中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2073-2083.doi: 10.3864/j.issn.0578-1752.2021.10.004
孔亚丽1(),朱春权1,曹小闯1,朱练峰1,金千瑜1,洪小智2,张均华1()
收稿日期:
2020-07-13
接受日期:
2020-12-18
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
张均华
作者简介:
孔亚丽,E-mail: 基金资助:
KONG YaLi1(),ZHU ChunQuan1,CAO XiaoChuang1,ZHU LianFeng1,JIN QianYu1,HONG XiaoZhi2,ZHANG JunHua1()
Received:
2020-07-13
Accepted:
2020-12-18
Online:
2021-05-16
Published:
2021-05-24
Contact:
JunHua ZHANG
摘要:
土壤盐渍化是农业可持续生产面临的严重威胁之一。利用高效、低成本和适应性强的方法对盐渍区进行修复是一个具有挑战性的目标。土壤微生物在调节植物根际环境、调控生长发育和提高系统生产力等方面具有重要作用。近年来,由微生物驱动的植物胁迫耐受性受到了广泛关注。通过识别和利用能与植物相互作用的土壤微生物来减轻盐胁迫,为盐渍区改良提供了一种新策略,也为与胁迫耐受相关新机制的发现开辟了新途径。了解不同微生物介导的胁迫耐受性的潜在生理机制对有效利用这些微生物促进农业可持续生产至关重要,本文从植物养分吸收、渗透平衡、激素水平、抗氧化功能等方面论述了国内外关于土壤微生物介导植物耐盐性的作用机理,评估了目前关于土壤微生物参与调节植物耐盐性相关研究的有益作用和不足之处,提出了未来研究的发展方向。目前通过提高养分及水分吸收效率维持盐胁迫下植物离子稳态,提高生长素的合成、降低乙烯的释放调控植物激素水平是土壤微生物改良植物耐盐性的目标过程,然而单个外源微生物接种时会与土著微生物组竞争,导致许多微生物菌株不能在土壤或植物根系中定殖或存活,致使微生物在大规模农业生产应用中仅取得了有限的成功。未来微生物介导植物抗盐性的研究应突破单一微生物接种的研究方式,进一步在群落水平上阐明植物-微生物的相互作用介导植物抗盐性的机制,解决农业微生物利用的关键问题。
孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083.
KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance[J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[1] | 李建国, 濮励杰, 朱明, 张润森. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012,67(9):1233-1245. |
LI J G, PU L J, ZHU M, ZHANG R S. The present situation and hot issues in the salt-affected soil research. Acta Geographica Sinica, 2012,67(9):1233-1245. (in Chinese) | |
[2] | CARILLO P, ANNUNZIATA M G, PONTECORVO G, FUGGI A, WOODROW P. Salinity stress and salt tolerance//SHANKER A, VENKATESWARLU B. Abiotic stress in plants-mechanisms and adaptations. Croatia: InTech, 2011: 21-38. |
[3] |
MEENA M D, YADAV R K, NARJARY B, YADAV G, JAT H, SHEORAN P, MEENA M K, ANTIL R, MEENA B, SINGH H. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Management, 2018,84:38-53.
doi: 10.1016/j.wasman.2018.11.020 |
[4] | 杨晓慧, 蒋卫杰, 魏珉, 余宏军. 提高植物抗盐能力的技术措施综述. 中国农学通报, 2006,22(1):88-91. |
YANG X H, JIANG W J, WEI M, YU H J. The technial approaches of improving the plant salt-resistant ability. Chinese Agricultural Science Bulletin, 2006,22(1):88-91. (in Chinese) | |
[5] |
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012,17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 |
[6] | 陆雅海, 张福锁. 根际微生物研究进展. 土壤, 2006,38(2):113-121. |
LU Y H, ZHANG F S. The advances in rhizosphere microbiology. Soils, 2006,38(2):113-121. (in Chinese) | |
[7] |
VERBON E H, LIBERMAN L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 2016,21(3):218-229.
doi: 10.1016/j.tplants.2016.01.013 |
[8] | 龚江, 吕宁, 茹思博, 侯振安. 滴灌条件下盐分对棉花养分及盐离子吸收的影响. 植物营养与肥料学报, 2009,15(3):670-676. |
GONG J, LÜ N, RU S B, HOU Z A. Effects of soil salinity on nutrients and ions uptake in cotton with drip irrigation under film. Journal of Plant Nutrition and Fertilizers, 2009,15(3):670-676. (in Chinese) | |
[9] |
CHANDRASEKARAN M, BOUGHATTAS S, HU S J, OH S H, SA T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 2014,24(8):611-625.
