中国农业科学 ›› 2022, Vol. 55 ›› Issue (12): 2278-2293.doi: 10.3864/j.issn.0578-1752.2022.12.002
收稿日期:
2022-01-17
接受日期:
2022-04-11
出版日期:
2022-06-16
发布日期:
2022-06-23
通讯作者:
张峰
作者简介:
李文丽,E-mail: 基金资助:
LI WenLi(),YUAN JianLong,DUAN HuiMin,JIANG TongHui,LIU LingLing,ZHANG Feng()
Received:
2022-01-17
Accepted:
2022-04-11
Online:
2022-06-16
Published:
2022-06-23
Contact:
Feng ZHANG
摘要:
【目的】 马铃薯块茎质地综合评价有利于对马铃薯加工品质性状的细分和准确定位用途,辅助马铃薯品种的选择和选育,同时加快马铃薯产品的开发。【方法】 以主栽马铃薯品种块茎为材料,采用穿刺、二次压缩(texture profile analysis,TPA)和剪切3种质构检测模式分析块茎质构参数:穿刺距离、穿刺起始力、穿刺速度、压缩形变量、压缩速度、压缩间隔时间、压缩起始力、剪切起始力和剪切速度;根据最佳质构测试参数测定8个不同品种块茎质地参数,分析质地参数间的相关性和块茎品质评价最佳质地参数。【结果】 鲜块茎穿刺最优参数:探头型号为圆柱金属探头(TMS 2 mm Steel),穿刺距离为2 mm,起始力为2.5 N,检测速度为50 mm·min-1;TPA压缩最优测试因素(鲜/熟):鲜、熟块茎圆柱体样品直径和高度均为10—15 mm,检测探头的选择对鲜块茎质地无显著差别,熟块茎最优探头型号为圆柱铝制探头(TMS 36.0 mm Aluminum Cylinder);最优参数(鲜/熟):形变量50%/60%,检测速度60 mm·min-1/80 mm·min-1,间隔时间6 s/10 s,起始力均为0.7 N;剪切最优参数(鲜/熟):长方体样品(30 mm×15 mm×10 mm),探头型号为轻型单刀探头(TMS Perspex Knife Edge),检测速度均为60 mm·min-1,起始力为1 N/0.5 N。不同品种块茎相关性分析表明,弹性与薯皮脆性存在显著相关性,与穿刺和剪切其他质地参数之间均无显著相关性;鲜块茎穿刺、TPA压缩与剪切质地参数之间均存在显著或极显著正相关性(0.410—0.959);熟块茎TPA压缩和剪切质地参数之间均存在显著或极显著正相关性(0.441—0.952)。【结论】 穿刺、TPA压缩和剪切质构检测模式适合鲜块茎质地品质的客观评价,其中,薯皮硬度、薯皮脆性、TPA硬度、内聚性、咀嚼性和剪切硬度可作为比较鲜块茎质地差异的重要参数;TPA压缩和剪切质构检测模式适合熟块茎质地品质的客观评价,其中,TPA硬度、粘附性、内聚性、弹性、咀嚼性和剪切硬度可以作为比较熟块茎质地差异性的重要参数。
李文丽, 袁剑龙, 段惠敏, 蒋彤晖, 刘玲玲, 张峰. 马铃薯块茎质地品质的综合评价[J]. 中国农业科学, 2022, 55(12): 2278-2293.
LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture[J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
表1
不同穿刺参数设置下的薯皮质构结果"
穿刺参数 Puncture parameter | 穿刺距离 Puncture distance (mm) | 起始力 Initial force (N) | 检测速度 Detection speed (mm·min-1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.5 | 2 | 2.5 | 3 | 0.5 | 1 | 1.5 | 2 | 2.5 | 10 | 30 | 50 | 70 | 90 | |
薯皮硬度 Peel hardness (N) | 9.10±0.34a | 12.00±0.54b | 12.79±0.57b | 12.54±0.79b | 12.24±0.48b | 10.86±0.09a | 11.40±0.14ab | 11.73±0.28ab | 12.05±0.39b | 12.41±1.06b | 11.16±0.88a | 11.77±1.39a | 11.77±0.99a | 12.17±1.17a | 12.25±1.34a |
破裂距离 Puncture distance (mm) | 0.98±0.02a | 1.41±0.03b | 1.62±0.10c | 1.66±0.13c | 1.71±0.08c | 1.91±0.02c | 1.76±0.08bc | 1.55±0.13ab | 1.43±0.21a | 1.31±0.22a | 1.68±0.04a | 1.54±0.04b | 1.49±0.04b | 1.47±0.07b | 1.44±0.07b |
薯皮脆性 Peel brittleness (N·mm-1) | 9.32±0.19d | 8.56±0.13c | 8.02±0.18b | 7.72±0.21b | 7.31±0.13a | 5.70±0.08a | 6.48±0.31ab | 7.59±0.80abc | 8.55±1.62bc | 9.75±2.42c | 6.65±0.67a | 7.67±1.10a | 7.92±0.47a | 8.27±0.39a | 8.48±0.70a |
表2
3种探头对鲜、熟块茎TPA测定结果"
探头类型 Probe type | 块茎类型 Tuber type | TPA硬度 Hardness (N) | 粘附性 Adhesiveness (mJ) | 内聚性 Cohesiveness | 弹性 Springiness (mm) | 咀嚼性 Chewiness (mJ) |
---|---|---|---|---|---|---|
38.1 mm圆柱塑胶探头 38.1 mm Cylindrical Plastic Probe | 鲜Fresh | 216.48±35.15a | — | 0.10±0.01a | 2.85±0.12a | 60.55±16.26a |
熟Steamed | 21.51±4.62a | 0.62±0.11a | 0.06±0.01a | 0.94±0.15a | 1.32±0.61a | |
36 mm圆柱铝制探头 36 mm Cylindrical Aluminum Probe | 鲜Fresh | 219.12±15.22a | — | 0.10±0.01a | 2.99±0.06a | 64.58±8.37a |
熟Steamed | 22.17±1.55a | 0.88±0.10b | 0.07±0.00b | 1.02±0.04a | 1.58±0.25a | |
25.4 mm圆柱塑胶探头 25.4 mm Cylindrical Plastic Probe | 鲜Fresh | 220.00±10.39a | — | 0.10±0.01a | 2.89±0.09a | 61.59±5.00a |
熟Steamed | 18.24±2.78a | 1.01±0.11b | 0.06±0.00a | 0.82±0.14a | 0.88±0.33a | |
F | 鲜Fresh | 0.019 | — | 0.000 | 1.929 | 0.110 |
熟Steamed | 1.264 | 10.717 | 6.000 | 2.090 | 2.083 | |
P | 鲜Fresh | 0.981 | — | 1.000 | 0.226 | 0.989 |
熟Steamed | 0.348 | 0.010* | 0.037* | 0.205 | 0.206 |
表3
鲜、熟块茎Plackett-Burman试验方差分析"
质地参数 Texture parameters | 项目 Item | 平方和 Sum of squares | 自由度 Df | 均方差 Mean square | F | <BOLD>P</BOLD> | 显著性 Significance |
---|---|---|---|---|---|---|---|
内聚性(鲜) Cohesiveness (Fresh) | 模型Model | 9.697E﹣0.003 | 4 | 2.424E﹣003 | 99.45 | <0.0001 | * |
A | 9.336E–0.003 | 1 | 9.336E﹣003 | 382.98 | <0.0001 | ||
B | 3.282E﹣0.004 | 1 | 3.282E﹣004 | 13.46 | 0.0080 | ||
C | 1.245E﹣0.005 | 1 | 1.245E﹣005 | 0.51 | 0.4980 | ||
D | 2.089E﹣0.005 | 1 | 2.089E﹣005 | 0.86 | 0.3854 | ||
咀嚼性(鲜) Chewiness (Fresh) | 模型Model | 4148.55 | 4 | 1037.14 | 44.42 | <0.0001 | * |
A | 3306.59 | 1 | 3306.59 | 141.61 | <0.0001 | ||
B | 669.78 | 1 | 669.78 | 28.68 | 0.0011 | ||
C | 70.26 | 1 | 70.26 | 3.01 | 0.1264 | ||
D | 101.93 | 1 | 101.93 | 4.36 | 0.0751 | ||
