中国农业科学 ›› 2021, Vol. 54 ›› Issue (8): 1739-1750.doi: 10.3864/j.issn.0578-1752.2021.08.013
聂兴华1(),郑瑞杰2(),赵永廉3,曹庆芹1,4,秦岭1,4,邢宇1,4()
收稿日期:
2020-07-02
接受日期:
2020-09-15
出版日期:
2021-04-16
发布日期:
2021-04-25
通讯作者:
郑瑞杰,邢宇
作者简介:
聂兴华,Tel:18813011218;E-mail: 基金资助:
NIE XingHua1(),ZHENG RuiJie2(),ZHAO YongLian3,CAO QingQin1,4,QIN Ling1,4,XING Yu1,4()
Received:
2020-07-02
Accepted:
2020-09-15
Online:
2021-04-16
Published:
2021-04-25
Contact:
RuiJie ZHENG,Yu XING
摘要:
【目的】利用SSR分子标记研究中国栗属植物遗传多样性、亲缘关系和群体遗传结构的特点,为栗属植物的资源改良、种质创新与利用提供理论依据。【方法】利用不同产区的12个板栗品种对330个SSR分子标记进行筛选,获得高质量的12对SSR引物。随后在高分辨率的毛细管电泳上对栗属4个种的96份资源进行位点信息检测。用Power Marker 3.25、GenAlEx 6.51、FigTree v1.4.3和Structure 2.3.3对全部资源进行群体遗传多样性的相关分析。【结果】对96份资源进行检测,共获得129个等位变异,每个标记平均有10.750个位点变异。位点多样性(GD)变幅为0.656(CmSI0396)—0.877(CmSI0930),平均为0.800;观察杂合度(Ho)变幅为0.329(CmSI0742)—0.769(CmSI0702),平均为0.615;期望杂合度(He)变幅为0.489(CmSI0742)—0.789(CmSI0922),平均为0.672;多态信息含量(PIC)变幅为0.586(CmSI0396)—0.868(CmSI0930),平均为0.774。从不同栗属植物种群间的遗传多样性来看,茅栗种群的观察位点数(Na)、有效等位变异(Ne)和Shannon多样性指数最高,其次是板栗种群,最低是日本栗种群。从两两群体间的遗传分化指数(Fst)可知,栗属植物种间的遗传分化值在0.077—0.180,整体种群间存在中等以上程度的分化,板栗种群、锥栗种群与日本栗种群间的遗传分化值分别为0.165和0.180,表现出较大的遗传分化。同时,栗属植物种群的基因流(Nm)为1.580>1,也说明种群间存在较频繁的基因交流,由此降低了由基因遗传漂变所引起的各种群间遗传分化程度。分子方差分析(AMOVA)结果表明,变异主要发生在种群内,占总变异量的73%,种群间的变异占27%。UPGMA聚类分析、主坐标分析和群体遗传结构结果较一致,各资源的遗传背景存在明显的种间界限,部分资源在世代遗传中继承了不同祖先种的遗传信息。例如,资源65、71和82号为混合类型资源,包含有茅栗和日本栗的遗传背景,而现在的两种间存在地理隔离。在相同生态区域的栗属植物种间存在一定的基因交流,没有形成完全的生殖隔离。48号资源‘广东矮生’同时含有板栗和茅栗的遗传背景,在地理分布上该资源原生地正处于板栗和茅栗资源的重叠生态区。【结论】筛选的12对SSR引物能够准确地评估中国栗属植物的遗传多样性,综合聚类分析可确定栗属植物的类群划分与种间信息高度一致且种间存在一定的基因交换。
聂兴华, 郑瑞杰, 赵永廉, 曹庆芹, 秦岭, 邢宇. 利用荧光SSR分子标记评估中国栗属植物遗传多样性[J]. 中国农业科学, 2021, 54(8): 1739-1750.
NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR[J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
表1
供试材料的地理分布"
资源分类Germplasm type | 总数量Accession amount | 来源Origin | 数量Number |
---|---|---|---|
板栗种群POP 1 | 50 | 中国陕西 Shaanxi, China | 6 |
中国北京 Beijing, China | 11 | ||
中国河北 Hebei, China | 3 | ||
中国山东 Shandong, China | 10 | ||
中国湖北 Hubei, China | 10 | ||
中国云南 Yunnan, China | 3 | ||
中国浙江 Zhejiang, China | 4 | ||
中国江苏 Jiangsu, China | 2 | ||
中国广东Guangdong, China | 1 | ||
锥栗种群POP 2 | 13 | 中国福建 Fujian, China | 13 |
茅栗种群POP 3 | 19 | 中国湖南Hunan, China | 7 |
中国江西 Jiangxi, China | 1 | ||
中国湖北 Hubei, China | 2 | ||
中国安徽 Anhui, China | 9 | ||
日本栗种群POP 4 | 14 | 中国辽宁/日本 Liaoning, China/Japan | 14 |
合计 Total | 96 |
表2
12对高质量SSR标记的信息表"
序号 Number | 标记名 Marker ID | DNA序列号 GenBank ID | 上游引物 Forward primer (5′-3′) | 下游引物 Reverse primer (3′-5′) | 观察基序 Repeat motif |
---|---|---|---|---|---|
1 | CmSI0396 | 290474606 | AACTCCCACCACTCACATCC | TTTCGGACCATCCAGAACTC | CACACC |
2 | CmSI0561 | 290474702 | CGTATAGGGTGGAAACGGAA | GGACAAGCAAATCACGGAAT | TCG |
3 | CmSI0614 | 290476556 | TTGTGGTGAAGCTGACATCG | GGGTACTACCACAACATGCAG | GTT |
4 | CmSI0658 | 290474781 | AAAACGGTTTGTGGTGAAGC | GCCAACCAGTCAAGGGTACT | GTT |
5 | CmSI0702 | 290474818 | GAAACACACCAGAGAGATGCAG | TTTTATACAGAGACATACTATCCTACACAG | TC |
6 | CmSI0742 | 290474850 | GACGCTCCTCAGCTTTTGAC | TGCCGGTCAATTCTTCTTCT | AG |
7 | CmSI0800 | 290474899 | TTATGGCAACCCTCCTGTTT | CTGAAATGATCGATGCTGCT | TC |
8 | CmSI0853 | 290474950 | GGAGGAGGAGGAGCTCATTG | CCTTGGAGAGCTGCCAGTAG | TCT |
9 | CmSI0871 | 290474967 | AGGGGGTGGAAGAACCTATG | AGATTGCAAGTGGGGAATTG | TCT |
10 | CmSI0883 | 290476060 | CAGCATCAGCACTCGTTCA | GGGATTGAGAGGATGAAGCA | AGC |
11 | CmSI0922 | 290475011 | AATCTGAACCCCTCCGATCT | ACCAACAACATGTGCCAAAA | TTG |
12 | CmSI0930 | 290475019 | CCATTTAGCATGCATAGTCATACC | GCAAGGATGTAGGTCGAATCA | ATAC |
表3
12对SSR标记的关键遗传数据"
标记名 Marker | 主要位点频率 MAF | 位点数 Na | 位点多样性 GD | 观察杂合度 Ho | 期望杂合度 He | 多态信息含量 PIC | 遗传分化指数 Fst | 基因流 Nm |
---|---|---|---|---|---|---|---|---|
CmSI0396 | 0.390 | 4 | 0.656 | 0.552 | 0.544 | 0.586 | 0.190 | 1.063 |
CmSI0561 | 0.427 | 9 | 0.739 | 0.533 | 0.527 | 0.708 | 0.257 | 0.724 |
CmSI0614 | 0.183 | 14 | 0.839 | 0.563 | 0.740 | 0.818 | 0.130 | 1.667 |
CmSI0658 | 0.224 | 8 | 0.829 | 0.721 | 0.722 | 0.805 | 0.103 | 2.176 |
CmSI0702 | 0.302 | 11 | 0.806 | 0.769 | 0.772 | 0.782 | 0.096 | 2.351 |
CmSI0742 | 0.422 | 7 | 0.717 | 0.329 | 0.489 | 0.673 | 0.304 | 0.571 |
