[1] Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 2004, 48: 555-560.
[2] Kronzucker H J, Britto D T. Sodium transport in plants: a critical review. New Phytology, 2011, 189: 54-81.
[3] 李志江, 刁现民. 谷子分子标记与功能基因组研究进展. 中国农业科技导报, 2009, 11(4): 16-22.
Li Z J, Diao X M. Research progress on molecular marker and funtional genomic of foxtail millet, Setaria italica Beauv.. Journal of Agricultural Science and Technology, 2009, 11(4): 16-22. (in Chinese)
[4] Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends in Plant Sciences, 2005, 10: 88-94.
[5] Kim S Y. The role of ABF family bZIP class transcription factors in stress response. Physiology Plant, 2006, 126: 519-527.
[6] Jakoby M, Weisshaar B, Droge-Laser W, Vicente- Carbajosa J, Tiedemann J, Kroj T, PARCY F. bZIP Research Group. bZIP transcription factors in Arabidopsis. Trends in Plant Sciences, 2002, 7(3): 106-111.
[7] Lindemose S, O'Shea C, Jensen M K, Skriver K. Structure, function and networks of transcription factors involved in abiotic stress responses. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878.
[8] Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 2008, 146: 333-350.
[9] Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. The Plant Cell, 2002, 14: 343-357.
[10] Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 2008, 148: 1938-1952.
[11] Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Molecular Biology, 2011, 75: 365-378.
[12] Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey N F, Leung J. An update on abscisic acid signaling in plants and more. Molecular Plant, 2008, 1: 198-217.
[13] Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, LIU J, ZHONG M, GUO Z F. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 2012, 2: 969-987.
[14] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 2011, 62: 4731-4748.
[15] Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 2013, 33: 328-343.
[16] Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30: 549-554.
[17] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30: 555-561.
[18] 闵东红, 薛飞洋, 马亚男, 陈明, 徐兆师, 李连城, 刁现民, 贾冠 清, 马有志. 谷子 PP2C基因家族的特性. 作物学报, 2013, 39: 2135-2144.
Min D H, Xue F Y, Ma Y N, Chen M, Xu Z S, Li L C, Diao X M, Jia G Q, Ma Y Z. Characteristics of PP2C gene family in foxtail millet (Setaria italica). Acta Agronomica Sinica, 2013, 39: 2135-2144. (in Chinese)
[19] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2: 1565-1572.
[20] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16: 735-743.
[21] Landschulz W, Johnson P, McKnight S. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 1988, 240: 1759-1764.
[22] Ehlert A, Weltmeier F, Wang X, Mayer C S, Smeekens S, VicenteCarbajosa J, Droge-Laser W. Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. The Plant Journal, 2006, 46: 890-900.
[23] Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, PAN S, ZHONG X, XIE D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research, 2012, 19(6): 463-476.
[24] Pourabed E, Ghane G F, Soleymani M P, Razavi S M, Shobbar Z S. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis. Molecular Biotechnology, 2015, 57(1): 12-26.
[25] Busk P K, Pagès M. Regulation of abscisic acid-induced transcription. Plant Molecular Biology, 1998, 37: 425-435.
[26] Bray E A. Plant responses to water deficit. Trends in Plant Science, 1997, 2: 48-54.
[27] Hossain M A, Cho J I, Han M, Ahn C H, JEON J S, AN G, PARK P B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. Journal of Plant Physiology, 2010, 167: 1512-1520.
[28] Gao G, Zhang S, Wang C, Yang X, Wang Y, SU X, DU J, YANG C. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. PLoS One,2011, 6: e19406.
[29] Liao Y, Zhang J S, Chen S Y, ZHANG W K. Role of soybean GmbZIP132 under abscisic acid and salt stresses. Journal of Integrative Plant Biology, 2008, 50(2): 221-230.
[30] Gao S Q, Chen M, Xu Z S, ZHAO C P, LI L, XU H J, TANG Y M, ZHAO X, MA Y Z. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Molecular Biology, 2011, 75(6): 537-553.
[31] Ying S, Zhang D F, Fu J, SHI Y S, SONG Y C, WANG T Y, LI Y. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta, 2011, 235(2): 253-266. |