内聚性(熟) Cohesiveness (Steamed) | 模型Model | 9.000E﹣004 | 4 | 2.250E﹣004 | 9.45 | <0.0060 | * |
A | 7.292E﹣004 | 1 | 7.292E﹣004 | 30.63 | <0.0009 | ||
B | 2.917E﹣005 | 1 | 2.917E﹣005 | 1.22 | 0.3050 | ||
C | 0.000 | 1 | 0.000 | 0.000 | 1.0000 | ||
D | 3.333E﹣005 | 1 | 3.333E﹣005 | 1.40 | 0.2753 |
表4
鲜、熟块茎正交试验设计表及结果"
编号 Number | 块茎类型 Tuber type | A | B | D | 空白列 Blank | 硬度 Hardness (N) | 粘附性 Adhesiveness (mJ) | 内聚性 Cohesiveness | 弹性 Springiness (mm) | 咀嚼性 Chewiness (mJ) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 鲜Fresh | 1(50) | 1(20) | 1(4) | 1 | 206.261 | — | 0.134 | 2.902 | 80.840 |
熟Steamed | 1(40) | 1(40) | 1(4) | 1 | 7.166 | 0.255 | 0.068 | 0.544 | 0.271 | |
2 | 鲜Fresh | 1 | 2(60) | 2(6) | 2 | 209.969 | — | 0.137 | 2.868 | 82.490 |
熟Steamed | 1 | 2(60) | 2(6) | 2 | 8.174 | 0.249 | 0.063 | 0.550 | 0.319 | |
3 | 鲜Fresh | 1 | 3(100) | 3(8) | 3 | 188.022 | — | 0.120 | 2.751 | 61.984 |
熟Steamed | 1 | 3(80) | 3(10) | 3 | 8.014 | 0.332 | 0.069 | 0.586 | 0.331 | |
4 | 鲜Fresh | 2(60) | 1 | 2 | 3 | 215.105 | — | 0.092 | 2.919 | 57.696 |
熟Steamed | 2(50) | 1 | 2 | 3 | 8.544 | 0.383 | 0.057 | 0.563 | 0.282 | |
5 | 鲜Fresh | 2 | 2 | 3 | 1 | 231.517 | — | 0.095 | 2.941 | 65.245 |
熟Steamed | 2 | 2 | 3 | 1 | 7.893 | 0.383 | 0.062 | 0.586 | 0.295 | |
6 | 鲜Fresh | 2 | 3 | 1 | 2 | 218.210 | — | 0.083 | 2.787 | 51.107 |
熟Steamed | 2 | 3 | 1 | 2 | 7.775 | 0.735 | 0.067 | 0.541 | 0.285 | |
7 | 鲜Fresh | 3(70) | 1 | 3 | 2 | 228.348 | — | 0.077 | 2.864 | 50.731 |
熟Steamed | 3(60) | 1 | 3 | 2 | 8.174 | 1.006 | 0.076 | 0.628 | 0.404 | |
8 | 鲜Fresh | 3 | 2 | 1 | 1 | 217.744 | — | 0.072 | 2.650 | 41.845 |
熟Steamed | 3 | 2 | 1 | 1 | 8.771 | 1.014 | 0.070 | 0.561 | 0.366 | |
9 | 鲜Fresh | 3 | 3 | 2 | 3 | 242.891 | — | 0.074 | 2.690 | 48.826 |
熟Steamed | 3 | 3 | 2 | 3 | 9.074 | 1.242 | 0.070 | 0.546 | 0.369 | |
k1(硬度) k1 (Hardness) | 鲜Fresh | 201.417 | 216.571 | 214.072 | 218.507 | |||||
熟Steamed | 7.785 | 7.962 | 7.904 | 8.045 | ||||||
k2(硬度) k2 (Hardness) | 鲜Fresh | 221.610 | 219.743 | 222.655 | 218.842 | |||||
熟Steamed | 8.071 | 8.279 | 8.598 | 8.041 | ||||||
k3(硬度) k3 (Hardness) | 鲜Fresh | 229.661 | 216.374 | 215.962 | 215.339 | |||||
熟Steamed | 8.673 | 8.288 | 8.027 | 8.443 | ||||||
R(硬度) R (Hardness) | 鲜Fresh | 28.244 | 3.370 | 8.583 | 3.503 | |||||
熟Steamed | 0.888 | 0.326 | 0.693 | 0.400 | ||||||
k1(粘附性) k1 (Adhesiveness) | 鲜Fresh | — | — | — | — | |||||
熟Steamed | 0.279 | 0.548 | 0.668 | 0.627 | ||||||
k2(粘附性) k2 (Adhesiveness) | 鲜Fresh | — | — | — | — | |||||
熟Steamed | 0.500 | 0.549 | 0.624 | 0.663 | ||||||
k3(粘附性) k3 (Adhesiveness) | 鲜Fresh | — | — | — | — | |||||
熟Steamed | 1.087 | 0.770 | 0.574 | 0.576 | ||||||
R(粘附性) R (Adhesiveness) | 鲜Fresh | — | — | — | — | |||||
熟Steamed | 0.809 | 0.221 | 0.094 | 0.087 | ||||||
k1(内聚性) k1 (Cohesiveness) | 鲜Fresh | 0.130 | 0.101 | 0.096 | 0.101 | |||||
熟Steamed | 0.066 | 0.067 | 0.068 | 0.066 | ||||||
