中国农业科学 ›› 2019, Vol. 52 ›› Issue (17): 3034-3048.doi: 10.3864/j.issn.0578-1752.2019.17.011
收稿日期:
2018-12-29
接受日期:
2019-07-19
出版日期:
2019-09-01
发布日期:
2019-09-10
通讯作者:
张清安
作者简介:
史芳芳,E-mail:13772427380@163.com。
基金资助:
Received:
2018-12-29
Accepted:
2019-07-19
Online:
2019-09-01
Published:
2019-09-10
Contact:
QingAn ZHANG
摘要:
【目的】探究超声耦合不同pH柠檬酸溶液脱苦对苦杏仁颜色等品质特性的影响;利用相关性分析明确各指标间的关系,以简化脱苦酸溶液对苦杏仁品质的评价指标;运用多元数据处理对不同酸度脱苦溶液进行分类,为科学合理选择脱苦溶液从而减少苦杏仁营养及感官品质损失提供理论依据。【方法】以苦杏仁为研究对象,首先利用高效液相色谱仪、分光光度计、质构仪等仪器对苦杏仁的质构、β-葡萄糖苷酶活性、苦杏仁苷和水分含量等进行测定,并评定脱苦后杏仁的感官特性。同时,测定脱苦溶液中总酚、蛋白质、还原糖、可溶性固形物的含量,并采用单因素方差分析、相关性分析对测定结果进行显著性和相关性分析。利用主成分分析(PCA)、聚类分析(CA)等多元数据处理方法,对6种不同酸度脱苦液中相关数据进行综合分析。【结果】与未脱苦杏仁相比,6种不同酸度脱苦溶液处理后,脱苦杏仁的颜色、硬度、脆性、咀嚼性、回复性、胶着性及感官评价结果均存在显著差异,且脱苦杏仁中水分含量增多,β-葡萄糖苷酶活性变化显著。当脱苦柠檬酸溶液pH为5时,苦杏仁脱苦所需时间最短,仅需90 min,且苦杏仁中各营养物质损失较少、口感也较好。通过相关性分析可知,各指标间具有一定的相关性。PCA、CA的分析结果一致,即二者均可将6种脱苦溶液分为3大类,且同一大类中各脱苦溶液之间的相关理化指标差异不显著。【结论】综合分析,pH为5的柠檬酸溶液可以作为超声快速脱除苦杏仁苦味的较优脱苦溶液,这样既可以加速苦杏仁脱苦,又能减少苦杏仁中营养物质的流失,最大程度保持苦杏仁固有的口感特性,可为苦杏仁的产业化快速脱苦提供有力支撑。
史芳芳, 张清安. 超声耦合不同酸度柠檬酸脱苦溶液对苦杏仁品质特性的影响[J]. 中国农业科学, 2019, 52(17): 3034-3048.
SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation[J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
表2
苦杏仁感官评价表"
指标 Item | 评价标准 Evaluation standard | ||
---|---|---|---|
色泽 Color | 较白,偏黄 Whiter, Yellowish (15-11) | 发黄 Yellow (10-6) | 黄褐色 Tawny (5-1) |
表观形状 Surface | 颗粒完整 Complete grains (15-11) | 颗粒稍有破损 Slightly damaged grain (10-6) | 颗粒破损严重 Severe particle damage (5-1) |
硬度 Hardness | 硬度适中 Moderate hardness (20-17) | 较硬或较软 Hard or soft (16-12) | 过硬或过软 Too hard or too soft (11-1) |
口味 Flavor | 杏仁味浓郁 Fragrant apricot smell (20-17) | 杏仁味较浓,有酸味 apricot smell, sour (16-12) | 杏仁味淡,过酸 Less apricot smell, too sour (11-1) |
脆性 Fragility | 酥脆 Crisp (15-11) | 较脆 Crispy (10-6) | 质地不酥松 Not crisp (5-1) |
黏性 Stickiness | 爽口、不黏 Tasty, non-stick (15-11) | 较黏 Sticky (10-6) | 很黏 Too sticky (5-1) |
表3
超声耦合不同pH柠檬酸溶液脱苦后杏仁色值的比较"
指标 Item | L* | a* | b* | △E | |
---|---|---|---|---|---|
原样 Untreated | 94.5±0.0b | 9.1±0.4b | 22.6±3.6b | — | |
脱苦溶液pH Debitterizing solvents pH value | 2 | 96.0±1.3a | 14.8±0.4a | 15.2±0.9cd | 7.4±2.6ab |
3 | 94.1±0.6bc | 4.3±0.1e | 10.7±0.4e | 12.9±3.48a | |
4 | 93.3±0.3c | 5.1±0.8d | 17.8±0.4c | 8.5±2.9ab | |
5 | 94.1±0.5bc | 5.1±0.2d | 12.9±0.4de | 10.6±3.72ab | |
6 | 94.2±0.2bc | 6.9±0.4c | 26.5±0.9a | 5.5±2.6b | |
7 | 94.5±0.0bW | 5.6±0.4d | 17.7±0.4c | 6.3±2.8b |
表4
