中国农业科学 ›› 2018, Vol. 51 ›› Issue (10): 1815-1829.doi: 10.3864/j.issn.0578-1752.2018.10.001
张维军1,2(), 李甜1, 秦琳1, 赵静1, 赵俊杰1, 柳洪1, 侯健1, 郝晨阳1, 陈东升2, 魏亦勤2, 景蕊莲1, 张学勇1()
收稿日期:
2017-10-16
接受日期:
2017-11-30
出版日期:
2018-05-16
发布日期:
2018-05-16
联系方式:
联系方式:张维军,E-mail:zwjnky@126.com。
基金资助:
WeiJun ZHANG1,2(), Tian LI1, Lin QIN1, Jing ZHAO1, JunJie ZHAO1, Hong LIU1, Jian HOU1, ChenYang HAO1, DongSheng CHEN2, YiQin WEI2, RuiLian JIN1, XueYong ZHANG1()
Received:
2017-10-16
Accepted:
2017-11-30
Published:
2018-05-16
Online:
2018-05-16
摘要:
目的 根系改良是提高小麦抗逆性和产量的关键因素之一。通过克隆不同根系类型小麦品种的根系相关基因TaDRO,分析其与小麦重要农艺性状的关系,开发标记,为品种改良提供理论依据和技术支撑。方法 以根系性状多态性较高的21份普通小麦为材料,测序分析TaDRO-5A、TaDRO-5B和TaDRO-5D的序列多态性;利用“中国春”-缺体四体材料对其进行染色体定位,并用最新版的中国春基因组序列对其进行精细物理定位,根据TaDRO-5A和TaDRO-5B序列多态性开发分子标记;以323份普通小麦构成的自然群体为材料进行TaDRO单元型与表型性状的关联分析。结果 克隆了小麦TaDRO的A、B、D基因组序列,利用最新版的中国春基因组序列分别将TaDRO-5A、TaDRO-5B和TaDRO-5D定位于小麦染色体5A、5B和5D上,分别位于426.15、381.00和327.60 Mb处;在TaDRO-5A全长序列中共检测到3个SNP,形成Hap-5A-A和Hap-5A-C 2种单元型,根据启动子区-2 271 bp的序列差异,开发出分子标记TaDRO-5A-KASP。在TaDRO-5B全长序列中共检测到17个SNP和1个InDel,形成Hap-5B-Ⅰ和Hap-5B-Ⅱ 2种单元型,根据-300 bp的InDel开发了分子标记TaDRO-5B-InDel。关联分析表明,TaDRO-5A与株高、千粒重和根系生长角度显著相关,Hap-5A-A是增大根系生长角度、降低株高、增加千粒重的浅根型单元型,而Hap-5A-C是减小根系生长角度、增加株高、降低千粒重的深根型单元型。TaDRO-5B与株高显著相关,Hap-5B-Ⅰ是增加株高和降低千粒重的深根型单元型,Hap-5B-Ⅱ是降低株高和增加千粒重的浅根型单元型。在地方品种中,Hap-5A-C和Hap-5B-Ⅰ为优势单元型,在育成品种中,Hap-5A-A和Hap-5B-Ⅱ为优势单元型;深根型单元型Hap-5A-C和Hap-5B-Ⅰ在干旱、半干旱麦区品种中的分布频率高于湿润麦区;在全球地理分布中,干旱麦区品种中Hap-5A-C为优势单元型,但Hap-5B-I优势不明显。随着育种年代推进,小麦品种中浅根型单元型Hap-5A-A和Hap-5B-Ⅱ的频率增加。结论 小麦根系相关基因TaDRO的Hap-5A-C和Hap-5B-Ⅰ是增加株高和降低千粒重的深根型单元型,Hap-5A-A和Hap-5B-Ⅱ是降低株高和增加千粒重的浅根型单元型;随着灌溉和化肥用量的增加,中国小麦品种逐步由深根、高秆类型转变为浅根、矮秆类型;利用分子标记选择矮秆、深根类型,可能提高品种水肥利用效率。
张维军, 李甜, 秦琳, 赵静, 赵俊杰, 柳洪, 侯健, 郝晨阳, 陈东升, 魏亦勤, 景蕊莲, 张学勇. 小麦TaDRO与根系形态的关联分析及在中国和全球 品种中的地理分布与演变[J]. 中国农业科学, 2018, 51(10): 1815-1829.