k2(内聚性) k2 (Cohesiveness) | 鲜Fresh | 0.090 | 0.102 | 0.099 | 0.099 | |||||
熟Steamed | 0.062 | 0.065 | 0.063 | 0.069 | ||||||
k3(内聚性) k3 (Cohesiveness) | 鲜Fresh | 0.074 | 0.092 | 0.095 | 0.095 | |||||
熟Steamed | 0.072 | 0.069 | 0.069 | 0.065 | ||||||
R(内聚性) R (Cohesiveness) | 鲜Fresh | 0.056 | 0.010 | 0.004 | 0.005 | |||||
熟Steamed | 0.010 | 0.004 | 0.005 | 0.003 | ||||||
k1(弹性) k1 (Springiness) | 鲜Fresh | 2.840 | 2.895 | 2.779 | 2.831 | |||||
熟Steamed | 0.560 | 0.578 | 0.549 | 0.559 | ||||||
k2(弹性) k2 (Springiness) | 鲜Fresh | 2.882 | 2.819 | 2.826 | 2.839 | |||||
熟Steamed | 0.563 | 0.566 | 0.553 | 0.573 | ||||||
k3(弹性) K3 (Springiness) | 鲜Fresh | 2.735 | 2.743 | 2.852 | 2.787 | |||||
熟Steamed | 0.578 | 0.558 | 0.600 | 0.570 | ||||||
R(弹性) R (Springiness) | 鲜Fresh | 0.148 | 0.152 | 0.072 | 0.053 | |||||
熟Steamed | 0.019 | 0.020 | 0.051 | 0.011 | ||||||
k1(咀嚼性) k1 (Chewiness) | 鲜Fresh | 75.105 | 63.089 | 57.931 | 62.643 | |||||
熟Steamed | 0.307 | 0.319 | 0.307 | 0.311 | ||||||
k2(咀嚼性) k2 (Chewiness) | 鲜Fresh | 58.016 | 63.193 | 65.520 | 61.443 | |||||
熟Steamed | 0.287 | 0.327 | 0.323 | 0.336 | ||||||
k3(咀嚼性) k3 (Chewiness) | 鲜Fresh | 47.134 | 53.973 | 59.320 | 56.169 | |||||
熟Steamed | 0.380 | 0.328 | 0.343 | 0.326 | ||||||
R(咀嚼性) R (Chewiness) | 鲜Fresh | 27.971 | 9.221 | 7.589 | 6.475 | |||||
熟Steamed | 0.073 | 0.009 | 0.036 | 0.025 |
表5
不同起始力和检测速度设置下鲜、熟块茎质地检测结果"
剪切参数 Shear parameter | 块茎类型 Tuber type | 起始力 Initial force (N) | 检测速度 Detection speed (mm·min-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 0.5 | 0.7 0.6 | 1.0 0.7 | 1.5 0.8 | 2.0 0.9 | 20 | 40 | 60 | 120 | 180 | ||
剪切硬度 Shear hardness (N) | 鲜Fresh | 17.76±3.23a | 17.23±5.09a | 17.23±1.97a | 18.28±0.78a | 18.34±2.01a | 15.67±2.74a | 18.03±2.58ab | 16.97±1.46ab | 22.61±5.15b | 21.90±1.50b |
熟Steamed | 1.48±0.26ab | 1.60±0.16b | 1.23±0.13a | 1.56±0.07ab | 1.51±0.21ab | 1.39±0.38a | 1.44±0.18a | 1.69±0.17a | 1.83±0.05a | 1.76±0.22a | |
位移 Displacement (mm) | 鲜Fresh | 4.60±1.02a | 4.29±0.74a | 4.09±0.12a | 4.21±0.12a | 3.93±0.15a | 4.03±0.26a | 3.97±0.38a | 4.22±0.42a | 4.28±0.19a | 4.76±0.70a |
熟Steamed | 1.61±0.10b | 1.53±0.30b | 1.04±0.19a | 1.04±0.16a | 0.98±0.21a | 1.90±0.90a | 1.27±0.17a | 1.41±0.19a | 1.65±0.49a | 1.48±0.16a | |
剪切力做功 Shear work | 鲜Fresh | 54.62±21.72a | 49.13±15.56a | 46.48±2.5a | 46.48±2.5a | 49.21±5.53a | 42.44±9.13a | 45.22±9.43a | 47.85±6.82ab | 58.53±9.00ab | 66.96±15.56b |
熟Steamed | 1.71±0.40b | 1.82±0.25b | 1.06±0.23a | 1.06±0.23a | 1.30±0.41ab | 1.28±0.66a | 1.48±0.31ab | 1.88±0.38a | 2.38±0.80ab | 2.00±0.37b |
表6
不同品种的鲜、熟块茎的质构参数"
品种名 <BOLD>V</BOLD>ariety | 块茎类型 Tubers type | 穿刺测试 Puncture test | TPA压缩测试 TPA compression test | 剪切测试 Shear test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