超声耦合不同pH柠檬酸溶液脱苦对苦杏仁质构的影响"
指标 Item | 硬度 Hardness (×104) | 脆性 Fracturability (×104) | 附着性 Adhesiveness | 弹性 Springiness | |
---|---|---|---|---|---|
原样 Untreated | 3.2±0.2a | 0.9±0.0e | -105.4±6.7c | 0.51±0.04b | |
脱苦酸液pH Debitterizing solvents pH value | 2 | 2.5±0.0c | 1.8±0.1d | -28.2±2.7b | 0.59±0.03ab |
3 | 3.0±0.1b | 2.2±0.0c | -10.3±1.2a | 0.57±0.10ab | |
4 | 2.7±0.0c | 2.4±0.1c | -14.0±1.2a | 0.69±0.08a | |
5 | 2.7±0.0c | 2.3±0.1c | -8.4±0.5a | 0.65±0.03a | |
6 | 2.6±0.1c | 2.6±0.1b | -11.7±3.6a | 0.59±0.03ab | |
7 | 2.7±0.1c | 2.9±0.0a | -9.6±1.2a | 0.59±0.06ab | |
指标 Item | 黏聚性 Cohesiveness | 胶着性 Gumminess (×104) | 咀嚼性 Chewiness (×103) | 回复性 Resilience | |
原样 Untreated | 0.51±0.05a | 1.3±0.0ab | 6.3±0.2de | 0.35±0.02ab | |
脱苦酸液pH Debitterizing solvents pH value | 2 | 0.39±0.01b | 1.0±0.0c | 5.7±0.3e | 0.25±0.01c |
3 | 0.46±0.04a | 1.4±0.2ab | 7.3±0.4bcd | 0.40±0.08a | |
4 | 0.45±0.02a | 1.2±0.1bc | 7.9±1.1bc | 0.28±0.03bc | |
5 | 0.49±0.07a | 1.6±0.1a | 10.5±0.8a | 0.34±0.04ab | |
6 | 0.34±0.02b | 1.3±0.2ab | 6.6±1.0cde | 0.24±0.04c | |
7 | 0.46±0.02a | 1.5±0.0a | 8.3±1.0b | 0.30±0.02bc |
表5
理化指标间的相关性分析"
L* | a* | b* | 硬度 Ha | 脆性 Fr | 附着性 Ad | 弹性 Sp | 黏聚性 Co | 胶着性 Gu | 咀嚼性 Ch | 回复性 Re | 水分含量 Mc | 酶活 EA | 总酚 TP | 蛋白质 Pr | 还原糖 Rs | 可溶性 固形物 Ss | 苦杏仁苷(仁中) Am | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | 1.000 | |||||||||||||||||
a* | 0.898** | 1.000 | .937** | |||||||||||||||
b* | 0.822** | 0.937** | 1.000 | |||||||||||||||
硬度 Ha | -0.488 | -0.647 | -0.811* | 1.000 | ||||||||||||||
脆性 Fr | -0.473 | -0.611 | -0.319 | 0.025 | 1.000 | |||||||||||||
附着性 Ad | -0.774* | -0.952** | -0.870** | 0.669 | 0.716* | 1.000 | ||||||||||||
弹性 Sp | -0.597 | -0.284 | -0.237 | 0.254 | -0.010 | 0.135 | 1.000 | |||||||||||
黏聚性 Co | -0.415 | -0.553 | -0.610 | 0.742** | 0.091 | 0.480 | 0.410 | 1.000 | ||||||||||
胶着性 Gu | -0.480 | -0.771* | -0.704* | 0.717** | 0.673* | 0.905** | -0.010 | 0.584 | 1.000 | |||||||||
咀嚼性 Ch | -0.535 | -0.641 | -0.634 | 0.834** | 0.349 | 0.698 | 0.504 | 0.795* | 0.801* | 1.000 | ||||||||
回复性 Re | -0.371 | -0.625 | -0.802* | 0.798** | -0.027 | 0.562 | -0.079 | 0.745* | 0.576 | 0.494 | 1.000 | |||||||
水分含量 Mc | -0.316 | -0.065 | 0.211 | -0.328 | 0.444 | 0.018 | 0.678* | 0.038 | -0.054 | 0.195 | -0.560 | 1.000 | ||||||
酶活 EA | -0.654 | -0.390 | -0.405 | 0.385 | 0.060 | 0.358 | 0.696* | 0.007 | 0.133 | 0.421 | -0.096 | 0.304 | 1.000 | |||||