WeiJun ZHANG, Tian LI, Lin QIN, Jing ZHAO, JunJie ZHAO, Hong LIU, Jian HOU, ChenYang HAO, DongSheng CHEN, YiQin WEI, RuiLian JIN, XueYong ZHANG. TaDRO, A Gene Associated with Wheat Root Architectures, Its Global Distribution and Evolution in Breeding[J]. Scientia Agricultura Sinica, 2018, 51(10): 1815-1829.
表1
小麦自然群体TaDRO-5A和TaDRO-5B单元型与农艺性状的关联分析"
年份 Year | 地点 Site | 环境 Environments | TaDRO-5A | TaDRO-5B | ||||
---|---|---|---|---|---|---|---|---|
株高PH P-value | 千粒重TKW P-value | 根角度RGA P-value | 株高PH P-value | 根角度RGA P-value | ||||
2015 | 顺义 Shunyi | 水WW | ns | ns | 0.0017** | |||
旱DS | ns | 0.0431* | ns | |||||
水热HE | 0.0310* | 0.0252* | 0.0011** | |||||
旱热DE | 0.0165* | 0.0209* | 0.0223* | |||||
2016 | 昌平 Changping | 水WW | 0.0223* | ns | 0.0364* | |||
旱DS | ns | ns | 0.0017** | |||||
顺义 Shunyi | 水WW | 0.0160* | 0.0342* | 0.0133* | ||||
旱DS | 0.0148* | 0.0198* | 0.0327* | |||||
水热HE | 0.0108* | ns | 0.0095** | |||||
旱热DE | 0.0243* | ns | 0.0122* | |||||
2016 | 实验室 Lab | 0.04984* | ns |
表2
小麦自然群体TaDRO-5A和TaDRO-5B单元型部分性状比较"
性状 Trait | TaDRO-5A | TaDRO-5B | ||
---|---|---|---|---|
Hap-5A-A | Hap-5A-C | Hap-5B-Ⅰ | Hap-5B-Ⅱ | |
根长RL | 391.07±111.56 | 403.21±95.13 | 410.91±98.80a | 383.97±112.15b |
株高PH | 116.85±23.22B | 126.30±18.53A | 130.20±13.34A | 111.69±24.64B |
千粒重TKW | 41.50±7.49A | 36.77±7.66B | 35.99±6.58B | 43.32±7.56A |
根夹角RGA | 112.87±1.39a | 102.61±4.66b | 112.10±3.64 | 111.73±1.46 |
[1] | 杨方人. 旱作大豆高产综合技术对根系发育及生理功能影响的研究. 大豆科学, 1987, 6(3): 225-230. |
YANG F R.The effect of the high-yield comprehensive agrotechniques of dry-farming on development of soybean roots.Soybean Science, 1987, 6(3): 225-230. (in Chinese) | |
[2] |
王法宏, 任德昌, 王旭清, 曹宏鑫, 余松烈, 于振文. 施肥对小麦根系活性、延缓旗叶衰老及产量的效应. 麦类作物学报, 2001, 27(3): 51-54.