薯皮硬度 Hardness (N) | 破裂距离 Puncture distance (mm) | 薯皮脆性 Brittleness (N·mm-1) | TPA硬度 Hardness (N) | 粘附性 Adhesiveness (mJ) | 内聚性 Cohesiveness | 弹性 Springiness (mm) | 咀嚼性 Chewiness (mJ) | 剪切硬度 Hardness (N) | 位移 Displacement (mm) | 剪切力做功 Shear work (mJ) | ||||
青薯9号 Qingshu No. 9 | 鲜Fresh | 11.15±0.61b | 1.32±0.02bc | 8.45±0.38d | 362.07±12.03d | — | 0.19±0.01c | 2.79±0.04a | 192.34±9.71c | 34.07±2.99bc | 137.10±13.27ab | 137.10±13.27bc | ||
熟Steamed | — | — | — | 12.13±1.87ab | 0.80±0.02a | 0.06±0.00a | 0.73±0.02ab | 0.54±0.08a | 1.21±0.06ab | 1.34±0.06bc | 1.21±0.05b | |||
京张1号 Jingzhang No. 1 | 鲜Fresh | 15.05±0.78d | 1.44±0.06c | 10.45±0.35f | 396.53±25.93d | — | 0.19±0.02c | 3.01±0.02c | 229.03±39.61d | 18.72±2.50a | 64.19±20.81ab | 64.19±20.81a | ||
熟Steamed | — | — | — | 12.26±1.19ab | 0.87±0.08a | 0.06±0.00a | 0.74±0.04ab | 0.57±0.06a | 1.16±0.14ab | 1.32±0.18bc | 1.15±0.24ab | |||
龙薯4号 Longshu No. 4 | 鲜Fresh | 8.70±0.39a | 1.31±0.08bc | 6.64±0.31ab | 280.88±30.52b | — | 0.13±0.01ab | 2.98±0.15bc | 107.87±21.84b | 25.36±1.73ab | 87.60±8.57ab | 87.60±8.57a | ||
熟Steamed | — | — | — | 11.00±1.49ab | 0.80±0.05a | 0.06±0.01ab | 0.78±0.03b | 0.54±0.10a | 1.03±0.09a | 0.96±0.12a | 0.91±0.17ab | |||
冀张薯12 Jizhangshu 12 | 鲜Fresh | 10.58±0.86b | 1.21±0.08ab | 8.74±0.34ab | 286.02±12.89b | — | 0.14±0.02b | 2.85±0.11ab | 109.88±17.08b | 18.70±3.77a | 75.44±22.33ab | 75.44±22.33a | ||
熟Steamed | — | — | — | 9.79±0.45a | 1.66±0.15b | 0.07±0.00b | 0.68±0.02ab | 0.47±0.02a | 0.95±0.08a | 1.09±0.18ab | 0.82±0.17a | |||
北方002 Beifang 002 | 鲜Fresh | 10.64±0.83b | 1.18±0.06ab | 9.02±0.19bc | 269.69±19.42b | — | 0.12±0.01ab | 2.80±0.09a | 90.66±7.61ab | 24.98±2.97ab | 102.03±33.98ab | 102.03±33.98ab | ||
熟Steamed | — | — | — | 11.31±0.44ab | 0.70±0.07a | 0.06±0.01ab | 0.65±0.03a | 0.48±0.07a | 1.16±0.15ab | 1.25±0.10bc | 1.16±0.20ab | |||
布尔班克 Russet Burbank | 鲜Fresh | 13.83±0.51c | 1.33±0.01bc | 10.40±0.32e | 325.40±26.90c | — | 0.12±0.01ab | 2.92±0.02abc | 111.30±9.60b | 40.13±3.10c | 156.46±2.72ab | 156.46±2.72c | ||
熟Steamed | — | — | — | 11.31±0.44ab | 0.84±0.25a | 0.06±0.00a | 0.67±0.06a | 0.48±0.07a | 1.32±0.14b | 1.61±0.18d | 1.61±0.10c | |||
甘农奶香薯 Gannongnaixiangshu | 鲜Fresh | 9.42±0.50a | 1.13±0.05a | 8.34±0.54a | 399.93±21.87d | — | 0.20±0.02c | 2.86±0.03abc | 236.90±20.54d | 38.11±12.43c | 170.02±56.57b | 170.02±56.57c | ||
熟Steamed | — | — | — | 19.97±1.32c | 0.82±0.05a | 0.07±0.01ab | 1.02±0.11c | 1.38±0.28b | 1.82±0.02c | 1.42±0.10dc | 1.80±0.14c | |||
大西洋 Atlantic Ocean | 鲜Fresh | 11.40±0.58a | 1.31±0.16bc | 8.70±0.86bd | 209.33±7.61a | — | 0.11±0.01a | 2.79±0.11a | 65.92±6.83a | 20.55±1.36a | 61.13±7.94a | 61.13±7.94a | ||
熟Steamed | — | — | — | 12.68±1.82b | 0.84±0.25a | 0.06±0.00a | 0.67±0.06a | 0.53±0.14a | 1.33±0.28b | 1.22±0.12bc | 1.80±0.14c |
[1] |
RYTA M D MACHADO, MARIA F T, LUCILA C G. Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control, 2005, 18(5): 503-508.