总酚 TP | -0.382 | -0.450 | -0.495 | 0.045 | 0.164 | 0.379 | -0.389 | -0.267 | 0.086 | -0.324 | 0.341 | -0.479 | 0.057 | 1.000 | ||||
蛋白质 Pr | 0.794* | 0.863* | 0.858* | -0.742* | -0.339 | -0.752* | -0.511 | -0.876* | -0.665 | -0.781* | -0.729* | -0.141 | -0.287 | -0.087 | 1.000 | |||
还原糖 Rs | -0.228 | -0.381 | -0.129 | 0.069 | 0.886* | 0.598 | -0.077 | -0.048 | 0.676 | 0.406 | -0.195 | 0.370 | 0.153 | -0.061 | -0.099 | 1.000 | ||
可溶性固形物 Ss | 0.742* | 0.745* | 0.522 | -0.326 | -0.851* | -.816* | -0.407 | -0.230 | -0.705* | -0.632 | -0.019 | -0.532 | -0.549 | -0.069 | 0.533 | -0.808** | 1.000 | |
苦杏仁苷 (仁中)Am | 0.227 | 0.294 | 0.585 | -0.871** | 0.454 | -0.270 | -0.201 | -0.537 | -0.305 | -0.536 | -0.702* | 0.543 | -0.370 | -0.041 | 0.456 | 0.348 | -0.102 | 1.000 |
表6
理化指标的主成分分析结果"
指标 Index | 因子权重 Component weight | ||
---|---|---|---|
因子1 Component 1 | 因子2 Component 2 | 因子3 Component 3 | |
L* | -0.87 | -0.01 | 0.07 |
a* | -0.95 | 0.20 | -0.14 |
b* | -0.86 | 0.48 | -0.01 |
硬度 Ha | 0.54 | -0.77 | 0.18 |
脆性 Fr | 0.66 | 0.45 | 0.53 |
附着性 Ad | 0.96 | -0.11 | 0.25 |
弹性 Sp | 0.41 | 0.36 | -0.75 |
黏聚性 Co | 0.59 | -0.37 | -0.52 |
胶着性 Gu | 0.85 | -0.12 | 0.18 |
咀嚼性 Ch | 0.81 | -0.01 | -0.44 |
回复性 Re | 0.50 | -0.84 | -0.08 |
水分含量 Mc | 0.22 | 0.86 | -0.26 |
酶活 EA | 0.69 | 0.52 | -0.23 |
总酚 TP | 0.20 | -0.46 | 0.67 |
蛋白质 Pr | -0.81 | -0.56 | 0.05 |
还原糖 Rs | 0.54 | 0.57 | 0.45 |
可溶性固形物 Ss | -0.87 | -0.47 | -0.15 |
苦杏仁苷(仁中) Am | -0.31 | 0.67 | 0.50 |
特征值 EV | 8.52 | 4.56 | 2.50 |
贡献率 Contribution rate (%) | 47.35 | 25.34 | 13.89 |
[1] | MANDALARI G, TOMAINO A, ARCORACI T, MARTORANA M, LO T V, CACCIOLA F, RICH G T, BISIGNANO C, SAIJA A, DUGO P, CROSS K L, PARKER M L, WALDRON K W, WICKHAM M S . Characterization of polyphenols, lipids and dietary fiber from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 2010,23(2):166-174. |
[2] | YADA S, LAPSLEY K, HUANG G . A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 2011,24(4):469-480. |
[3] | FEMENIA A, ROSSELLO C, MULET A, CANELLAS J . Chemical composition of bitter and sweet apricot kernels. Journal of Agricultural and Food Chemistry, 1995,43(2):356-361. |
[4] | ZHANG Q A, ZHANG Z Q, YUE X F, FAN X H, LI T, CHEN S F . Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chemistry, 2009,116(2):513-518. |
[5] | 李科友, 史清华, 朱海兰, 唐德瑞 . 苦杏仁主要营养成分研究. 西北农业学报, 2003,12(2):119-121. |
