[1] |
MO J B, LI D Y, ZHANG H J, SONG F M.Roles of ERF Transcription factors in biotic and abiotic stress response in plants.Plant Physiology Journal, 2011, 47(12): 1145-1154.
doi: 10.1631/jzus.B1000278
|
[2] |
黄锁. 谷子耐盐相关基因SiNF-YA5和SiATG4的功能分析及调控途径解析[D]. 北京: 中国农业科学院, 2016.
|
|
HUANG S.Functional analysis and regulatory pathway analysis of salt-tolerance related genes SiNF-YA5 and SiATG4 in millet[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
|
[3] |
OHME-TAKAGI M, SHINSHI H.Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.The Plant Cell, 1995, 7: 173-182.
doi: 10.2307/3869993
pmid: 7756828
|
[4] |
SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI K, YAMAGUCHI S K.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical & Biophysical Research Communications, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299
pmid: 11798174
|
[5] |
张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展. 遗传, 2012, 34(7): 835-847.
doi: 10.3724/SP.J.1005.2012.00835
|
|
ZHANG J Y, WANG Q J, GUO Z R.Research progress on plant AP2 /ERF transcription factors.Genetics, 2012, 34(7): 835-847. (in Chinese)
doi: 10.3724/SP.J.1005.2012.00835
|
[6] |
OHTO M A, FISCHER R L, GOLDBERG R B, NAKAMURA K, HARADA J J.Control of seed mass by APETALA2. Proceedings of the National Academy of Sciences of the USA, 2005, 102(8): 3123-3128.
|
[7] |
KLUCHER K M, CHOW H, REISER L, FISCHER R L.The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 1996, 8(2): 137-153.
|
[8] |
ELLIOTT R, BETZNER A, HUTTNER E, OAKES M, TUCKER W, GERENTES D, PEREZ P, SMYTH D. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 1996, 8: 155-168.
|
[9] |
KRIZEK B.Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Developmental Genetics, 1999, 25: 224-236.
doi: 10.1002/(SICI)1520-6408(1999)25:3<224::AID-DVG5>3.0.CO;2-Y
pmid: 10528263
|
[10] |
MIZUKAMI Y, FISCHER R.Plant organ size control:AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 942-947.
doi: 10.1073/pnas.97.2.942
pmid: 10639184
|
[11] |
NOLEWILSON S, KRIZEK B.AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiology, 2006, 141: 977-987.
doi: 10.1104/pp.106.076604
pmid: 16714408
|
[12] |
KRIZEK B. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiology, 2009, 150: 1916-1929.
|
[13] |
KAGAYA Y, OHMIYA K, HATTORI T.RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants.Nucleic Acids Research, 1999, 27(2): 470-478.
doi: 10.1093/nar/27.2.470
pmid: 9862967
|
[14] |
SOHN K H, LEE S C, JUNG H W, HONG J K, HWANG B K.Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance.Plant Molecular Biology, 2006, 61(6): 897-915.
doi: 10.1007/s11103-006-0057-0
pmid: 16927203
|
[15] |
YAMAGUCHISHINOZAKI K, SHINOZAKI K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
doi: 10.1105/tpc.6.2.251
pmid: 8148648
|
[16] |
THOMASHOW M F.PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms.Annual Review of Plant Biology, 1999, 50: 571-599.
doi: 10.1146/annurev.arplant.50.1.571
pmid: 15012220
|
[17] |
ZHANG X X, TANG Y J, MA Q B, YANG C Y, MU Y H, SUO H C, LUO L H, NIAN H.OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean.PLoS ONE, 2013, 8(12): e83011.
doi: 10.1371/journal.pone.0083011
pmid: 24376625
|
[18] |
HAO D Y, OHME-TAKAGI M, SARAI A.Unique mode of GCC box recognition by the DNA-binding domain of ethylene responsive element-binding factor (ERF domain) in plants.Journal of Biological Chemistry, 1998, 273(41): 26857-26861.
doi: 10.1074/jbc.273.41.26857
pmid: 9756931
|
[19] |
TANG Y H,QINS S, GUO Y L, CHEN Y B, WU P Z, CHEN Y P, LI M R, JIANG H W, WU G J.Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress. PLoS ONE, 2016, 11(3): e0150879.
doi: 10.1371/journal.pone.0150879
pmid: 26943337
|
[20] |
LIU D F, CHEN X J, LIU J Q, YE J C, GUO Z J.The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911.
|
[21] |
LI C, YUE J, WU X W, XU C, YU J J.An ABA-responsive DRE-binding protein gene from Setaria italica,SiARDP, the target gene of SiAREB, plays a critical role under drought stress. Journal of Experimental Botany, 2014, 65(18): 5415-5427.
doi: 10.1093/jxb/eru302
pmid: 4157718
|
[22] |
窦祎凝, 秦玉海, 闵东红, 张小红, 王二辉, 刁现民, 贾冠清, 徐兆师, 李连城, 马有志, 陈明. 谷子转录因子SiNAC18 通过ABA 信号途径正向调控干旱条件下的种子萌发. 中国农业科学, 2017, 50(16): 3071-3081.