doi: 10.1016/j.foodcont.2005.12.008 |
[2] |
SZCZESNIAK A S, KAHN E L. Consumer awareness of and attitudes to food texture. Journal of Texture Studies, 1971, 2(3): 280-295.
doi: 10.1111/j.1745-4603.1971.tb01005.x |
[3] |
HUTCHINGS J B, LILLFORD P J. The perception of food texture the philosophy of the breakdown path. Journal of Texture Studies, 1988, 19(2): 103-115.
doi: 10.1111/j.1745-4603.1988.tb00928.x |
[4] | 梁辉, 戴志远. 物性分析仪在食品质构测定方面的应用. 食品研究与开发, 2006, 27(4): 118-121. |
LIANG H, DAI Z Y. Application texture analyzer in the assessment for food texture. Food Research and Development, 2006, 27(4): 118-121. (in Chinese) | |
[5] |
HARKER F R, MAINDONALD J, MURRAY S H. Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biology and Technology, 2002, 24(3): 225-239.
doi: 10.1016/S0925-5214(01)00158-2 |
[6] | 李洪浩, 陈季旺. 水果与蔬菜质地. 食品研究与开发, 1997, 18(1): 61-62. |
LI H H, CHEN J W. Texture of fruits and vegetables. Food Research and Development, 1997, 18(1): 61-62. (in Chinese) | |
[7] | 刘亚平, 李红波. 物性分析仪及 TPA 在果蔬质构测试中的应用综述. 山西农业大学学报(自然科学版), 2010, 30(2): 188-192. |
LIU Y P, LI H B. Review on application of physical property analyzer and TPA in fruit and vegetable texture testing. Journal of Shanxi Agricultural University (Natural Science Edition), 2010, 30(2): 188-192. (in Chinese) | |
[8] | 刘莉, 高星, 华德平, 刘翔, 李志文, 张平, 李三培, 张少慧. 不同的质构检测方法对甜瓜果肉质构的评价. 天津大学学报(自然科学与工程技术版), 2016, 49(8): 875-881. |
LIU L, GAO X, HUA D P, LIU X, LI Z W, ZHANG P, LI S P, ZHANG S H. Evaluation of the textural properties of melon flesh by different texture test methods. Journal of Tianjin University (Science and Technology), 2016, 49(8): 875-881. (in Chinese) | |
[9] | 陈丽. 甘薯块根质构特性的评价研究[D]. 杭州: 浙江农林大学, 2013. |
CHEN L. Study on texture properties evaluation of sweet potato[D]. Hangzhou: Zhejiang A & F University, 2013. (in Chinese) | |
[10] | 汤鹏宇, 孟繁博, 黄道梅, 郑秀艳, 林茂. 质构参数与花生物性测定的相关性. 现代食品科技, 2021, 37(7): 294-301. |
TANG P Y, MENG F B, HUANG D M, ZHENG X Y, LIN M. Correlation between texture analyzer parameters and physical properties measurement of peanut. Modern Food Science and Technology, 2021, 37(7): 294-301. (in Chinese) | |
[11] | 杜昕美, 赵前程, 吕可, 刘婧懿, 程少峰, 马永生. 五种苹果质构测定方法的比较及与感官评价的相关性分析. 食品工业科技, 2020, 41(22): 240-246. |
DU X M, ZHAO Q C, LÜ K, LIU J Y, CHENG S F, MA Y S. Comparison of texture determination method and correlation analysis with sensory evaluation of 5 kinds of apple. Science and Technology of Food Industry, 2020, 41(22): 240-246. (in Chinese) | |
[12] | 李玉梅, 李守强, 田世龙, 王俊舟. 质构仪质地多面分析法检测马铃薯块茎质地参数. 食品工业科技, 2016, 37(8): 92-96. |
LI Y M, LI S Q, TIAN S L, WANG J Z. Texture parameters of potato tubers with texture profile analysis method. Science and Technology of Food Industry, 2016, 37(8): 92-96. (in Chinese) | |
[13] |
SZCZESNIAK A S, HUMBAUGH P R, BLOCK H W. Behavior of different foods in the standard shear compression cell of the shear press and the effect of sample weight on peak area and maximum force. Journal of Texture Studies, 1970, 1(3): 356-378.