doi: 10.1007/s00572-014-0582-7 |
[10] | 文佩, 陈小兵, 张乐乐, 李依霖, 齐铭君, 姜姝璇, 张立宾. 盐旱交叉胁迫对各施氮水平下小麦苗期的影响. 土壤, 2019,51(2):324-329. |
WEN P, CHEN X B, ZHANG L L, LI Y L, QI M J, JIANG S X, ZHANG L B. Effects of salt and drought on winter wheat in seedling stage under different nitrogen rates. Soils, 2019,51(2):324-329. (in Chinese) | |
[11] | AUGE R M, TOLER H D, SAXTON A M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: A meta-analysis. Frontiers in Plant Science, 2014,5:562. |
[12] |
PAN J, PENG F, XUE X, YOU Q G, ZHANG W J, WANG T, HUANG C H. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: A meta-analysis. Sustainability, 2019,11(2):378.
doi: 10.3390/su11020378 |
[13] |
UPADHYAY S K, SINGH D P. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology, 2015,17(1):288-293.
doi: 10.1111/plb.12173 |
[14] | 贺忠群, 贺超兴. 盐渍条件下丛枝菌根真菌对番茄营养吸收及离子毒害的影响. 华北农学报, 2013,28(1):181-186. |
HE Z Q, HE C X. Effect of arbuscular mycorrhizal fungi on nutrition absorbing and ion damage in tomato under salt stress. Acta Agriculturae Boreali-Sinica, 2013,28(1):181-186. (in Chinese) | |
[15] |
WANG Y H, WANG M Q, LI Y, WU A P, HUANG J Y. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE, 2018,13(4):e0196408.
doi: 10.1371/journal.pone.0196408 |
[16] | ZHANG J H, HUSSAIN S, ZHAO F T, ZHU L F, CAO X C. Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere. Journal of Soil & Sediments, 2018,18(4):1453-1465. |
[17] | 王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望. 植物营养与肥料学报, 1998,4(2):107-116. |
WANG Q R, LI J Y, LI Z S. Advance and prospect of insoluble phosphorus utilization efficient of plant. Journal of Plant Nutrition and Fertilizers, 1998,4(2):107-116. (in Chinese) | |
[18] | 黄铖程, 刘景辉, 杨彦明. 生物菌肥对盐碱地燕麦生理特性及土壤速效养分的影响. 北方农业学报, 2018,46(5):57-61. |
HUANG C C, LIU J H, YANG Y M. Effect of the compound microbial fertilizer on the physiological characteristics of oats and soil available nutrients in saline-alkali land. Journal of Northern Agriculture, 2018,46(5):57-61. (in Chinese) | |
[19] | 冯固, 李晓林, 张福锁, 李生秀. 施磷和接种AM真菌对玉米耐盐性的影响. 植物资源与环境学报, 2000,9(2):22-26. |
FENG G, LI X L, ZHANG F S, LI S X. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. Journal of Plant Resources and Environment, 2000,9(2):22-26. (in Chinese) | |
[20] | 杨海霞, 刘希旻, 潘奕臣, 赵香林, 黄海东. 耐盐碱溶磷菌Y2R2的分离鉴定及溶磷特性. 生物技术通报, 2020,36(10):127-134. |
YANG H X, LIU X M, PAN Y C, ZHAO X L, HUANG H D. Isolation, identification and characterization of salt-alkali-tolerant and phosphorus-dissolving Bacterium Y2R2. Biotechnology Bulletin, 2020,36(10):127-134. (in Chinese) | |
[21] | 谭枝群. 非生物胁迫下暖季型草坪草内参基因筛选及铁离子调控耐盐性的机制研究[D]. 南京: 南京农业大学, 2015. |
TAN Z Q. Stress and the iron regulatory salt-tolerance mechanism of warm season turfgrass. Nanjing: Nanjing Agricultural University, 2015. (in Chinese) | |
[22] |
VERBON E H, TRAPET P L, STRINGLIS I A, KRUIJIS S, BAKKER P A, PIETERSE C M. Iron and immunity. Annual Review of Phytopathology, 2017,55(1):355-375.