doi: 10.7606/j.issn.1009-1041.2001.03.068 |
WANG F H, REN D C, WANG X Q, CAO H X, YU S L, YU Z W.Effect of applying fertilizer on root activity, delaying the senescence of the flag leaf and yield in winter wheat.Journal of Triticeae Crops, 2001, 27(3): 51-54. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2001.03.068 |
|
[3] | 李鲁华, 陈树宾, 秦莉, 孔祥丽, 李世清. 不同土壤水分条件下春小麦品种根系功能效率的研究. 中国农业科学, 2002, 35(7): 867-871. |
LI L H, CHEN S B, QIN L, KONG X L, LI S Q.Study on root function efficiency of spring wheats under different moisture condition.Scientia Agricultura Sinica, 2002, 35(7): 867-871. (in Chinese) | |
[4] | PENG Y C, MA W Y, CHEN L L, YANG L, LI S J, ZHAO H T, ZHAO Y K, JIN W H, LI N, BEVAN M W, LI X, TONG Y P, LI Y H.Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis. Plant Physiology, 2013, 161(3): 1542-1556. |
[5] |
YUSAKU U, KAZUHIKO S, SATOSHI O, JAGADISHI R, MANABU I, NAHO H, YUKA K, YOSHIAKI I, KAZUKO O, NORIKO K, HARUHIKO I, HINAKO T, RITSUKO M, YOSHIAKI N, WU J Z, TAKASHI M, TOSHIYUKI T, KAZUTOSHI O, MASAHIRO Y.Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9): 1097-1102.
doi: 10.1038/ng.2725 pmid: 23913002 |
[6] | SHARMA S, XU S, EHDAIE B, HOOPS A, TIMOTHY J, ADAM J, LUKASZEWSKI J, WAINES G.Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat.Theoretical and Applied Genetics, 2011, 122: 759-769. |
[7] |
JIA Y B, YANG X E, FENG Y, JILANI G.Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency.Journal of Zhejiang University: Science B, 2008, 9: 427-434.
doi: 10.1631/jzus.B0710636 pmid: 18500783 |
[8] |
BAI C H, LIANG Y L, HAWKESFORD M J.Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat.Journal of Experimental Botany, 2013, 64: 1745-1753.
doi: 10.1093/jxb/ert041 pmid: 23564959 |
[9] | LOPES M S, REYNOLDS M P.Partioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat.Functional Plant Biology, 2010, 37(2): 147-156. |
[10] | HOCHHOLDINGER F.The maize root system: Morphology, anatomy and genetics//BENNETZEN J, HAKE S. The Handbook of Maize. New York: Springer, 2009: 145-160. |
[11] |
COUNDERT Y, PERIN C, COURTOIS B, KHONG N G, GANTET P.Genetic control of root development in rice, the model cereal.Trends in Plant Science, 2010, 15: 219-226.
doi: 10.1016/j.tplants.2010.01.008 pmid: 20153971 |
[12] |
CAO P, REN Y Z, ZHANG K P, TENG W, ZHAO X Q, DONG Z Y, LIU Y, QIN H J, LI Z S, WANG D W, TONG Y P.Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat.Molecular Breeding, 2014, 33(4): 975-985.
doi: 10.1007/s11032-013-0013-z |
[13] |
GUPTA P K, RUSTGI S, KULWAL P L.Linkage disequilibrium and association studies in higher plants: Present status and future prospects.Plant Molecular Biology, 2005, 57(4): 461-485.
doi: 10.1007/s11103-005-0257-z pmid: 15821975 |
[14] |
WANG L F, GE H M, HAO C Y, DONG Y C, ZHANG X Y.Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE, 2012, 7(2): e29432.
doi: 10.1371/journal.pone.0029432 pmid: 22328917 |
[15] |
KRAAKAMN A T W, NIKS R E, VAN DEN BERG P M M M, STAM P, EEUWIJK V. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars.Genetics, 2004, 168(1): 435-446.