doi: 10.1111/j.1745-4603.1970.tb00736.x |
[14] | BOUNE M C. Texture evaluation of horticultural drops. Hortscience, 1980, 15(1): 51-57. |
[15] | 张秋会, 李苗云, 黄现青. 肉制品的质构特性及其评价. 食品与机械, 2012, 28(3): 36-39. |
ZHANG Q H, LI M Y, HUANG X Q. Texture characteristics and evaluation of meat products. Food & Machinery, 2012, 28(3): 36-39. (in Chinese) | |
[16] | RAFFO A, SINESIO F, MONETA E, NARDO N, PPPARAIO M, PAOLETTI F. Internal quality of fresh and cold stored celery petioles described by sensory profile, chemical and instrumental measurements. European Food Research & Technology, 2006. 222(5/6): 590-599. |
[17] | 潘好斌. 薄皮甜瓜果实质地品质综合评价及质地差异分析[D]. 沈阳: 沈阳农业大学, 2019. |
PAN H B. Comprehensive evaluation of textual quality and analysis of internal cause of texture difference of oriental melon fruit[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese) | |
[18] |
SZCZESNIAK A S. Classification of textural characteristics. Journal of Food Science, 1962, 28(4): 385-389.
doi: 10.1111/j.1365-2621.1963.tb00215.x |
[19] |
SZCZESNIAK A S. Texture is a sensory property. Food Quality and Preference 2002, 13: 215-225.
doi: 10.1016/S0950-3293(01)00039-8 |
[20] | 刘娟, 梁延超, 隋景航, 余斌, 王润润, 张小微, 程李香, 王玉萍, 张峰. 马铃薯块茎蒸煮品质、质构特性及加工型品系筛选. 中国农业科学, 2016, 49(21): 4074-4084. |
LIU J, LIANG Y C, SUI J H, YU B, WANG R R, ZHANG X W, CHENG L X, WANG Y P, ZHANG F. Screening for cooking- processing potato lines according to potato tuber qualities and properties. Scientia Agricultura Sinica, 2016, 49(21): 4074-4084. (in Chinese) | |
[21] | 纪宗亚. 质构仪及其在食品品质检测方面的应用. 食品工程, 2011, 5(3): 22-25. |
JI Z Y. Texture analyzer and its application in food quality inspection. Food Engineering, 2011, 5(3): 22-25. (in Chinese) | |
[22] | 林芳栋, 蒋珍菊, 廖珊, 游娟, 李朝学. 质构仪及其在食品品质评价中的应用综述. 生命科学仪器, 2009, 7(5): 61-63. |
LIN F D, JIANG Z J, LIAO S, YOU J, LI C X. A review of texture analyzer and its application in food quality evaluation. Life Science Instruments, 2009, 7(5): 61-63. (in Chinese) | |
[23] | 梁静, 孙锐, 孙蕾, 李雪彤, 郭倩文. 不同品种果桑穿刺试验质构特性分析. 山东林业科技, 2017, 47(05): 26-30. |
LIANG J, SUN R, SUN L, LI X T, GUO Q W. Analysis of characteristics of different varieties of mulberry puncture test texture. Journal of Shandong Forestry Science and Technology, 2017, 47(5): 26-30. (in Chinese) | |
[24] |
CAMPS C, GUILLERMIN P, MAUGET J C, BERTRAND D. Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits. Journal of Texture Studies, 2005, 36(4): 387-401.
doi: 10.1111/j.1745-4603.2005.00023.x |
[25] |
PONS M, FISZMAN S M. Instrumental texture profile analysis with particular reference to gelled systems. Journal of Texture Studies, 1996, 27(6): 597-624.
doi: 10.1111/j.1745-4603.1996.tb00996.x |
[26] | NADULSKI R, GROCHOWICZ J. The influence of the measurement conditions on the TPA test of selected fruit. Acta Horticulturae, 2001, 562(1): 213-219. |
[27] | 邵兴锋, 朱勇, 张春丹. 测试因素对苹果质地剖面分析结果的影响. 中国食品学报, 2011, 11(6): 199-205. |
SHAO X F, ZHU Y, ZHANG C D. The influence of measurement factors on the results of texture profile analysis of apple fruit. Journal of Chinese Institute of Food Science and Technology, 2011, 11(6): 199-205. (in Chinese) | |
[28] | 姜松, 王海鸥. TPA质构分析及测试条件对苹果TPA质构分析的影响. 食品科学, 2004, 25(12): 68-71. |
JIANG S, WANG H O. The influence of measurement factors on the results of texture profile analysis of apple fruit. Food Science, 2004, 25(12): 68-71. (in Chinese) | |
[29] | 潘秀娟, 屠康. 质构仪质地多面分析(TPA)方法对苹果采后质地变化的检测. 农业工程学报, 2005, 6(3): 166-170. |
PAN X J, TU K. Comparison of texture properties of post- harvested apples using texture profile analysis. Transactions of the Chinese Society of Agricultural Engineering, 2005, 6(3): 166-170. (in Chinese) | |
[30] | 孟陆丽, 张谦益, 吴洪华, 王香林, 张明德. 剪切实验测试梨果肉质地研究. 食品工业科技, 2006, 27(11): 55-57. |
MENG L L, ZHANG Q Y, WU H H, WANG X L, ZHANG M D. Study on the meat quality of pear by shear test. Science and Technology of Food Industry, 2006, 27(11): 55-57. (in Chinese) | |
[31] | 宋钰兴, 邵兴锋, 张春丹, 程赛. 测试条件的变化对草莓质地剖面分析结果的影响. 食品科学, 2011, 32(13): 15-18. |
SONG Y X, SHAO X F, ZHANG C D, CHENG S. Effects of different test conditions on texture profile analysis parameters of strawberry fruits. Food Science, 2011, 32(13): 15-18. (in Chinese) | |
[32] |
WU T X, JUDITH A A. Firmness and force relaxation characteristics of tomatoes stored intact or as slices. Postharvest Biology and Technology, 2002, 24(1): 89-68.