doi: 10.1146/annurev-phyto-080516-035537 |
[23] | 王丹, 赵亚光, 张凤华. 耐盐促生菌筛选、鉴定及对盐胁迫小麦的效应. 麦类作物学报, 2020,40(1):110-117. |
WANG D, ZHAO Y G, ZHANG F H. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress. Journal of Triticeae Crops, 2020,40(1):110-117. (in Chinese) | |
[24] | 许芳芳, 袁立敏, 邵玉芳, 范国花, 周心爱, 郑文玲, 李冬梅, 冯福应. 肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应. 微生物学通报, 2018,45(1):102-110. |
XU F F, YUAN L M, SHAO Y F, FAN G H, ZHOU X A, ZHENG W L, LI D M, FENG F Y. Effect of Enterobacter sp. FYP1101 on wheat seedling growth under salt stress. Microbiology China, 2018,45(1):102-110. (in Chinese) | |
[25] | 李彦, 张英鹏, 孙明, 高弼模. 盐分胁迫对植物的影响及植物耐盐机理研究进展. 中国农学通报, 2008,24(1):258-265. |
LI Y, ZHANG Y P, SUN M, GAO B M. Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chinese Agricultural Science Bulletin, 2008,24(1):258-265. (in Chinese) | |
[26] |
SERRANO R, RODRIGUEZ-NAVARRO A. Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 2001,13(4):399-404.
doi: 10.1016/S0955-0674(00)00227-1 |
[27] |
GIRI B, KAPOOR R, MUKERJI K G. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 2007,54(4):753-760.
doi: 10.1007/s00248-007-9239-9 |
[28] |
LAURIE S, FEENEY K A, MAATHUIS F J M, HEARD P J, BROWN S J, LEIGH R A. A role for HKT1 in sodium uptake by wheat roots. The Plant Journal, 2002,32:139-149.
doi: 10.1046/j.1365-313X.2002.01410.x |
[29] |
WANG Q, GUAN C, WANG P, LV M L, MA Q, WU G Q, BAO A K, ZHANG J L, WANG S M. AtHKT1; 1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regulation, 2015,75(3):615-623.
doi: 10.1007/s10725-014-9964-2 |
[30] |
ZHANG H M, KIM M S, SUN Y, DOWD S E, SHI H Z, PAR P W. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 2008,21(6):737-744.
doi: 10.1094/MPMI-21-6-0737 |
[31] |
CHEN L, LIU Y P, WU G W, NJERI K V, SHEN Q R, ZHANG N, ZHANG R F. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiologia Plantarum, 2016,158(1):34-44.
doi: 10.1111/ppl.2016.158.issue-1 |
[32] | ASHRAF M, HASNAIN S, BERGE O, MAHMOOD T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 2004,40(3):157-162. |
[33] |
ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007,59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006 |
[34] | CHEN M Q, WEI H B, CAO J W, LIU R J, WANG Y L, ZHENG C Y. Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. Journal of Biochemistry and Molecular Biology, 2007,40(3):396-403. |
[35] | QURASHI A W, SABRI A N. Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pakistan Journal of Botany, 2013,45(3):1011-1016. |
[36] |
SZIDERICS A H, RASCHE F, TROGNITZ F, SESSITSCH A, WILHELM E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology, 2007,53(11):1195-1202.
doi: 10.1139/W07-082 |
[37] | 徐亚军, 赵龙飞, 邢鸿福, 罗云霄, 魏正欣. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响. 生态学报, 2020,40(11):3726-3737. |
XU Y J, ZHAO L F, XING H F, LUO Y X, WEI Z X. Effects of endophytic bacteria on proline and malondialdehyde of wheat seedlings under salt stress. Acta Ecologica Sinica, 2020,40(11):3726-3737. (in Chinese) | |
[38] |
JHA Y, SUBRAMANIAN R B, PATEL S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum, 2011,33(3):797-802.
