7 | - | - | |
Sat_424b | 3 | 18.6 | 3.9 | 14.4 | 0.7 | 5.2 | 0.3 | |
Satt660 | 3 | 21.4 | 6.0 | 15.5 | 0.7 | - | - | |
GNE397a | 6 | 5.2 | 11.4 | 34.3 | 1.8 | 4.6 | 0.3 | |
Satt684 | 7 | 67.1 | 9.2 | 28.8 | 1.5 | 2.9 | 0.2 | |
Sat_199a | 8-2 | 0.0 | 3.2 | 4.1 | 0.2 | - | - | |
Satt333 | 8-2 | 40.2 | 3.3 | 23.0 | 1.1 | - | - | |
Satt188* | 10 | 28.4 | 3.9 | 3.0 | 0.1 | - | - | |
Satt549b* | 10 | 29.7 | 5.9 | 13.6 | 0.7 | 2.4 | 0.2 | |
GNE001a | 11 | 20.6 | 11.6 | 34.2 | 1.8 | 2.7 | 0.2 | |
Satt192* | 12 | 20.5 | 8.7 | 18.1 | 0.9 | 3.4 | 0.2 | |
Satt146 | 13 | 88.7 | 8.8 | 34.6 | 1.8 | - | - | |
Satt653 | 13 | 90.2 | 4.2 | 22.3 | 1.1 | - | - | |
Sat_191a* | 14 | 3.4 | 4.1 | 3.0 | 0.1 | - | - | |
GNE186b | 14 | 13.9 | 44.6 | 134.5 | 8.6 | 5.1 | 0.3 | |
GNB191* | 16 | 56.7 | 7.9 | 34.7 | 1.8 | - | - | |
Satt669 | 17 | 85.3 | 9.9 | 33.8 | 1.7 | - | - | |
Sat_210 | 18 | 1.4 | 3.1 | 9.4 | 0.4 | - | - | |
Sat_141 | 18 | 5.7 | 2.7 | 4.0 | 0.2 | - | - | |
Sat_421 | 20 | 21.9 | 5.0 | 23.0 | 1.1 | - | - | |
LC QTL | 12 | 27.7 | ||||||
SC QTL | 48 | 19.3 | ||||||
性状 Trait | 标记/QTL Marker/QTL | 连锁群 Group | 位置 Position (cM) | Model a -lgP | QTL | QTL×Env. b | ||
-lgP | R2 (%) | -lgP | R2 (%) | |||||
总Total | 66 (4/5;4/12) | 60 | 47.0 | 30 | 5.5 | |||
TGC | GNE332 | 2 | 78.5 | 4.6 | 20.1 | 1.4 | - | - |
Satt339 | 3 | 20.1 | 3.6 | 17.5 | 1.2 | - | - | |
Satt521 | 3 | 29.4 | 3.9 | 34.5 | 2.4 | - | - | |
GMAC7L | 6 | 16.6 | 9.1 | 20.1 | 1.4 | - | - | |
Sat_148 | 7 | 37.6 | 6.8 | 31.1 | 2.2 | 3.1 | 0.3 | |
GNE072b | 8-2 | 4.8 | 8.5 | 15.6 | 1.0 | 5.1 | 0.4 | |
Sat_193* | 10 | 6.4 | 3.2 | 7.6 | 0.5 | - | - | |
Satt460 | 10 | 13.8 | 5.5 | 27.7 | 1.9 | 3.0 | 0.3 | |
Satt549b* | 10 | 29.7 | 4.6 | 12.2 | 0.8 | 2.0 | 0.2 | |
Satt442 | 12 | 28.0 | 4.3 | 26.4 | 1.8 | 2.0 | 0.2 | |
GNB125 | 13 | 11.1 | 5.4 | 15.6 | 1.0 | - | - | |
Satt030 | 13 | 91.6 | 13.1 | 68.6 | 5.2 | - | - | |
Satt020 | 14 | 16.7 | 2.9 | 39.2 | 2.8 | 2.0 | 0.2 | |
Sat_210 | 18 | 1.4 | 4.7 | 17.0 | 1.1 | - | - | |
LC QTL | 12 | 23.5 | ||||||
SC QTL | 28 | 11.4 | ||||||
总Total | 42 (2/6; 2/8) | 40 | 34.9 | 18 | 4.8 | |||
TGLC | Satt147 | 1-2 | 18.5 | 7.7 | 11.1 | 1.1 | 2.8 | 0.4 |
Sat_306 | 3 | 2.4 | 8.0 | 15.9 | 1.6 | - | - | |
Satt354 | 5 | 26.1 | 9.4 | 16.1 | 1.6 | 3.1 | 0.4 | |