doi: 10.1016/S0925-5214(01)00186-7 |
[33] |
VAN MARLE J T, STOLLE S T, DONKERS J, VAN D C, VORAGEN ALPHONS G J, RECOURT K. Chemical and microscopic characterization of potato (Solanum tuberosum L.) cell walls during cooking. Journal of Agricultural and Food Chemistry, 1997, 45(1): 50-58.
doi: 10.1021/jf960085g |
[1] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[2] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[3] | 路粉,孟润杰,吴杰,赵建江,李洋,毕秋艳,韩秀英,李敬华,王文桥. 马铃薯晚疫病菌对霜脲氰抗性动态监测及药效验证[J]. 中国农业科学, 2022, 55(18): 3556-3564. |
[4] | 张晓萍,撒世娟,伍涵宇,乔丽媛,郑蕊,姚新灵. 马铃薯叶片气孔的开张与关闭同步伴随果胶的降解与合成[J]. 中国农业科学, 2022, 55(17): 3278-3288. |
[5] | 梁雨欣,吴建祥,李小宇,张春雨,侯吉超,周雪平,王永志. 马铃薯Y病毒衣壳蛋白抗原表位分析及其快速ELISA检测方法的建立[J]. 中国农业科学, 2021, 54(6): 1154-1162. |
[6] | 郑海霞,高玉林,张方梅,杨超霞,蒋健,朱勋,张云慧,李祥瑞. 马铃薯甲虫热激蛋白基因Ld-hsp70的克隆及温度胁迫下的表达特性[J]. 中国农业科学, 2021, 54(6): 1163-1175. |
[7] | 唐建昭,王靖,肖登攀,潘学标. 马铃薯生长模型的研究进展及发展前景[J]. 中国农业科学, 2021, 54(5): 921-932. |
[8] | 李凯峰,尹玉和,王琼,林团荣,郭华春. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析[J]. 中国农业科学, 2021, 54(4): 792-803. |
[9] | 张梦迪,闫俊杰,高玉林. 马铃薯块茎蛾对不同品种马铃薯块茎的适应性分析[J]. 中国农业科学, 2021, 54(3): 536-546. |
[10] | 李祥,张小娇,肖春,董文霞. 不同性别和交配状态的马铃薯块茎蛾对马铃薯挥发物的触角电位反应[J]. 中国农业科学, 2021, 54(3): 547-555. |
[11] | 陈洋,赵红怡,闫俊杰,黄剑,高玉林. 马铃薯块茎蛾性信息素化学合成研究现状[J]. 中国农业科学, 2021, 54(3): 556-572. |
[12] | 熊焰,韩瑞,胡纯华,王静,肖春. 化学与物理刺激对马铃薯块茎蛾产卵行为的影响[J]. 中国农业科学, 2021, 54(3): 573-582. |
[13] | 吕士凯, 马小龙, 张敏, 邓平川, 陈春环, 张宏, 刘新伦, 吉万全. 小麦TaNAC基因基于可变剪切和microRNA的转录后调控分析[J]. 中国农业科学, 2021, 54(22): 4709-4727. |
[14] | 梁伟,朱亚同,柴秀伟,孔蕊,李斌山,李永才,毕阳,DOV Prusky. p-香豆酸通过加速伤口处聚酚软木脂和木质素的沉积促进马铃薯块茎愈伤[J]. 中国农业科学, 2021, 54(20): 4434-4445. |
[15] | 陈媛,蔡禾,李利,王林杰,仲涛,张红平. 山羊TNNT3基因可变剪切及其对骨骼肌细胞分化的作用[J]. 中国农业科学, 2021, 54(20): 4466-4477. |
|