CmSI0800 | 0.391 | 12 | 0.791 | 0.591 | 0.706 | 0.771 | 0.146 | 1.457 |
CmSI0853 | 0.287 | 11 | 0.834 | 0.696 | 0.764 | 0.814 | 0.066 | 3.534 |
CmSI0871 | 0.339 | 12 | 0.788 | 0.714 | 0.636 | 0.760 | 0.255 | 0.730 |
CmSI0883 | 0.240 | 13 | 0.867 | 0.652 | 0.682 | 0.853 | 0.221 | 0.880 |
CmSI0922 | 0.237 | 11 | 0.860 | 0.701 | 0.798 | 0.845 | 0.079 | 2.920 |
CmSI0930 | 0.260 | 17 | 0.877 | 0.561 | 0.686 | 0.868 | 0.220 | 0.885 |
平均值 Mean | 0.308 | 10.750 | 0.800 | 0.615 | 0.672 | 0.774 | 0.172 | 1.580 |
表4
不同栗属植物种群间的关键遗传数据"
群体 Pop | 样品数 Sample | 变异位点数 Na | 有效等位变异 Ne | Shannon多样性指数 I | 观察杂合度 Ho | 期望杂合度 He | 无偏预期杂合度 UHe |
---|---|---|---|---|---|---|---|
板栗种群 Pop1 | 50 | 6.667±0.732 | 3.708±0.317 | 1.453±0.086 | 0.648±0.024 | 0.707±0.026 | 0.714±0.026 |
锥栗种群 Pop2 | 13 | 5.417±0.288 | 3.141±0.213 | 1.343±0.056 | 0.633±0.065 | 0.665±0.022 | 0.693±0.023 |
茅栗种群 Pop3 | 19 | 7.083±0.883 | 4.748±0.712 | 1.587±0.158 | 0.623±0.047 | 0.719±0.047 | 0.739±0.048 |
日本栗种群 Pop4 | 14 | 5.333±0.620 | 3.080±0.416 | 1.219±0.145 | 0.556±0.072 | 0.598±0.058 | 0.621±0.061 |
[1] | 张宇和, 柳鎏, 梁维坚, 张育明. 中国果树志, 板栗, 榛子卷. 中国林业出版社, 2005: 22-27. |
ZHANG Y H, LIU L, LIANG W J, ZHANG Y M. China Fruits’ Monograph, Chinese Chestnut: Hazelnut Volume. Beijing: China Forestry Publishing House, 2005: 22-27. (in Chinese) | |
[2] |
HUANG H W, DANE F, NORTON J D. Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.). Theoretical and Applied Genetics, 1994,88(8):981-985.
doi: 10.1007/BF00220805 pmid: 24186251 |
[3] | PEREIRALORENZO S, RAMOSCABRER A M. Chestnut, an Ancient Crop with Future. Production Practices and Quality Assessment of Food Crops Volume 1. Springer Netherlands, 2004,2:105-161. |
[4] |
LANG P, DANE F, KUBISIAK T L. Phylogeny of Castanea (Fagaceae) based on chloroplasttrnT-L-F sequence data. Tree Genetics & Genomes, 2006,2(3):132-139.
doi: 10.1007/s11295-006-0036-2 |
[5] |
魏潇, 章秋平, 刘宁, 张玉萍, 徐铭, 刘硕, 张玉君, 马小雪, 刘威生. 不同来源中国李(Prunus salicina L.)的多样性与近缘种关系. 中国农业科学, 2019,52(3):568-578.
doi: 10.3864/j.issn.0578-1752.2019.03.017 |
WEI X, ZHANG Q P, LIU N, ZHANG Y P, XU M, LIU S, ZHANG Y J, MA X X, LIU W S. Genetic diversity of the Prunus salicina L. from different sources and their related species. Scientia Agricultura Sinica, 2019,52(3):568-578. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.03.017 |
|
[6] |
李剑锋, 张博, 全建章, 王永芳, 张小梅, 赵渊, 袁玺垒, 贾小平, 董志平. 基于SSR标记的谷子主要农艺性状关联位点检测及等位变异分析. 中国农业科学, 2019,52(24):4453-4469.