LI K Y, SHI Q H, ZHU H L, TANG D R . Study on main nutrient compositions of bitter almond. Acta Agriculturae Boreali-occidentalis Sinica, 2003,12(2):119-121. (in Chinese) | |
[6] | 张贞亮 . 杏仁粕蛋白的提取工艺及品质控制的研究[D]. 保定: 河北农业大学, 2011. |
ZHANG Z L . Study on extraction and quality control of almond dregs protein[D]. Baoding: Agricultural University of Hebei, 2011. (in Chinese) | |
[7] | 张馨允, 宋云, 范学辉, 张清安 . 干制温度对脱苦杏仁品质的影响. 食品与机械, 2017,33(4):180-183. |
ZHANG X Y, SONG Y, FAN X H, ZHANG Q A . Effect of drying temperature on quality of debitterized apricot kernels. Food and Machinery, 2017,33(4):180-183. (in Chinese) | |
[8] | 王福花, 张占军 . 杏仁研究进展. 安徽农业科学, 2010,38(29):16239-16240. |
WANG F H, ZHANG Z J . Research advances of almonds. Journal of Anhui Agricultural Sciences, 2010,38(29):16239-16240. (in Chinese) | |
[9] | 侯智霞, 翟明普, 蔡秀芝, 苏淑钗, 李响 . 我国仁用杏生产现状分析. 北方园艺, 2008(2):39-41. |
HOU Z X, ZHAI M P, CAI X Z, SU S C, LI X . Analysis on current situation ofArmeniaca vulgaris Lam. in China. Northern Horticulture, 2008(2):39-41. (in Chinese) | |
[10] | BOLARINWA I F, ORFILA C, MORGAN M R . Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 2014,152(2):133-139. |
[11] | SONG Y, ZHANG Q A, FAN X H, ZHANG X Y . Effect of debitterizing treatment on the quality of the apricot kernels in the industrial processing. Journal of Food Processing and Preservation, 2017,42(7):1-8. |
[12] | 陈效兰, 雷钢铁 . 柠檬酸在食品工业中的应用. 山东食品科技, 2000,21(3):6-7. |
CHEN X L, LEI G T . Application of citric acid in food industry. Journal of Shandong Food Science and Technology, 2000,21(3):6-7. (in Chinese) | |
[13] | 李军 . 苦杏仁脱苦工艺的研究[D]. 北京: 北京林业大学, 2012. |
LI J . Studies on the process of removal of bitterness from bitter apricot seed[D]. Beijing: Beijing Forestry University, 2012. (in Chinese) | |
[14] | 张宁, 程新华 . 苦杏仁真空脱苦新方法及设备. CN92105361. 4. |
ZHANG N, CHENG X H . Novel vacuum debitterizing method and equipment for apricot kernels. CN92105361. 4. (in Chinese) | |
[15] | 张兵, 田兴旺, 王永平, 赵怀龙 . 苦杏仁的微波脱苦法. 陇东学院学报(自然科学版), 2003,13(2):39-40. |
ZHANG B, TIAN X W, WANG Y P, ZHAO H L . Microwave debitterizing of apricot kernels. Journal of Longdong University (Natural Science Edition), 2003,13(2):39-40. (in Chinese) | |
[16] | 张清安, 范学辉, 张扬俊娜, 张志琪 . 一种超声诱导苦杏仁快速脱苦的方法. ZL 201310376132.X. |
ZHANG Q A, FAN X H, ZHANG Y J N, ZHANG Z Q . A rapid debitterizing method of apricot kernels induced by ultrasound. ZL 201310376132.X.(in Chinese) | |