GNE055* | 5 | 47.8 | 4.6 | 9.6 | 1.0 | - | - | |
GNB215a | 6 | 79.8 | 21.0 | 46.4 | 5.0 | 2.3 | 0.3 | |
GNB022b | 7 | 0.0 | 10.4 | 22.3 | 2.3 | - | - | |
Sat_140 | 8-2 | 1.6 | 14.7 | 33.4 | 3.5 | - | - | |
Satt576 | 10 | 16.7 | 13.3 | 30.4 | 3.1 | - | - | |
Satt259* | 10 | 50.9 | 13.5 | 29.3 | 3.0 | - | - | |
Satt332 | 11 | 5.1 | 5.0 | 11.6 | 1.1 | - | - | |
GNB177 | 13 | 8.3 | 8.2 | 16.9 | 1.7 | - | - | |
Satt304* | 14 | 0.0 | 7.8 | 15.7 | 1.5 | - | - | |
Satt651 | 15-2 | 0.0 | 6.7 | 13.9 | 1.4 | - | - | |
Satt669* | 17 | 85.3 | 10.2 | 21.0 | 2.1 | - | - | |
Sat_143 | 18 | 73.6 | 7.8 | 14.6 | 1.4 | - | - | |
GNE493 | 18 | 108.5 | 4.9 | 10.9 | 1.0 | - | - | |
LC QTL | 15 | 31.3 | ||||||
SC QTL | 21 | 12.0 | ||||||
总Total | 36 (2/4;4/10) | 36 | 43.3 | 7 | 2.3 |
[1] |
GRAHAM T, GRAHAM M, SUBRAMANIAN S, YU O . RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiology, 2007,144:728-740.
doi: 10.1104/pp.107.097865 pmid: 17416637 |
[2] |
GRIFFITH A P, COLLISON M W . Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry. Journal of Chromatography A, 2001,913:397-413.
doi: 10.1016/s0021-9673(00)01077-3 pmid: 11355838 |
[3] |
MUNRO I, HARWOOD M, HLYWKA J, STEPHEN A, DOULL J, FLAMM W, ADLERCREUTZ H . Soy isoflavones: A safety review. Nutrition Reviews, 2003,61:1-33.
doi: 10.1301/nr.2003.janr.1-33 pmid: 12638461 |
[4] |
TANAKA M, FUJIMOTO K, CHIHARA Y, TORIMOTO K, YONEDA T, TANAKA N, HIRAYAMA A, MIYANAGA N, AKAZA H, HIRAO Y . Isoflavone supplements stimulated the production of serum equol and decreased the serum dihydrotestosterone levels in healthy male volunteers. Prostate Cancer and Prostatic Diseases, 2009,12:247-252.
doi: 10.1038/pcan.2009.10 pmid: 19597532 |
[5] | 王春娥, 赵团结, 盖钧镒 . 中国大豆资源异黄酮含量及其组分的遗传变异和演化特征. 中国农业科学, 2010,43(19):3919-3929. |
WANG C E, ZHAO T J, GAI J Y . Genetic variability and evolutionary peculiarity of isoflavone content and its components in soybean germplasm from China. Scientia Agricultura Sinica, 2010,43(19):3919-3929. (in Chinese) | |
[6] |
WANG H, MURPHY P A . Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 1994,42:1666-1673.
doi: 10.1021/jf00044a016 |
[7] |
REINLI K, BLOCK G . Phytoestrogen content of foods: A compendium of literature values. Nutrition and Cancer, 1996,26:123-148.