doi: 10.3864/j.issn.0578-1752.2019.24.002 |
LI J F, ZHANG B, QUAN J Z, WANG Y F, ZHANG X M, ZHAO Y, YUAN X L, JIA X P, DONG Z P. Associated loci detection and elite allelic variations analysis of main agronomic traits in foxtail millet (Setaria italica L.) based on SSR markers. Scientia Agricultura Sinica, 2019,52(24):4453-4469. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.24.002 |
|
[7] |
石甜甜, 何杰丽, 高志军, 陈凌, 王海岗, 乔治军, 王瑞云. 利用EST-SSR评估糜子资源遗传差异. 中国农业科学, 2019,52(22):4100-4109.
doi: 10.3864/j.issn.0578-1752.2019.22.014 |
SHI T T, HE J L, GAO Z J, CHEN L, WANG H G, QIAO Z J, WANG R Y. Genetic diversity of common millet resources assessed with EST-SSR markers. Scientia Agricultura Sinica, 2019,52(22):4100-4109. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.22.014 |
|
[8] |
GUR-ARIE R, COHEN C J, EITAN Y, SHELEF L, HALLERMAN E M, KASHI Y. Simple sequence repeats in escherichia coli: Abundance, distribution, composition, and polymorphism. Genome Research, 2000,10(1):62-71.
pmid: 10645951 |
[9] |
INOUE E, NIN L, HARA H, RUAN S A, ANZAI H. Development of simple sequence repeat markers in Chinese chestnut and their characterization in diverse chestnut cultivars. Journal of the American Society for Horticultural Science, 2009,134(6):610-617.
doi: 10.21273/JASHS.134.6.610 |
[10] |
JIANG X B, TANG D, GONG B C. Genetic diversity and association analysis of Chinese chestnut (Castanea mollissima Blume) cultivars based on SSR markers. Brazilian Journal of Botany, 2017,40:235-246.
doi: 10.1007/s40415-016-0321-8 |
[11] |
MULLER M, NELSON C.D, GAILING O. Analysis of environment- marker associations in American chestnut. Forests, 2018,9(11):695.
doi: 10.3390/f9110695 |
[12] |
KUBISIAK T L, NELSON C D, STATON M E, ZHEBENTYAYAYEVA T, SMITH C, OLUKOLU B A, FANG C, HEBARD F V, ANAGNOSTAKIS S, WHEELER N, SISCO P H, ABBOTT A G, SEDEROFF R R. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes, 2013,9(2):557-571.
doi: 10.1007/s11295-012-0579-3 |
[13] | 刘国彬, 曹均, 兰彦平, 王金宝. 明清板栗古树指纹图谱的构建. 江西农业大学学报, 2017,39(1):134-139. |
LIU G B, CAO J, LAN Y P, WANG J B. Construction of SSR fingerprint on 33 ancient chestnut trees. Acta Agriculturae Universitatis Jiangxiensis, 2017,39(1):134-139. (in Chinese) | |
[14] | 曹庆芹, 徐月, 冯永庆. 板栗基因组DNA不同提取方法的比较. 中国农学通报, 2007,23(6):160-163. |
CAO Q Q, XU Y, FENG Y Q. Comparison studies on extracting genomic DNA of chestnut (Castanea mollissima BL) by different methods. Chinese Agricultural Science Bulletin, 2007,23(6):160-163. (in Chinese) | |
[15] | 聂兴华, 张卿, 刘阳, 代月星, 曹庆芹, 秦岭. 板栗SSR标记研究中聚丙烯酰胺凝胶银染显影体系的优化. 北方园艺, 2019(12):27-33. |
NIE X H, ZHANG Q, LIU Y, DAI Y X, CAO Q Q, QIN L. Optimization of PAGE silver-stained system based on SSR markers in the chestnut. Northern Horticulture, 2019(12):27-33. (in Chinese) | |
[16] |
LIU K J, MUSE S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21(9):2128-2129.
doi: 10.1093/bioinformatics/bti282 pmid: 15705655 |
[17] |
PEAKALL R, SMOUSE P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012,28(19):2537-2539.
doi: 10.1093/bioinformatics/bts460 |
[18] |
PEAKALL R, SMOUSE P E. GenALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006,6:288-295.