[17] | 范学辉, 张清安, 刘梅 . 苦杏仁脱苦方法研究进展. 食品工业科技, 2014,35(7):396-399. |
FAN X H, ZHANG Q A, LIU M . Progress in detoxification techniques of apricot kernel. Science and Technology of Food Industry, 2014,35(7):396-399. (in Chinese) | |
[18] | SILEM A, GUNTER H O, EINFELDT J, BOUALIA A . The occurrence of mass transport processes during the leaching of amygdalin from bitter apricot kernels: detoxification and flavour improvement. International Journal of Food Science and Technology, 2006,41(2):201-213. |
[19] | 许绍惠, 边立琪, 韩忠环, 周艳明, 贺东 . 山杏仁脱苦及对营养成分影响的研究初报. 沈阳农业大学学报, 1992,23(2):114-118. |
XU S H, BIAN L Q, HAN Z H, ZHOU Y M, HE D . Study on Siberian apricot kernel debitterizing technology and its effect on nutritional composition. Journal of Shenyang Agricultural University, 1992,23(2):114-118. (in Chinese) | |
[20] | 姜伟, 牛欣宇, 宋腱森, 李建忠, 何玉莲, 赵光辉 . 山杏仁油料的理化特性及综合利用. 粮油加工, 2014(4):37-39, 43. |
JIANG W, NIU X Y, SONG J S, LI J Z, HE Y L, ZHAO G H . Physical and chemical properties and comprehensive utilization of wild apricot kernel oil. Cereals and Oils Processing, 2014(4):37-39, 43. (in Chinese) | |
[21] | 朱蓓薇, 孙浩, 赵曼, 焦鹏 . 用正交试验对苦杏仁脱苦去毒技术的优选. 大连轻工业学院学报, 1992,11(3/4):12-16. |
ZHU B W, SUN H, ZHAO M, JIAO P . The optimum selection of the debitterizing and detoxifying techniques of bitter almond by means of the pertendicular test method. Journal of Dalian Institute of Light Industry, 1992,11(3/4):12-16. (in Chinese) | |
[22] | 张宁, 张馨允, 范学辉, 张清安 . 苦杏仁超声辅助快速脱苦工艺优化. 食品与机械, 2018,34(12):189-194. |
ZHANG N, ZHANG X Y, FAN X H, ZHANG Q A . Optimization on fast debitterizing technologies of apricot seed by ultrasound with response surface methodology. Food and Machinery, 2018,34(12):189-194. (in Chinese) | |
[23] | 史芳芳, 王娜娜, 范学辉, 张清安 . 苦杏仁脱苦过程中苦杏仁苷含量的变化及其与苦味的关系. 食品与机械, 2018,34(7):211-214. |
SHI F F, WANG N N, FAN X H, ZHANG Q A . Changes of amygdalin content and its correlation with the bitterness in apricot kernels during the debitterizing processing. Food and Machinery, 2018,34(7):211-214. (in Chinese) | |
[24] | 黄克昌, 邹建云, 马尚玄, 付镓榕, 郭刚军 . 不同焙烤条件对澳洲坚果带壳果品质的影响. 热带农业科技, 2018,41(3):27-31. |
HUANG K C, ZOU J Y, MA S X, FU J R, GUO G J . The quality of macadamia nut in shell under different roasting conditions. Tropical Agricultural Science and Technology, 2018,41(3):27-31. (in Chinese) | |
[25] |
魏益民, 邢亚楠, 张影全, 孔雁, 李明, 张波, 唐娜 . 兰州拉面制作过程及产品的感官评价方法. 中国农业科学, 2016,49(20):4016-4029.