doi: 10.1080/01635589609514470 pmid: 8875551 |
[8] |
SCHRADER C, ERNST I M, SINNECKER H, SOUKUP S, KULLING S E, RIMBACH G . Genistein as a potential inducer of the anti-atherogenic enzyme paraoxonase-1: Studies in cultured hepatocytes in vitro and in rat liver in vivo. Journal of Cellular and Molecular Medicine, 2012,16(10):2331-2341.
doi: 10.1111/j.1582-4934.2012.01542.x pmid: 22304296 |
[9] |
WINZER M, RAUNER M, PIETSCHMANN P . Glycitein decreases the generation of murine osteoclasts and increases apoptosis. Wiener Medizinische Wochenschrift, 2010,160(17/18):446-451.
doi: 10.1007/s10354-010-0811-4 pmid: 20714813 |
[10] |
YOSHIDA H, TERAMOTO T, IKEDA K, YAMORI Y . Glycitein effect on suppressing the proliferation and stimulating the differentiation of osteoblastic MC3T3-E1 cells. Bioscience Biotechnology and Biochemistry, 2001,5:1211-1213.
doi: 10.1271/bbb.65.1211 pmid: 11440142 |
[11] |
LIANG H Z, YU Y L, WANG S F, LIAN Y, WANG T F, WEI Y L, GONG P T, LIU X Y, FANG X J, ZHANG M C . QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China, 2010,9:1108-1116.
doi: 10.1016/S1671-2927(09)60197-8 |
[12] |
WANG Y, HAN Y, TENG W, ZHAO X, LI Y, WU L, LI D, LI W . Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed. BMC Genomics, 2014,15:680.
doi: 10.1186/1471-2164-15-680 pmid: 25124843 |
[13] |
WANG Y, HAN Y, ZHAO X, LI Y, TENG W, LI D, ZHAN Y, LI W . Mapping isoflavone QTL with main, epistatic and QTL × environment effects in recombinant inbred lines of soybean. PLoS ONE, 2015,10:e0118447.
doi: 10.1371/journal.pone.0118447 pmid: 25738957 |
[14] |
YANG K, MOON J, JEONG N, CHUN H, KANG S, BACK K, JEONG S . Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genomics, 2011,33:685-692.
doi: 10.1007/s13258-011-0043-z |
[15] |
YOSHIKAWA T, OKUMOTO Y, OGATA D, SAYAMA T, TERAISHI M, TERAI M, TODA T, YAMADA K, YAGASAKI K, YAMADA N, TSUKIYAMA T, YAMADA T, TANISAKA T . Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breeding Science, 2010,60:243-254.
doi: 10.1270/jsbbs.60.243 |
[16] |
ZHANG H J, LI J W, LIU Y J, JIANG W Z, DU X L, LI L, LI X W, SU L T, WANG Q Y, WANG Y . Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. Journal of Genetics, 2014,93:331-338.
doi: 10.1007/s12041-014-0371-2 pmid: 25189227 |
[17] |
AKOND M, LIU S, KANTARTZI S K, KHALID M, NACER B, LIGHTFOOT D A, YUAN J Z, WANG D C, ANDERSON J, KASSEM M A . A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line population identified QTL for seed isoflavone contents in soybean. Plant Breeding, 2015,134(5):580-588.
doi: 10.1111/pbr.12298 |
[18] |
PRIMOMO V S, POYSA V, ABLETT G R, JACKSON C J, GIJZEN M, RAJCAN I . Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Science, 2005,45:2454-2464.
doi: 10.2135/cropsci2004.0672 |
[19] |
ZENG G, LI D, HAN Y, TENG W, WANG J, QIU L, LI W . Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theoretical and Applied Genetics, 2009,118:1455-1463.
doi: 10.1007/s00122-009-0994-5 |
[20] |
GUTIERREZ-GONZALEZ J J, VUONG T D, ZHONG R, YU O, LEE J D, SHANNON G, ELLERSIECK M, NGUYEN H T, SLEPER D A . Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theoretical and Applied Genetics, 2011,123:1375-1385.