doi: 10.3864/j.issn.0578-1752.2017.16.002
|
|
DOU Y N, QIN Y H, MIN D H, ZHANG X H, WANG E H, DIAO X M, JIA G Q, XU Z S, LI L C, MA Y Z, CHEN M.Transcription factor SiNAC18 positively regulates seed germination under drought stress through ABA signaling pathway in foxtail millet(Setaria italic L.). Scientia Agricultura Sinica, 2017, 50(16): 3071-3081. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.002
|
[23] |
王智兰, 杜晓芬, 王军, 杨慧卿, 王兴春, 郭二虎, 王玉文, 袁峰
|
|
田岗, 刘鑫, 王秋兰, 李会霞, 张林义, 彭书忠. 谷子SiARGOS1的克隆、表达分析和功能标记开发. 中国农业科学, 2017, 50(22): 4266-4276.
|
24 |
WANG Z L, DU X F, WANG J, YANG H Q, WANG X C, GUO E H,WANG Y W, YUAN F, TIAN G, LIU X, WANG Q L, LI H X, ZHANG L Y, PENG S Z.Molecular cloning, expression analysis and development of functional markers forSiARGOS1 gene in foxtail millet. Scientia Agricultura Sinica, 2017, 50(22): 4266-4276. (in Chinese)
|
[24] |
杨霞. 两个水稻金属离子转运体基因和两个水稻锌指蛋白基因的克隆与功能研究[D]. 南京: 南京农业大学, 2007.
|
|
YANG X.Cloning and functional analysis of two rice metal ion transporter genes and two rice zinc finger protein genes[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese)
|
[25] |
KIM B R, NAM H Y, KIM S U, KIM S I, CHANG Y J.Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice.Biotechnology Letters, 2003, 25: 1869-1872.
|
[26] |
MARTÍNEZ-ATIENZA J, JIANG X, GARCIADEBLAS B, MENDOZA I, ZHU J K, PARDO J M, QUINTERO F J. Conservation of the salt overly sensitive pathway in rice.Plant Physiology, 2007, 143(2): 1001-1012.
|
[27] |
SCHMIDT R, MIEULET D, HUBBERTEN H M, OBATA T, HOEFGEN R, FERNIE A R, FISAHN J, SAN-SEGUNDO B, GUIDERDONI E, SCHIPPERS J H, MUELLER-ROEBER B.SALT-RESPONSIVE ERF1 regulates reactive oxygen species- dependent signaling during the initial response to salt stress in rice.The Plant Cell, 2013, 25(6): 2115-2131.
|
[28] |
HUANG J, YANG X, WANG M M, TANG H J, DING L Y, SHEN Y, ZHANG H S.A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance.Biochimica ET Biophysica Acta Gene Structure & Expression, 2007, 1769(4): 220-227.
doi: 10.1016/j.bbaexp.2007.02.006
pmid: 17434609
|
[29] |
沈义国, 陈受宜. 植物盐胁迫应答的分子机制. 遗传, 2001, 23(4): 365-369.
|
|
SHEN Y G, CHEN S Y.Molecular mechanism of salt stress response in plants.Genetics, 2001, 23(4): 365-369. (in Chinese)
|
[30] |
BOHNERT H J, SHEN B.Transformation and compatible solutes.Scientia Horticulturae, 1999, 78: 237-260.
|
[31] |
HASEGAWA P M, BRESSAN R A, ZHU J K, BOHNERT H J.Plant cellular and molecular responses to high salinity.Annual Review of Plant Physiology & Plant Molecular Biology, 2000, 51: 463-499.
|
[32] |
张宏. 水稻C2H2型锌指蛋白ZFP182和ZFP36在ABA诱导的抗氧化防护中的功能分析[D]. 南京: 南京农业大学, 2012.
|
|
ZHANG H.Functional analysis of rice C2H2 zinc finger proteins ZFP182 and ZFP36 in anti-oxidative protection induced by ABA[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
|
[33] |
CALKHOVEN C F, GEERT A B.Multiple steps in the regulation of transcription-factor level and activity. Biochemical Journal, 1996, 317(2): 329-342.
doi: 10.1107/S0108768101004141
pmid: 8713055
|
[34] |
RANDALL R S, SORNAY E, DEWITTE W, MURRAY J A H.AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property.. Journal of Experimental Botany, 2015, 66: 3991-4000.
|
[35] |
DONGHA O, SANGYEOL L, BRESSAN R A, YUN D J, BOHNERT H J.Intracellular consequences of SOS1 deficiency during salt stress.Journal of Experimental Botany, 2010, 61(4): 1205-1213.
doi: 10.1093/jxb/erp391
pmid: 2826659
|
[36] |
SHI H, QUINTERO F J, PARDO J M, ZHU J K.The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants.The Plant Cell, 2002, 14: 465-477.
|
[37] |
QIU Q S, GUO Y, DIETRICH M A, SCHUMAKER K S, ZHU J K.Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the USA, 2002, 99(12): 8436-8441.
|
[38] |
PARDO J M, CUBERO B, LEIDI E O, QUINTERO F J.Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance.Journal of Experimental Botany, 2006, 57(5): 1181-1199.
doi: 10.1093/jxb/erj114
pmid: 16513813
|