doi: 10.1534/genetics.104.026831 pmid: 15454555 |
[16] | YAN J B, KANDIANI C B, HARJES C E, KIM E H, YANG X, SKINNER D J, FU Z, MITCHELL S, LI Q, FERNANDEZ M G, ZAHARIEVA M, BABU R, FU Y, PALACIOS N, LI J, DELLAPENNA D, BRUTNELL T, BUCKLER E S, WARBURTON M L, ROCHEFORD T.Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nature Genetic, 2010, 42(4): 322-327. |
[17] |
BRESEGHELLO F, SORRELLS M E.Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177.
doi: 10.1534/genetics.105.044586 pmid: 16079235 |
[18] |
MASSMAN J, COOPER B, HORSLEY R, NEATE S, MACKY D, CHAO S, DONG Y, SCHWARZ P, MUEHIBAUER G L, SMITH K P.Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Molecular Breeding, 2011, 27: 439-454.
doi: 10.1007/s11032-010-9442-0 |
[19] |
ROY J K, SMITH K P, MUEHLBAUER G J, CHAO S, CLOSE T J, STEFFENSON B J.Association mapping of spot blotch resistance in wild barley.Molecular Breeding, 2010, 26: 243-256.
doi: 10.1007/s11032-010-9402-8 pmid: 20694035 |
[20] | ANDERSEN J R, LUBBERSTEDT T.Functional markers in plants, trends.Plant Science, 2003, 8(11): 554-560. |
[21] |
LIU Y N, HE Z H, APPELS R, XIA X C.Functional markers in wheat: current status and future prospects.Theoretical and Applied Genetic, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867 |
[22] |
HAO C Y, DONG Y C, WANG L Y, YOU G X, ZHANG H N, GE H M, JIA J Z, ZHANG X Y.Genetic diversity and construction of core collection in Chinese wheat genetic resources.Chinese Science Bulletin, 2008, 53: 1518-1526.
doi: 10.1007/s11434-008-0212-x |
[23] | LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T) ) method.Methods, 2001, 25: 402-408. |
[24] |
刘秀林, 昌小平, 李润植, 景蕊莲. 小麦种子根结构及胚芽鞘长度的QTL分析的方法. 作物学报, 2011, 37(3): 381-388.
doi: 10.3724/SP.J.1006.2011.00381 |
LIU X L, CHANG X P, LI R Z, JING R L.Mapping QTLs for seminal root architecture and coleoptile length in wheat.Acta Agronomica Sinica, 2011, 37(3): 381-388. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00381 |
|
[25] |
BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCHLER E S.TASSEL: Software for association mapping of complex traits in diverse samples.Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[26] | LIAO H, YAN X L.Adaptive changes and geno-typic variation of root architecture of common bean in response to phosphorus deficiency.Acta Botanica Sinica, 2000, 42(2): 158-163. |
[27] | 郝留根. 小麦根系性状测定方法的比较及根系性状的QTL分析[D]. 杨凌: 西北农林科技大学, 2014. |
HAO L G.Comparison on different methods for measuring root traits and QTL analysis on root traits in wheat [D]. Yangling: Northwest Agriculture and Forestry University, 2014. (in Chinese) | |
[28] | 刘士哲. 无土栽培技术. 北京: 中国农业出版社, 200l. |
LIU S Z. Soilless Planting Technique.Beijing: China Agriculture Press, 2001. (in Chinese) | |
[29] | 张喜英. 作物根系与土壤水利用. 北京: 气象出版社, 1999. |
ZHANG X Y.Crop Roots and Soil Moisture Utilization. Beijing: Meteorological Press, 1999. (in Chinese) | |
[30] | 李维炯. 测定根生物量的简便方法-土钻法. 耕作与栽培, 1984(6): 43. |
LI W J.Methods of studying roots systems of auger.Tillage and Cultivation, 1984(6): 43. (in Chinese) | |
[31] |
杨丽雯, 张永清. 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011, 44(11): 2244-2251.