doi: 10.1111/men.2006.6.issue-1 |
[19] |
FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure using multi-locus genotype data: Linked loci and correlated allele frequencies. Genetics, 2003,164:1567-1587.
pmid: 12930761 |
[20] |
TAUTZ D, RENZ M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 1984,12:4127-4138.
doi: 10.1093/nar/12.10.4127 pmid: 6328411 |
[21] |
SARDAR S S, PRADHAN K, SHUKLA R P, SARASWAT R, SRIVASTAVA A, JENA S N, DAS A B. In silico mining of EST-SSRs in Arachis hypogaea L. and their utilization for genetic structure and diversity analysis in cultivars/breeding lines in Odisha, India. Molecular Breeding, 2016,36:49.
doi: 10.1007/s11032-016-0466-y |
[22] |
LIU S R, LIU H W, WU A L, HOU Y, AN Y L, WEI C L. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding, 2017,37:93.
doi: 10.1007/s11032-017-0692-y |
[23] |
SELKOE K A, TOONEN R J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 2006,9:615-629.
doi: 10.1111/j.1461-0248.2006.00889.x pmid: 16643306 |
[24] | 张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记的燕山板栗种质资源遗传多样性分析. 中国农业大学学报, 2020,25(4):61-71. |
ZHANG X F, ZHANG S H, LI Y, GUO Y, WANG G P. Genetic diversity analysis of chestnut germplasm in Yanshan region based on SSR markers. Journal of China Agricultural University, 2020,25(4):61-71. (in Chinese) | |
[25] | 黄武刚, 程丽莉, 周志军, 刘建立. 板栗野生居群遗传多样性研究. 果树学报, 2010,27(2):227-232. |
HUANG W G, CHENG L L, ZHOU Z J, LIU J L. SSR analysis on genetic diversity of wild Chinese chestnut populations. Journal of Fruit Science, 2010,27(2):227-232. (in Chinese) | |
[26] | XING Y, LIU Y, ZHANG Q, NIE X H, SUN Y M, ZHANG Z Y, LI H C, FANG K F, WANG G P, HUANG H W, BISSELING T, CAO Q Q, QIN L. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). GigaScience, 2019,8:1-7. |
[27] | 郎萍, 黄宏文. 栗属中国特有种居群的遗传多样性及地域差异. 植物学报, 1999,41(6):651-657. |
LANG P, HUANG H W. Genetic diversity and geographic variation in natural populations of the endemic Castanea species in China. Acta Botanica Sinica, 1999,41(6):651-657. (in Chinese) | |
[28] | MOKAY J. Self-sterility in the Chinese chestnut. Proceedings of the American Society for Floret Science, 1942,41:156-160. |
[29] |
PAYNE J A, JAYNES R A, KAYS S J. Chinese chestnut production in the United States: practice, problems, and possible solutions. Economic Botany, 1983,37:187-200.
doi: 10.1007/BF02858784 |
[30] |
程丽莉, 胡广隆, 苏淑钗, 黄武刚. 板栗及其近缘种叶绿体SSR遗传多样性分析. 华北农学报, 2015,30(2):145-149.
doi: 10.7668/hbnxb.2015.02.026 |
CHENG L L, HU G L, SU S C, HUANG W G. Diversity of cultivated chestnuts and it’s close relative species using chloroplast SSRs. Acta Agriculturae Boreali-Sinica, 2015,30(2):145-149. (in Chinese)
doi: 10.7668/hbnxb.2015.02.026 |
|
[31] |
WRIGHT S. Evolution in Mendelian populations. Genetics, 1931,16:97.
pmid: 17246615 |
[32] |
田华, 康明, 李丽, 姚小洪, 黄宏文. 中国板栗自然居群微卫星(SSR)遗传多样性. 生物多样性, 2009,17(3):296-302.
doi: 10.3724/SP.J.1003.2009.09043 |
TIAN H, KANG M, LI L, YAO X H, HUANG H W. Genetic diversity in natural populations of Castanea mollissima inferred from nuclear SSR markers. Biodiversity Science, 2009,17(3):296-302. (in Chinese)
doi: 10.3724/SP.J.1003.2009.09043 |
|
[33] | 李颖林. 锥栗野生和栽培群体遗传多样性的SSR分析[D]. 福州: 福建农林大学, 2019. |
LI Y L. Genetic diversity of wild and cultivated populations revealed by SSR markers in Castanea henryi[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese) | |
[34] |
TANAKA T, YAMAMOTO T, SUZUKI M. Genetic diversity of Castanea crenata in Northern Japan assessed by SSR markers. Breeding Science, 2005,55(3):271-277.