doi: 10.1007/s11738-010-0604-9 |
[39] | 路静, 马齐军, 康慧, 李文浩, 刘亚静, 郝玉金, 由春香. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性. 园艺学报, 2019,46(3):433-443. |
LU J, MA Q J, KANG H, LI W H, LIU Y J, HAO Y J, YOU C X. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance. Acta Horticulturae Sinica, 2019,46(3):433-443. (in Chinese) | |
[40] | 张永志, 高文俊, 郭艳妮, 郝鲜俊. 丛枝菌根真菌对NaCl胁迫下紫花苜蓿的生理指标及光合参数的影响. 草原与草坪, 2018,38(4):26-34. |
ZHANG Y Z, GAO W J, GUO Y N, HAO X J. The effects of arbuscular mycorrhizal fungi on physiological responses of Medicago sativa under NaCl stress. Grassland and Turf, 2018,38(4):26-34. (in Chinese) | |
[41] |
KIM K, JANG Y J, LEE S M, OH B T, CHAE J C, LEE K J. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells, 2014,37(2):109-117.
doi: 10.14348/molcells.2014.2239 |
[42] |
ZAWOZNIK M S, AMENEIROS M, BENAVIDES M P, V ZQUEZ S, GROPPA M D. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Applied Microbiology and Biotechnology, 2011,90(4):1389-1397.
doi: 10.1007/s00253-011-3162-1 |
[43] |
GOND S K, TORRES M S, BERGEN M S, HELSEL Z, WHITE J F. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Letters in Applied Microbiology, 2015,60(4):392-399.
doi: 10.1111/lam.12385 |
[44] |
MARULANDA A, AZC N R, CHAUMONT F, RUIZ-LOZANO J M, AROCA R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta, 2010,232(2):533-543.
doi: 10.1007/s00425-010-1196-8 |
[45] |
MUHSIN T M, ZWIAZEK J J. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytologist, 2002,153:153-158.
doi: 10.1046/j.0028-646X.2001.00297.x |
[46] | 贺忠群, 贺超兴, 闫妍, 张志斌, 王怀松, 李焕秀, 汤浩茹. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控. 园艺学报, 2011,38(2):273-280. |
HE Z Q, HE C X, YAN Y, ZHANG Z B, WANG H S, LI H X, TANG H R. Regulative effect of arbuscular mycorrhizal fungi on water absorption and expression of aquaporin genes in tomato under salt stress. Acta Horticulturae Sinica, 2011,38(2):273-280. (in Chinese) | |
[47] |
AROCA R, PORCEL R, RUIZ-LOZANO J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 2007,173(4):808-816.
doi: 10.1111/nph.2007.173.issue-4 |
[48] |
BROTMAN Y, LANDAU U, CUADROS-INOSTROZA Á, TAKAYUKI T, FERNIE A R, CHET L, VITERBO A, WILLMITZER L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 2013,9(3):e1003221.
doi: 10.1371/journal.ppat.1003221 |
[49] |
BHARTI N, PANDEY S S, BARNAWAL D, PATEL V K, KALRA A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 2016,6(1):34768.
doi: 10.1038/srep34768 |
[50] |
JHA Y, SUBRAMANIAN R B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, 2014,20(2):201-207.
doi: 10.1007/s12298-014-0224-8 |
[51] |
BALTRUSCHAT H, FODOR J, HARRACH B D, NIEMCZYK E, BARNA B, GULLNER G, JANECZKO A, KOGEL K H, SCH FER P, SCHWARCZINGER I. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 2008,180(2):501-510.
doi: 10.1111/nph.2008.180.issue-2 |
[52] | WALLER F, ACHATZ B, BALTRUSCHAT H, FODOR J, BECKER K, FISCHER M, HEIER T, HUCKELHOVEN R, NEUMANN C, WETTSTEIN D V, FRANKEN P, KOGEL K H. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(38):13386. |
[53] | 陈小娟, 刘铠鸣, 宣明刚, 邵佳慧, 张瑞福. 增强作物耐盐胁迫能力的根际促生菌筛选、鉴定及田间应用效果. 南京农业大学学报, 2020,43(3):452-459. |
CHEN X J, LIU K M, XUAN M G, SHAO J H, ZHANG R F. Screening and identification of plant growth-promoting rhizobacteria to enhance salt stress tolerance of crops and their effects in field experiment. Journal of Nanjing Agricultural University, 2020,43(3):452-459. (in Chinese) | |
[54] |
EGAMBERDIEVA D, KUCHAROVA Z, DAVRANOV K, BERG G, MAKAROVA N, AZAROVA T, CHEBOTAR V, TIKHONOVICH I, KAMILOVA F, VALIDOV S Z, LUGTENBERG B. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 2011,47(2):197-205.