doi: 10.3864/j.issn.0578-1752.2011.11.005 |
YANG L W, ZHANG Y Q.Developing patterns of root systems of four cereal crops planted in dryland areas.Scientia Agricultura Sinica, 2012, 44(11): 2244-2251. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.11.005 |
|
[32] |
JOHNSON M G, TINGEY D T, PHILLIPS D L, STORM M J.Advancing fine root research with minirhizotrons.Environmental and Experimental Botany, 2001, 45(3): 263-289.
doi: 10.1016/S0098-8472(01)00077-6 pmid: 11323033 |
[33] |
LI B, LI Q R, MAO X G, LI A, WANG J Y, CHANG X P, HAO C Y, ZHANG X Y,JING R . Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat. Plant Science, 2016, 7: 1191.
doi: 10.3389/fpls.2016.01191 pmid: 4977303 |
[34] |
ABE J, MORITA S.Growth direction of nodal roots in rice: its variation and contribution to root system formation.Plant Soil, 1994, 165: 333-337.
doi: 10.1007/BF00008078 |
[35] | ARAKI H, MORITA S, TATSUMI J, IIJIMA M.Physio- morphological analysis on axile root growth in upland rice.Plant Production Science, 2002, 5: 286-293. |
[36] | YOSHIDA S, HASEGAWA S.The rice root system: its development and function//Drought Resistance in Crops with Emphasis on Rice. Manila: International Rice Research Institute, 1982: 97-114. |
[37] |
FUKAI S, COOPER M.Development of drought-resistant cultivars using physio-morphological traits in rice.Field Crops Research, 1995, 40: 67-86.
doi: 10.1016/0378-4290(94)00096-U |
[38] |
RICH S M, WATT M.Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver.Journal of Experimental Botany, 2013, 64: 1193-1208.
doi: 10.1093/jxb/ert043 pmid: 23505309 |
[39] |
WASSON A P, RICHARD R A, CHATRATH R, MISRA S C, PRASAD S V, REBETZKE G J, KIRKEGAARD J A, CHRISTOPHER J, WALT M.Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.Journal of Experimental Botany, 2012, 63(9): 3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286 |
[40] |
MANSCHADI A M, CHRISTOPHER J T, VOIL P D, HAMMER G L.The role of root architectural traits in adaptation of wheat to water-limited environments.Functional Plant Biology, 2006, 33: 823-837.
doi: 10.1071/FP06055 |
[41] | KIRKEGAARD J A, LILLEY J M, HOWE G N, GRAHMA J M.Impact of subsoil water use on wheat yield.Australian Journal Agricultural Research, 2007, 58: 303-315. |
[42] |
于福来, 方玉强, 王文全, 王秋玲, 刘凤波. 甘草栽培群体主要数量性状遗传变异及相互关系研究.中国中药杂志, 2011, 36(18): 2457-2461.
doi: 10.4268/cjcmm20111801 |
YU F L, FANG Y Q, WANG W Q, WANG Q L, LIU F B.Genetic variability and interrelationships of mainly quantitative traits in Glycyrrhiza uralensis cultivated population. China Journal of Chinese Medica, 2011, 36(18): 2457-2461. (in Chinese)
doi: 10.4268/cjcmm20111801 |
|
[43] | 农田灌溉面积达8.77亿亩,占全国耕地面积的48% [EB/OL]. . |
The irrigated area of farmland is 877 million mu, accounting for 48% of the total arable land [EB/OL]. (in Chinese) | |
[44] | YUSAKU U, HANZAWA E, NAGAI S, SASAKI K, YANO M, SATO T.Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields. Theoretical and Applied Genetics, 2011, 124(1): 75-86. |
[45] |
YUSAKU U, OKUNO K, YANO M.Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal Experimental Botany, 2011, 62(8): 2485-2494.
doi: 10.1093/jxb/erq429 pmid: 21212298 |
[46] |
YUSAKU U, YAMAMOTO E, KANNO N, KAWAI S, MIZUBAYASHI T, FUKUOKA S.A major QTL controlling deep rooting on rice chromosome 4.Scientific Reports, 2013, 3: 3040.