doi: 10.3864/j.issn.0578-1752.2016.20.015 |
WEI Y M, XING Y N, ZHANG Y Q, KONG Y, LI M, ZHANG B, TANG N . The sensory evaluation methods of production process and product of Lanzhou hand-extended noodles. Scientia Agricultura Sinica, 2016,49(20):4016-4029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.20.015 |
|
[26] | ZHANG Q A, WEI C X, FAN X H, SHI F F . Chemical compositions and antioxidant capacity of by-products generated during the apricot kernels processing, CyTA-Journal of Food, 2018,16(1):422-428. |
[27] | 宋云 . 苦杏仁脱苦及干制工艺对杏仁品质的影响[D]. 陕西: 陕西师范大学, 2016. |
SONG Y . Effects of apricot kernels debitterizing and dry processing technology on quality[D]. Shaanxi: Shaanxi Normal University, 2016. (in Chinese) | |
[28] | 朱蓓薇, 孙浩, 赵曼, 焦鹏 . pH值不同的浸泡液对杏仁脱苦去毒的影响. 食品工业科技, 1993,15(2):3-6. |
ZHU B W, SUN H, ZHAO M, JIAO P . Influence of soaking solution with different pH values on the bitterness removal and detoxication of bitter almond. Science and Technology of Food Industry, 1993,15(2):3-6. (in Chinese) | |
[29] | 林炳芳, 陶宁萍 . 梅果苦杏仁苷酶特性与青梅汁脱苦工艺的研究. 南京农业大学学报, 1996,19(4):87-91. |
LIN B F, TAO N P . Amygdalase activities of gage fruits and debitterizing technique of gage juice. Journal of Nanjing Agricultural University, 1996,19(4):87-91. (in Chinese) | |
[30] | TOKPOHOZIN S E, FISCHER S, SACHER B, BECKER T . β-D-Glucosidase as “key enzyme” for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring. Food and Chemical Toxicology, 2016,97:217-223. |
[31] | FAN X H, ZHANG X Y, ZHANG Q A, ZHAO W Q, SHI F F . Optimization of ultrasound parameters and its effect on the properties of the activity of beta-glucosidase in apricot kernels. Ultrasonics Sonochemistry, 2019,52:468-476. |
[32] | ZHANG N, ZHANG Q A, YAO J L, ZHANG X Y . Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrasonics Sonochemistry, 2019. . 2019. 104614. |
[33] | RICHARDSON D P, ASTRUP A, COCAUL A, ELLIS P . The nutritional and health benefits of almonds: A healthy food choice. Food Science and Technology Bulletin Functional Foods, 2009,6(4):41-50. |
[34] | 陈申如, 张其标, 倪辉 . 酸法提取鲢鱼鱼肉蛋白质技术的研究. 海洋水产研究, 2004,25(5):61-64. |
CHEN S R, ZHANG Q B, NI H . Study on protein recovery from silver carp flesh by acid solubilization. Marine Fisheries Research, 2004, 25(5):61-64. (in Chinese) | |
[35] | 王婷婷 . 超声波处理对红葡萄酒贮存期颜色变化的影响机理研究[D]. 西安: 陕西师范大学, 2018. |
WANG T T . Effect of ultrasonic treatment on the color changes of red wine and its mechanism during storage[D]. Xi’an: Shaanxi Normal University, 2018. (in Chinese) | |
[36] | 汤庆发, 谢颖, 陈飞龙, 郭阳, 宋帅, 罗佳波 . 苦杏仁中苦杏仁苷的存在形式及其影响因素. 中国实验方剂学杂志, 2013,19(8):107-109. |
TANG Q F, XIE Y, CHEN F L, GUO Y, SONG S, LUO J B . Existing form of amygdalin in bitter almond and influence factors. Chinese Journal of Experimental Traditional Medical Formulae, 2013,19(8):107-109. (in Chinese) | |
[37] | 周进, 银鹏 . pH调控对里氏木霉菌产β-葡萄糖苷酶的影响机制. 清华大学学报(自然科学版), 2012,52(2):271-276. |
ZHOU J, YIN P . Mechanisms of pH control on β-glucosidase produced in Trichoderma reesei. Journal of Tsinghua University (Natural Science Edition), 2012,52(2):271-276. (in Chinese) | |
[38] | 郭宏垚, 李冬, 雷雄, 王小静, 刚勇, 李稳宏 . 花椒多酚提取工艺响应面优化及动力学分析. 食品科学, 2018,39(2):247-253. |
GUO H Y, LI D, LEI X, WANG X J, GANG Y, LI W H . Optimization by response surface methodology and kinetics of extraction of polyphenols from Chinese Prickly Ash. Food Science, 2018,39(2):247-253. (in Chinese) | |
[39] | 贾仕杰, 宁玮钰, 曾栋, 王金玲 . 红树莓籽中活性物质提取工艺优化. 食品工业科技, 2018,39(23):188-192, 198. |
JIA S J, NING W Y, ZENG D, WANG J L . Optimization of extraction process of active components from Red Raspberry Seeds. Science and Technology of Food Industry, 2018,39(23):188-192, 198. (in Chinese) | |
[40] |
方媛, 赵武奇, 张清安, 郭玉蓉 . ‘红富士’苹果蠕变特性与果实品质的相关分析. 中国农业科学, 2016,49(4):717-726.