doi: 10.1007/s00374-010-0523-3 |
[55] |
EGAMBERDIEVA D, BERG G, LINDSTR M K, RASANEN L A. Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant and Soil, 2013,369(1):453-465.
doi: 10.1007/s11104-013-1586-3 |
[56] | HASHEM A, ABD ALLAH E F, ALQARAWI A A , AL-HUQAIL A A, WIRTH S, EGAMBERDIEVA D. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology, 2016,7:1089. |
[57] |
BIANCO C, DEFEZ R. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Journal of Experimental Botany, 2009,60(11):3097-3107.
doi: 10.1093/jxb/erp140 |
[58] |
LIU S F, HAO H T, LU X, ZHAO X, WANG Y, ZHANG Y B, XIE Z K, WANG R Y. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Scientific Reports, 2017,7(1):10795.
doi: 10.1038/s41598-017-11308-8 |
[59] | EGAMBERDIEVA D, WIRTH S, ABD ALLAH E F. Plant hormones as key regulators in plant-microbe interactions under salt stress //ARORA N, EGAMBERDIEVA D, AHMAD P. Plant Microbiome: Stress Response. Singapore: Springer, 2018: 165-182. |
[60] | 高永生, 王锁民, 张承烈. 植物盐适应性调节机制的研究进展. 草业学报, 2003,12(2):1-6. |
GAO Y S, WANG S M, ZHANG C L. Plant adaptive and regulatory mechanism under salt stress. Acta Prataculturae Sinica, 2003,12(2):1-6. (in Chinese) | |
[61] |
KANG S M, KHAN A L, WAQAS M, YOU Y H, KIM J H, KIM J G, HAMAYUN M, LEE I J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 2014,9(1):673-682.
doi: 10.1080/17429145.2014.894587 |
[62] |
SHAHZAD R, KHAN A L, BILAL S, WAQAS M, KANG S M, LEE I J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 2017,136:68-77.
doi: 10.1016/j.envexpbot.2017.01.010 |
[63] |
YAO L X, WU Z S, ZHENG Y Y, KALEEM I, LI C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 2010,46(1):49-54.
doi: 10.1016/j.ejsobi.2009.11.002 |
[64] |
KAZAN K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 2015,20(4):219-229.
doi: 10.1016/j.tplants.2015.02.001 |
[65] |
RAVANBAKHSH M, SASIDHARAN R, VOESENEK L A, KOWALCHUK G A, JOUSSET A. Microbial modulation of plant ethylene signaling: Ecological and evolutionary consequences. Microbiome, 2018,6(1):52.
doi: 10.1186/s40168-018-0436-1 |
[66] | SMITH A, COOK R J. Implications of ethylene production by bacteria for biological balance of soil. Nature, 1974,252(5485):703-705. |
[67] |
RAVANBAKHSH M, KOWALCHUK G A, JOUSSET A. Root- associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff. The ISME Journal, 2019,13(12):3093-3101.
doi: 10.1038/s41396-019-0501-1 |
[68] |
GLICK B R, CHENG Z, CZARNY J, DUAN J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 2007,119(3):329-339.
doi: 10.1007/s10658-007-9162-4 |
[69] |
SUGAWARA M, OKAZAKI S, NUKUI N, EZURA H, MITSUI H, MINAMISAWA K. Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnology Advances, 2006,24(4):382-388.
doi: 10.1016/j.biotechadv.2006.01.004 |
[70] |
PENROSE D M, MOFFATT B A, GLICK B R. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology, 2001,47(1):77-80.
doi: 10.1139/w00-128 |
[71] |
PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003,118(1):10-15.
doi: 10.1034/j.1399-3054.2003.00086.x |
[72] |
BLAHA D, PRIGENT-COMBARET C, MIRZA M S, MOENNE- LOCCOZ Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology, 2006,56(3):455-470.
doi: 10.1111/fem.2006.56.issue-3 |
[73] |
GLICK B R, CHENG Z, CZARNY J, DUAN J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 2007,119(3):329-339.
doi: 10.1007/s10658-007-9162-4 |
[74] |
HARDOIM P R, VAN OVERBEEK L S, ELSAS J D V. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 2008,16(10):463-471.