doi: 10.1038/srep03040 pmid: 24154623 |
[47] |
YUSAKU U, KITOMI Y, YAMAMOTO E, KANNO N, KAWAI S, MIZUBAYASHI T, FUKUOKA S, A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice, 2015, 8: 8.
doi: 10.1186/s12284-015-0044-7 pmid: 4384719 |
[48] | WRIGHT S I, VROH I, SCHROEDER S, YASANORI M, DOEBLEY J, MCMULLEN M D, GAUT B S.The effects of artificial selection on the maize genome.Science, 2004, 308(5726): 1310-1314. |
[49] | OLSEN K M, URUGGANAN M D.Molecular evidence on the origin and evolution of glutinous rice.Genetics, 2002, 162: 941-950. |
[50] | PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J W, GALE M D, HARBERD N P.Green revolution genes encode mutant gibberellin response modulators.Nature, 1999, 400(6741): 256-261. |
[51] | FRARY A, NESBITT T C, GRANDILLO S, KNAAP E, CONG B, LIU J, MELLER J, ELBER R, ALPERT K B, TANKSLEY S D.fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(5746): 85-88. |
[52] |
FAY J C, WU C I.Hitchhiking under positive Darwinian selection.Genetics, 2000, 155: 1405-1413.
doi: 10.1002/1098-2272(200007)19:1<81::AID-GEPI6>3.0.CO;2-8 pmid: 10880498 |
[53] |
WAINES J G, EHDAIE B.Domestication and crop physiology: Roots of Green-revolution wheat.Annals of Botany, 2007, 100(5): 991-998.
doi: 10.1140/epjc/s2006-02484-y pmid: 17940075 |
[1] | 谭力治, 赵毅强. 全基因组关联分析中混合模型的原理、优化与应用[J]. 中国农业科学, 2023, 56(9): 1617-1632. |
[2] | 彭海霞, 卡得艳, 张天星, 周梦蝶, 吴林楠, 辛转霞, 赵惠贤, 马猛. 过量表达小麦TaCYP78A5增加花器官的大小[J]. 中国农业科学, 2023, 56(9): 1633-1645. |
[3] | 魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测[J]. 中国农业科学, 2023, 56(9): 1670-1685. |
[4] | 张旭, 韩金妤, 李晨晨, 张丹丹, 吴启蒙, 刘胜杰, 焦韩轩, 黄硕, 李春莲, 王长发, 曾庆东, 康振生, 韩德俊, 吴建辉. 结合基因关联和转录组分析鉴定小麦成株期抗条锈病位点YrZ501-2BL的候选基因[J]. 中国农业科学, 2023, 56(8): 1429-1443. |
[5] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[6] | 王慧玲, 闫爱玲, 王晓玥, 刘振华, 任建成, 徐海英, 孙磊. 葡萄果粒质量相关性状全基因组关联分析[J]. 中国农业科学, 2023, 56(8): 1561-1573. |
[7] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[8] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[9] | 贺江, 丁颖, 娄向弟, 姬东玲, 张向向, 王永慧, 张伟杨, 王志琴, 王伟露, 杨建昌. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制[J]. 中国农业科学, 2023, 56(6): 1045-1060. |
[10] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[11] | 王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113-1126. |
[12] | 王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘[J]. 中国农业科学, 2023, 56(5): 801-820. |
[13] | 周文期, 张贺通, 何海军, 龚佃明, 杨彦忠, 刘忠祥, 李永生, 王晓娟, 连晓荣, 周玉乾, 邱法展. 调控玉米株高和穗位高候选基因Zmdle1的定位[J]. 中国农业科学, 2023, 56(5): 821-837. |
[14] | 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应[J]. 中国农业科学, 2023, 56(5): 838-849. |
[15] | 郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析[J]. 中国农业科学, 2023, 56(5): 850-865. |
|