doi: 10.3864/j.issn.0578-1752.2016.04.011 |
FANG Y, ZHAO W Q, ZHANG Q A, GUO Y R . The correlation analysis between quality and creep property of ‘Fuji’ apple. Scientia Agricultura Sinica, 2016,49(4):717-726. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.011 |
|
[41] | NAMBISAN B . Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food and Chemical Toxicology, 2011,49(3):690-693. |
[42] | 公丽艳, 孟宪军, 刘乃侨, 毕金峰 . 基于主成分与聚类分析的苹果加工品质评价. 农业工程学报, 2014,30(13):276-285. |
GONG L Y, MENG X J, LIU N Q, BI J F . Evaluation of apple quality based on principal component and hierarchical cluster analysis. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(13):276-285. (in Chinese) |
[1] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[2] | 杜金霞,李奕莎,李美霖,陈文浛,张木清. 甘蔗不同基因型对白条病抗性的评价[J]. 中国农业科学, 2022, 55(21): 4118-4130. |
[3] | 李文丽, 袁剑龙, 段惠敏, 蒋彤晖, 刘玲玲, 张峰. 马铃薯块茎质地品质的综合评价[J]. 中国农业科学, 2022, 55(12): 2278-2293. |
[4] | 聂兴华, 郑瑞杰, 赵永廉, 曹庆芹, 秦岭, 邢宇. 利用荧光SSR分子标记评估中国栗属植物遗传多样性[J]. 中国农业科学, 2021, 54(8): 1739-1750. |
[5] | 李凯峰,尹玉和,王琼,林团荣,郭华春. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析[J]. 中国农业科学, 2021, 54(4): 792-803. |
[6] | 李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选[J]. 中国农业科学, 2021, 54(16): 3381-3392. |
[7] | 庄昕波,陈银基,周光宏. 改性甘蔗膳食纤维对猪肉肌原纤维蛋白凝胶特性的影响[J]. 中国农业科学, 2021, 54(15): 3320-3330. |
[8] | 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮. 观赏桃种质资源表型性状多样性评价[J]. 中国农业科学, 2021, 54(11): 2406-2418. |
[9] | 王珊珊,赵晨辉,李红莲,张冰冰,梁英海,宋宏伟. 东北地区10份李种质资源果实香气成分分析[J]. 中国农业科学, 2021, 54(11): 2476-2486. |
[10] | 张晓,李曼,刘大同,江伟,张勇,高德荣. 扬麦系列品种品质性状分析及育种启示[J]. 中国农业科学, 2020, 53(7): 1309-1321. |
[11] | 宋鸽,史东梅,曾小英,蒋光毅,江娜,叶青. 紫色土坡耕地耕层质量障碍特征[J]. 中国农业科学, 2020, 53(7): 1397-1410. |
[12] | 李颖,张树航,郭燕,张馨方,王广鹏. 211份板栗种质资源花序表型多样性和聚类分析[J]. 中国农业科学, 2020, 53(22): 4667-4682. |
[13] | 祝令晓,刘连涛,张永江,孙红春,张科,白志英,董合忠,李存东. 化学封顶对棉花株型的调控及评价指标筛选[J]. 中国农业科学, 2020, 53(20): 4152-4163. |
[14] | 宋楚君,范方媛,龚淑英,郭昊蔚,李春霖,纵榜正. 不同产地红茶的滋味特征及主要贡献物质[J]. 中国农业科学, 2020, 53(2): 383-394. |
[15] | 万华方,魏帅,冯宇霞,钱伟. 以六倍体(AnAnCnCnCoCo)为桥梁创制抗旱新型甘蓝型油菜(AnArCnCo)[J]. 中国农业科学, 2020, 53(16): 3225-3234. |
|