doi: 10.1007/s00122-011-1673-x |
[21] |
GUTIERREZ-GONZALEZ J J, WU X, GILLMAN J D, LEE J D, ZHONG R, YU O, SHANNON G, ELLERSIECK M, NGUYEN H T, SLEPER D A . Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biology, 2010,10:105.
doi: 10.1186/1471-2229-10-105 pmid: 20540761 |
[22] |
GUTIERREZ-GONZALEZ J J, WU X, ZHANG J, LEE J D, ELLERSIECK M, SHANNON J G, YU O, NGUYEN H T, SLEPER D A . Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theoretical and Applied Genetics, 2009,119:1069-1083.
doi: 10.1007/s00122-009-1109-z |
[23] |
LI X H, KAMALA S, TIAN R, HUI D, LI W L, KONG Y B, ZHANG C Y . Identification and validation of quantitative trait loci controlling seed isoflavone content across multiple environments and backgrounds in soybean. Molecular Breeding, 2018,38(1):8.
doi: 10.1007/s11032-017-0768-8 |
[24] |
PEI R, ZHANG J, TIAN L, ZHANG S G, HAN F X, YANG S R, WANG L Z, LI B, SUN J M . Identification of novel QTL associated with soybean isoflavone content. The Crop Journal, 2018,6(3):244-252.
doi: 10.1016/j.cj.2017.10.004 |
[25] |
CAI Z, CHENG Y, MA Z, LIU X G, MA Q B, XIA Q J, ZHANG G Y, MU Y H, NIAN H . Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theoretical and Applied Genetics, 2018,131(3):555-568.
doi: 10.1007/s00122-017-3018-x pmid: 29159422 |
[26] |
朱莹, 褚姗姗, 张培培, 程浩, 喻德跃, 王娇 . R2R3-MYB转录因子GmMYB184调节大豆异黄酮合成. 作物学报, 2018,44(2):185-196.
doi: 10.3724/SP.J.1006.2018.00185 |
ZHU Y, CHU S S, ZHANG P P, CHENG H, YU D Y, WANG J . An R2R3-MYB transcription factor GmMYB184 regulates soybean isoflavone synthesis. Acta Agronomica Sinica, 2018,44(2):185-196. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00185 |
|
[27] |
CHU S S, WANG J, ZHU Y, LIU S L, ZHOU X Q, ZHANG H, WANG C, TIAN Z, CHENG H, YU D Y . An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics, 2017,13(5):e1006770.
doi: 10.1371/journal.pgen.1006770 pmid: 28489859 |
[28] |
VADIVEL A, KUMARAN A, KAGALE S, DHAUBHADEL S . GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in soybean. Frontiers in Plant Science, 2019,10:562.
doi: 10.3389/fpls.2019.00562 pmid: 31130975 |
[29] |
YANG J, ZHU J, WILLIAMS R W . Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007,23:1527-1536.
doi: 10.1093/bioinformatics/btm143 pmid: 17459962 |
[30] |
PAN L Y, HE J B, ZHAO T J, XING G N, WANG Y F, YU D Y, CHEN S Y, GAI J Y . Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theoretical and Applied Genetics, 2018,131:2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759 |
[31] |
HE J B, MENG S, TZHAO T J, XING G N, YANG S P, LI Y, GUAN R Z, LU J J, WANG Y F, XIA Q J, YANG B, GAI J Y . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017,130:2327-2343.
doi: 10.1007/s00122-017-2962-9 pmid: 28828506 |
[32] |
贺建波, 刘方东, 邢光南, 王吴彬, 赵团结, 管荣展, 盖钧镒 . 限制性两阶段多位点全基因组关联分析方法的特点与计算程序. 作物学报, 2018,44(9):1274-1289.
