中国农业科学 ›› 2021, Vol. 54 ›› Issue (11): 2476-2486.doi: 10.3864/j.issn.0578-1752.2021.11.018

• 研究简报 • 上一篇    

东北地区10份李种质资源果实香气成分分析

王珊珊(),赵晨辉,李红莲,张冰冰,梁英海(),宋宏伟()   

  1. 吉林省农业科学院果树研究所,吉林公主岭 136100
  • 收稿日期:2020-08-10 接受日期:2020-12-31 出版日期:2021-06-01 发布日期:2021-06-09
  • 通讯作者: 梁英海,宋宏伟
  • 作者简介:王珊珊,E-mail:826596552@qq.com
  • 基金资助:
    农业部物种资源保护费项目(19200359)

Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China

WANG ShanShan(),ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai(),SONG HongWei()   

  1. Institute of Pomology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
  • Received:2020-08-10 Accepted:2020-12-31 Online:2021-06-01 Published:2021-06-09
  • Contact: YingHai LIANG,HongWei SONG

摘要:

【目的】以东北地区10份李种质资源果实为供试材料,进行香气成分分析及特异香气成分精准鉴定,明确起主要贡献作用的李果实特异香气成分,筛选东北地区富含香气的优异李资源,为李香气高效育种和分子水平基础研究提供数据参考。【方法】应用顶空固相微萃取-气相色谱质谱联用技术,对李果实的香气成分进行测定,利用香气强度值(OAV)和主成分分析(PCA)对李果实中的特异香气成分进行鉴定和分析。【结果】10份李种质资源果实共检测出香气成分63种,其中,共有香气成分有9种,分别为右旋柠檬烯、(E)-2-己烯醛、(E)-2-辛烯醛、(E)-2-壬烯醛、癸醛、2-壬酮、2,6,6-三甲基-2-环己烯-1,4-二酮、2,4-二叔丁基苯酚、伞花烃。‘牡红甜李’‘绥棱红’‘跃进李’‘红干核’‘黄干核’‘幸运’‘大玫瑰’和‘四丰李’香气的主要种类为醛类,‘牛心李’和‘香蕉李’香气的主要种类为酯类。香气PCA结果表明,10份李资源可分为3类,‘牡红甜李’‘绥棱红’‘跃进李’‘红干核’‘黄干核’‘幸运’‘大玫瑰’和‘四丰李’为一类,‘香蕉李’和‘牛心李’各自为一类。香气OAV结果显示,10份李资源共有的特异香气成分是(E)-2-己烯醛和2-壬酮,‘牛心李’特有的特异香气成分是丁酸乙酯、癸酸乙酯和乙酸异戊酯,‘香蕉李’特有的特异香气成分是乙酸丁酯和丙酸己酯,‘牡红甜李’特有的特异香气成分是α-蒎烯,‘绥棱红’特有的特异香气成分是(E)-2-庚烯醛。【结论】β-紫罗酮是东北地区分布的‘牡红甜李’‘绥棱红’‘跃进李’‘红干核’‘黄干核’‘香蕉李’和‘四丰李’特有的特异香气成分。‘牡红甜李’‘牛心李’和‘香蕉李’特异香气成分丰富,为李优异香气资源。

关键词: 李, 香气成分, 主成分分析, 香气强度值, 特异香气成分

Abstract:

【Objective】In order to identify excellent plum resources with attractive aroma in Northeast China and to analyze the characteristic aromatic components for the plum fruits, ten plum germplasm resources from Northeast China were utilized to analyze their aromatic components and to identify characteristic aromatic components in their plum fruits, so as to provide reference for further molecular research and breeding application of plum aroma. 【Method】The aromatic components were determined using headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Odor-activity values (OAV) and principal component analysis (PCA) were used to identify and analyze the characteristic aromatic components in the plum fruits. 【Result】A total of 63 aromatic components were identified in these ten plums. Among them, nine common aromatic components were detected in each of the ten plums, including (E)-2-hexenal, (E)-2-octenal, (E)-2-nonenal, decanal, 2-nonanone, 2,6,6-trimethyl-2-cyclohexene-1,4-dione, 2,4-di-tert-butylphenol, p-cymene, and (+) dipentene. The main aromatic components of Muhongtianli, Suilinghong, Yuejinli, Hongganhe, Huangganhe, Fortune, Great Rose, and Sifengli were aldehydes, whereas the main aromatic components of Xiangjiaoli and Niuxinli were esters. The PCA results of aromatic components showed that ten plums could be divided into three groups: the first group consisted of seven plum resources, including Muhongtianli, Suilinghong, Yuejinli, Hongganhe, Huangganhe, Fortune, Great Rose, and Sifengli; the second group consisted of only one plum resources, Xiangjiaoli, the third group was composed of only one plum, Niuxinli. According to the results of OAV values, the common characteristic aromatic components in all ten plums were (E)-2-hexenal and 2-nonanone. Other characteristic aromatic components were also detected in these plums: the characteristic aromatic components which could be detected only in Niuxinli were ethyl butyrate, ethyl caprate and isoamyl acetate; the characteristic aromatic components detected only in Xiangjiaoli were butyl acetate and hexyl propionate; the characteristic aromatic component detected only in Muhongtianli was α-pinene; the characteristic aromatic component detected only in Suilinghong was (E)-2-heptenal. 【Conclusion】β-Ionone was a characteristic aromatic component that could be detected only in seven plums distributed in Northeast China, including Muhongtianli, Suilinghong, Yuejingli, Hongganhe, Huangganhe, Xiangjiaoli, and Sifengli. Among the ten plum resources studied here, Muhongtianli, Niuxinli, and Xiangjiaoli had rich characteristic aromatic components, providing excellent plum resources with aroma.

Key words: plum, aromatic components, principal component analysis, odor-activity values, characteristic aromatic components