doi: 10.1016/j.tim.2008.07.008 |
[75] | LIU X M, ZHANG H. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Frontiers in Plant Science, 2015,6:774. |
[76] | LEDGER T, ROJAS S, TIMMERMANN T, PINEDO I, POUPIN M J, GARRIDO T, RICHTER P, TAMAYO J, DONOSO R. Volatile- mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Frontiers in Microbiology, 2016,7:1838. |
[77] |
VAISHNAV A, KUMARI S, JAIN S, VARMA A, CHOUDHARY D K. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Journal of Applied Microbiology, 2015,119(2):539-551.
doi: 10.1111/jam.12866 |
[78] |
BHATTACHARYYA D, YU S M, LEE Y H. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regulation, 2015,75(1):297-306.
doi: 10.1007/s10725-014-9953-5 |
[79] |
KWON Y S, RYU C M, LEE S, PARK H B, HAN K S, LEE J H, LEE K, CHUNG W S, JEONG M J, KIM H K, BAE D W. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta, 2010,232(6):1355-1370.
doi: 10.1007/s00425-010-1259-x |
[80] |
ZHENG Y, LIANG J, ZHAO D L, MENG C, ZHANG C S. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils. Microorganisms, 2020,8(2):207.
doi: 10.3390/microorganisms8020207 |
[81] |
KWAK M J, KONG H G, CHOI K, KWON S K, SONG J Y, LEE J, LEE P A, CHOI S Y, SEO M, LEE H J, JUNG E J, PARK H, ROY N, KIM H, LEE M M, RUBIN E M, LEE S W, KIM J F. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018,36(11):1100-1109.
doi: 10.1038/nbt.4232 |
[82] |
ROY K D, MARZORATI M, ABBEELE P V D, WIELE T V D, BOON N. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environmental Microbiology, 2014,16(6):1472-1481.
doi: 10.1111/emi.2014.16.issue-6 |
[83] | NIU B, PAULSON J N, ZHENG X Q, KOLTER R. Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(12):E2450-E2459. |
[84] |
ZHANG J Y, LIU Y X, ZHANG N, HU B, JIN T, XU H R, QIN Y, YAN P X, ZHANG X N, GUO X X, HUI J, CAO S Y, WANG X, WANG C, WANG H, QU B Y, FAN G, YUAN L X, GARRIDO- OTER R, CHU C C, BAI Y. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019,37(6):676-684.
doi: 10.1038/s41587-019-0104-4 |
[1] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[2] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[3] | 张晨曦, 田明慧, 杨硕, 杜嘉琪, 何堂庆, 仇云鹏, 张学林. 酸性土壤中丛枝菌根真菌菌剂多样性对玉米产量及其磷钾吸收的影响[J]. 中国农业科学, 2022, 55(15): 2899-2910. |
[4] | 胡亚丽,聂靖芝,吴霞,潘姣,曹珊,岳娇,罗登杰,王财金,李增强,张辉,吴启境,陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响[J]. 中国农业科学, 2022, 55(14): 2696-2708. |
[5] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[6] | 龚小雅,石记博,方凌,方亚鹏,吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 2022, 55(12): 2472-2484. |
[7] | 张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012. |
[8] | 刘闯,高振,姚玉新,杜远鹏. 葡萄钾离子转运基因VviHKT1;7在盐胁迫下的功能鉴定[J]. 中国农业科学, 2021, 54(9): 1952-1963. |
[9] | 张桂云,朱静雯,孙明法,严国红,刘凯,宛柏杰,代金英,朱国永. 盐胁迫条件下长白10号水稻籽粒中差异代谢物的分析[J]. 中国农业科学, 2021, 54(4): 675-683. |
[10] | 王洁,吴晓宇,杨柳,段巧红,黄家保. 大白菜ACA基因家族的全基因组鉴定与表达分析[J]. 中国农业科学, 2021, 54(22): 4851-4868. |
[11] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[12] | 王娜,赵资博,高琼,何守朴,马晨辉,彭振,杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析[J]. 中国农业科学, 2021, 54(2): 248-260. |
[13] | 郝海平,白红彤,夏菲,郝渊鹏,李慧,崔洪霞,谢晓明,石雷. 茶-山苍子间作对茶园土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(18): 3959-3969. |
[14] | 李慧,韩占品,贺丽霞,杨亚苓,尤书燕,邓琳,王春国. 花椰菜BraERF023a的克隆及在响应盐和干旱胁迫中的功能[J]. 中国农业科学, 2021, 54(1): 152-163. |
[15] | 孟淑君,张雪海,王琪月,张稳,黄力,丁冬,汤继华. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682. |
|