doi: 10.3724/SP.J.1006.2018.01274 |
HE J B, LIU F D, XING G N, WANG W B, ZHAO T J, GUAN R Z, GAI J Y . Characteristics and calculation procedures of a restrictive two-stage multi-site genome-wide association analysis method. Acta Agronomica Sinica, 2018,44(9):1274-1289. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01274 |
|
[33] |
王春娥, 赵团结, 盖钧镒 . 大豆异黄酮组分HPLC快速分析技术及其在豆腐加工中的应用. 作物学报, 2010,36(12):2062-2072.
doi: 10.3724/SP.J.1006.2010.02062 |
WANG C E, ZHAO T J, GAI J Y . Establishment of a rapid HPLC method for quantifying isoflavone components and its application in tofu processing. Acta Agronomica Sinica, 2010,36(12):2062-2072. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02062 |
|
[34] | 王宇峰 . 大豆基因组SSR分布特征和高密度遗传图谱的构建、整合与应用[D]. 南京: 南京农业大学, 2009. |
WANG Y F . Genomic characterization of simple sequence repeats and establishment, integration and application of high density genetic linkage map in soybean[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese) | |
[35] |
STAM P . Construction of integrated genetic linkage maps by means of a new computer package: Join Map. The Plant Journal, 1993,3(5):739-744.
doi: 10.1111/j.1365-313X.1993.00739.x |
[36] |
SONG Q J, MAREK L F, SHOEMAKER R C, LARK K G, CONCIBIDO V C, DELANNAY X, SPECHT J E, CREGAN P B . A new integrated genetic linkage map of soybean. Theoretical and Applied Genetics, 2004,109:122-128.
doi: 10.1007/s00122-004-1602-3 |
[37] | SAS Institute Inc. SAS/STAT User's Guide. Cary, NC: SAS Institute Inc, 2017. |
[38] |
CHANTRET N, MINGEOT D, SOURDILLE P, BERNARD M, JACQUEMIN J M, DOUSSINAULT G . A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theoretical and Applied Genetics, 2001,103:962-971.
doi: 10.1007/s001220100645 |
[39] |
SYMONDS V V, GODOY A V, ALCONADA T, BOTTO J F, JUENGER T E, CASAL J J, LLOYD A M . Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics, 2005,169:1649-1658.
doi: 10.1534/genetics.104.031948 pmid: 15654092 |
[40] |
邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒 . 大豆抗筛豆龟蝽Megacota cribraria(Fabricius)的QTL分析. 作物学报, 2008,34(3):361-368.
doi: 10.3724/SP.J.1006.2008.00361 |
XING G N, ZHOU B, ZHAO T J, YU D Y, XING H, CHEN S Y, GAI J Y . Mapping QTLs of resistance to Megacota cribraria (Fabricius) in soybean. Acta Agronomica Sinica, 2008,34(3):361-368. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00361 |
|
[41] |
KASSEM M A, SHULTZ J, MEKSEM K, CHO Y, WOOD A J, IQBAL M J, LIGHTFOOT D A . An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theoretical and Applied Genetics, 2006,113:1015-1026.
doi: 10.1007/s00122-006-0361-8 |
[42] | 盖钧镒, 章元明, 王健康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003. |
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. (in Chinese) | |
[43] |
FAMOSO A N, ZHAO K, CLARK R T, TUNG C W, WRIGHT M H, BUSTAMANTE C, KOCHIAN L V, MCCOUCH S R . Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics, 2011,7:e1002221.
doi: 10.1371/journal.pgen.1002221 pmid: 21829395 |
[44] |
KRILL A M, KIRST M, KOCHIAN L V, BUCKLER E S, HOEKENGA O A . Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 2010,5:e9958.
doi: 10.1371/journal.pone.0009958 pmid: 20376361 |
[45] |
苏成付, 赵团结, 盖钧镒 . 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010,36(7):1100-1107.
doi: 10.3724/SP.J.1006.2010.01100 |
SU C F, ZHAO T J, GAI J Y . Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agronomica Sinica, 2010,36(7):1100-1107. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01100 |
|
[46] | YU O, MCGONIGLE B . Metabolic engineering of isoflavone biosynthesis. Advances in Agronomy, 2005,86:147-190. |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[4] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[5] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[8] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[9] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[10] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[11] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[12] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[13] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[14] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[15] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
|