doi: 10.1270/jsbbs.55.271 |
[35] | 韩继成, 刘庆香, 王广鹏, 孔德军, 张新忠. 栗属植物遗传多样性研究进展. 华北农学报, 2006,21(z2):129-132. |
HAN J C, LIU Q X, WANG G P, KONG D J, ZHANG X Z. The progress of the genetic diversity studies on Castanea (Tourn.) L. Acta Agriculturae Boreali-Sinica, 2006,21(z2):129-132. (in Chinese) |
[1] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[2] | 朱延松,张亚飞,程莉,杨胜男,赵婉彤,江东. 利用Target SSR-seq技术鉴定60份柑橘种质资源[J]. 中国农业科学, 2022, 55(22): 4458-4472. |
[3] | 杜金霞,李奕莎,李美霖,陈文浛,张木清. 甘蔗不同基因型对白条病抗性的评价[J]. 中国农业科学, 2022, 55(21): 4118-4130. |
[4] | 胡光明,张琼,韩飞,李大卫,李作洲,汪志,赵婷婷,田华,刘小莉,钟彩虹. 猕猴桃属植物通用型SSR分子标记引物的筛选及应用[J]. 中国农业科学, 2022, 55(17): 3411-3425. |
[5] | 杨程,龚桂芝,彭祝春,常珍珍,易璇,洪棋斌. 基于cpInDel标记和cpSSR标记的柑橘属及近缘属植物亲缘关系[J]. 中国农业科学, 2022, 55(16): 3210-3223. |
[6] | 王璐伟,沈志军,李贺欢,潘磊,牛良,崔国朝,曾文芳,王志强,鲁振华. 基于SSR荧光标记的79份桃种质遗传多样性分析[J]. 中国农业科学, 2022, 55(15): 3002-3017. |
[7] | 陈旭,郝雅琼,聂兴华,杨海莹,刘松,王雪峰,曹庆芹,秦岭,邢宇. 板栗总苞和坚果主要性状与SSR标记的关联分析[J]. 中国农业科学, 2022, 55(13): 2613-2628. |
[8] | 李凯峰,尹玉和,王琼,林团荣,郭华春. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析[J]. 中国农业科学, 2021, 54(4): 792-803. |
[9] | 胡冬梅,江东,李永平,彭磊,李冬云,朱延松,杨云光. 利用Target SSR-seq技术鉴定温州蜜柑芽变材料[J]. 中国农业科学, 2021, 54(23): 5083-5096. |
[10] | 王彦,范保杰,曹志敏,张志肖,苏秋竹,王珅,王学清,彭秀国,梅丽,武玉华,刘少兴,田胜民,徐俊杰,蒋春志,王伟娟,刘长友,田静. 基于新遗传连锁图谱的豇豆抗豆象QTL定位[J]. 中国农业科学, 2021, 54(22): 4740-4749. |
[11] | 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮. 观赏桃种质资源表型性状多样性评价[J]. 中国农业科学, 2021, 54(11): 2406-2418. |
[12] | 张晓,李曼,刘大同,江伟,张勇,高德荣. 扬麦系列品种品质性状分析及育种启示[J]. 中国农业科学, 2020, 53(7): 1309-1321. |
[13] | 宋鸽,史东梅,曾小英,蒋光毅,江娜,叶青. 紫色土坡耕地耕层质量障碍特征[J]. 中国农业科学, 2020, 53(7): 1397-1410. |
[14] | 陈雪,王瑞,井付钰,张胜森,贾乐东,段谋正,吴宇. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证[J]. 中国农业科学, 2020, 53(6): 1108-1117. |
[15] | 徐志军,赵胜,徐磊,胡小文,安东升,刘洋. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发[J]. 中国农业科学, 2020, 53(4): 695-706. |
|